
International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 16, March 2015

31

Extended Term tXSchema uses SAX Parsing Partially

Ratnaparkhi Punam S

Student of MEIT,
Amrutvahini College of Engineering, Sangmner

S.E.Pawar
Head of the Department, Information Technology
Amrutvahini College of Engineering, Sangmner

ABSTRACT

World Wide Web Consortium recommendation for XML

Schema illustrates the structure and data types of XML

document. tXSchema could be a framework for the creation

and validation of time variable documents. All parts of

tXSchema changes over time to replicate changes reference

world of information. tXSchema could be a model for making

temporal Schema from base Schema, logical and Physical

Annotations. We also describe how the validator can be

extended (temporal validator) to validate documents in this

seeming uncertain situation of data that vary across time while

its corresponding schema and even its representation are also

varies. Since many applications require to keep tracks of the

Schema, data evaluation, which suggested a need of

versioning. When system is working with huge versions of

schema as well as xml data files here we are specially

focusing on how to minimize processing time by using SAX

parser’s partial involvement with conventional DOM parser.

In this paper we deal with versioning in tXSchema model,

more precisely here we propose a set of Schema change

primitive for the maintenance of logical and physical

annotations and define their operational perspectives and also

minimizes processing time.

General Terms

XML Editors, Physical and Logical Data Independence,

Temporal; XML Data.

Keywords

XML Schema, Temporal Database, Physical Annotations,

Logical Annotations, XML constraints, XML validation.

1. INTRODUCTION

XML is becoming a popular language for documents and data

which published on the web. XML used to create any XML

document designer need to refer what should be the structure

of a document, but the structure of XML document is an XML

Schema. Every XML document generated is always validated

against its Schema which ensures confirmation to the

formatting rules for an XML document, also confirmation to

the types, attributes specify by the Schema itself. One of the

main concerns of XML document is its time varying nature.

An XML schema suggests the description or structure of the

XML document; typically it would be presented in terms of

constraints on the Schema and content of documents. A

temporal document used to record the transition of a

document over time, i.e., all of the past versions as well as the

most current version of the XML document. These databases

or document generally contains information about when

things are happened. So in this paper we will test how to

preserve and validate time-varying data within XML Schema.

One approach would have been to propose changes to XML

Schema to accommodate time-varying nature.

Temporal XML Schema (tXSchema) is responsible for

constructing and validating temporal documents tXSchema

could be a framework for the creation and validation of our

time variable documents. All parts of tXSchema changes over

time to replicate changes to reference world of information.

Temporal Annotations makes the conventional XML Schema

document become Temporal XML document .Physical

annotation, describes how to represent the time-varying

aspects of the document. A temporal bundle is nothing but,

the XML document that serves as temporal Schemas together

with the non-temporal schema, and temporal annotation and

physical annotation. So that XML Schema is compatible with

both XML Schema and the XML data model. We then extend

tXSchema to support schema versioning. When the schema is

versioned, the base schema and temporal and physical

Schemas can themselves be time-varying documents, in doing

so, we use both conventional XML Schema and related tools

(importantly, the conventional validator), as well as

VALIDATOR for data versioning.

A challenge with schema versioning is that anything can

modify or update, and thus must be versioned it can be

anything such as the snapshot documents, the base schema,

the temporal annotations, the physical annotations, the schema

documents [16]. With the framework introduced in a paper,

we will show that we can:

 1) Implementing XML Editor, for interactively

working on the schema, schema versioning, and temporal

document only.

 2) Achieve logical data independence by specifying

what can change in the temporal annotation.

 3) Achieve physical data independence by

specifying the location of timestamps in the physical

annotation.

 4) Here we are exploring SAX-based temporal

constraint validation techniques.

1.1. Key Issues

a) While working temporal xml schema are as temporal term

relates to changing of data. Traditionally real time systems

manage their data in application dependent structure. As

record keeping system evolve like inventory management

systems, their applications become more complex and require

access to more data. Applications such as these rely on

temporal databases, which record time-referenced data. Which

store only facts which are believed to be true at the current

time, here we are focusing on amount of data being processed

which is huge as it have facility of keeping historical files as

well as method of roll backing.

b) In computing, a parser is a program (or a piece of code or

API that you can reference inside your own programs) which

analyses files to identify the component parts [17]. All

applications that read input have a parser of some kind,

otherwise they'd never be able to figure out what the

information means [17]. In computing, a parser is a program

(or a piece of code or API that you can reference inside your

own programs) which analyses files to identify the component

parts. All applications

never be able to figure out what the information means. XML

applications are just the same: they contain a parser which

reads XML and identifies the function of each the pieces of

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 16, March 2015

32

the document, and it then makes that information available in

memory to the rest of the program [17].

While reading an XML file, a parser checks the syntax, well-

formedness, and reports any violations or errors. While

parsing XML document with conventional parser, DOM, The

Document Object Model parser is a hierarchy-based parser

that creates an object model of the entire XML document,

then hands that model for you to work with.

2. ISSUES WITH TRADITIONAL

APPROACH
A schema language for a temporal document needs to have

some way of specifying and enforcing such constraints. The

conventional XML Schema validator is also incapable of a

time-varying document using the representational schema.

Actually, XML Schema is not sufficiently expressive to add

temporal constraints.

For example, XML Schema cannot specify the following

(desirable) schema constraint: the transaction-time lifetime of

a <ID> element should always be contained in the transaction-

time lifetime of its parent <emp> element. Second, a

conventional XML Schema document added with timestamps

to denote time-varying data cannot be used to validate a

snapshot of a time-varying document. For example, XML

Schema cannot specify the following (desirable) schema

constraint: the transaction-time lifetime of a <ID> element

should always be contained in the transaction-time lifetime of

its parent <emp> element. Second, a conventional XML

Schema document augmented with timestamps to denote

time-varying data cannot, in general, it is used to validate a

snapshot of a time-varying document.

A snapshot is an instance of a time-varying document at a

single point in time. For instance, if the schema asserts that an

element is mandatory (minOccurs=1) in the context of another

element, there is no way to ensure that the element is in every

snapshot since the elements timestamp may indicate that it has

a shorter lifetime than its parent (resulting in times during

which the element is not present, violating this integrity

constraint); XML Schema provides no mechanism for

reasoning about the timestamps. Even though the

representational and snapshot schemas are closely related,

there are no existing techniques to automatically derive a

representational schema from a snapshot schema (or vice-

versa).

The absence of a automatic technique implies that user need

to depend on specially appointed strategies to develop a

representational pattern. Depending on specially appointed

techniques will confine information autonomy. The planner of

a diagram for time-changing information needs to settle on a

mixture of choices, for example, whether to timestamp with

periods or with worldly components, which are sets of non-

covering periods and which components ought to be time-

differing. By receiving a layered methodology, where the

depiction XML Schema, transient annotations, and physical

annotations are particular archives, singular outline plan

choices can be determined and changed, regularly without

affecting the other configuration choices, or in reality, the

processing of tools.

For example, a tool that computes a snapshot should be

concerned primarily with the snapshot schema; the logical and

physical aspects of time-varying information should only

affect (perhaps) the efficiency of that tool, not its correctness.

With physical data independence, few applications that are

concerned with representational details would need to be

changed. Hence, an improved tool support for representing

and validating time-varying information is needed. Creating a

time-varying XML document and representational schema for

that document is potentially labor-intensive. Currently users

has to manually edit the time-varying document to insert

timestamps indicating when versions of XML data are valid

(for valid time) or are present in the document (for transaction

time).

The user also has to modify the snapshot schema to define the

syntax and semantics of the timestamps. The entire process

would be repeated if a new timestamp representation were

desired. It would be ideal to have automated tools to create,

keep up, and redesign time-shifting records when the

representation of the time stamped components changes.

One challenge with schema versioning is that, in this potential

quicksand, anything can change, and thus must be versioned:

the snapshot documents, the base schema, the temporal

annotations [16], the physical annotations, the schema

documents included by these documents, even the schemas of

these schema components [3].

And, as a result of the physical annotations can change, the

concrete representation within a temporal XML document

will vary. Thus, it becomes even more difficult to even outline

validation in such a fluid atmosphere. Schema versioning

should offer a solution to the above problem by enabling

intelligent handling of any temporal mismatch between data

and its schemas. A framework is required that might retain

past information and past schemas, whereas permitting the

present information and schema to be extracted.

Processing tons of data within small period is one more key

issue, previous approaches by Chomsky [1] present DOM

parser for processing such temporal database, which can be

very efficient for particular number of data files, if we process

real time databases let’s say e commerce websites then it

definitely need the optimize solution for processing huge

database which can give smaller time value.

This work has several real-world applications. As an example,

the Botanic Garden and Botanical Museum in Berlin-Dahlem

(BGBM1) maintains a repository of XML Schemas2 related

to index terms, keywords, biodiversity data about specimens

and observations, meta-level information regarding

collections, organizations,

 and networks, and various wrapper and configuration files.

Most of those XML schemas have had multiple versions over

the last 2 to 3 years.

3. PROPOSED SYSTEM

3.1 Proposed Approach
SAX parser: An event-based sequential access parser API that

only operates on portions of the XML document at any one

time. SAX parsers have some benefits over DOM-style

parsers. A SAX parser only needs to report each parsing

events it happens, and normally discards almost all of that

information once reported. Thus, the minimum memory

needed for a SAX program is proportional to the utmost depth

of the XML file (i.e., of the XML tree) and also the most

knowledge concerned in an exceedingly single XML event

(such as the name and attributes of a single start-tag, or the

content of a processing instruction, etc.)

A DOM computer program, in distinction, generally builds a

tree illustration of the whole document in memory to start

with, therefore using memory that will increase with the

whole document length. This takes wide time and area for big

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 16, March 2015

33

documents (memory allocation and data-structure

construction take time). The compensating advantage, of

course, is that when loaded any a part of the document are

often accessed in any order.

Because of the event-driven nature of SAX, process

documents are mostly way quicker than DOM-style parsers,

ciao because the process may be wiped out a start-to-end pass.

Many tasks, like compartmentalization, conversion to

different formats, very simple formatting, and the like, can be

done that way. Other tasks, such as sorting, rearranging

sections, getting from a link to its target, wanting up info on

one part to assist method a later one, and therefore the like,

need accessing the document structure in advanced orders and

can be a lot of quicker with DOM than with multiple SAX

passes.

3.2 Plan of work: XML partial processing

with SAX:
A parser that implements SAX (i.e., a SAX Parser) functions

as a stream parser, with an event-driven API. The user defines

a number of callback methods that will be called when events

occur during parsing. SAX parsing is unidirectional;

previously parsed data cannot be re-read without starting the

parsing operation again. But DOM Parser is rich in

functionality because it creates a DOM tree in memory and

allows you to access any part of the document repeatedly and

allows you to modify the DOM tree. A SAX Parser, however,

is much more space efficient in case of big input document

(because it creates no internal structure).

Our proposed system basically intent to reduce the processing

timing, Following are the relevant procedural steps required to

do so:

1) Constraint adding, & validating

2) Squashing

3) Schema changing or generating temporal document along

with temporal schema and temporal xml data files.

4) Unsquashing

5) Validation (Tool: TempValidtor).

For satisfying our aim we use SAX approach partially,

wherever reading of xml document considered. What SAX

does is to read XML document sequentially, it loaded one

data slice at a time and process where DOM loaded entire

XML file. For this purpose we have generated SAX reading

code residing in SAX package separately and export this

package to file name representationFactory.java. This file is

actually generated to process the input and send it to called

procedures like squash, unsquash and tempValidator. So when

squash get called from user it first parse all the input files via

representationFactory module, if input files are missing say

temporal schema it displays error. Same with unsquash and

tempValidator modules. so here we are using both parser

same time, when reading of particular input we used SAX

technique of parsing and when modifying particular xml file

we are using DOM parsing , partial use of SAX parsing

technique gives processing time minimal as compared to fully

DOM parsing system, only if we are working on huge dataset.

4. SYSTEM ARCHITECTURE

 Figure 1: System Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 16, March 2015

34

When changes occur in base Schema, we annotate base

Schema with the logical annotations; attributes of logical

annotation can be valid time, transaction time, continuous

state, single event, etc. When logical annotations are written

on the Base Schema, whole document featured as a Logical

Schema. We can observe that few of the component from

figure are highlighted that are specific to an individual time-

varying document and should be supplied by the user.

Non temporal content or static content which will not change

across the time and are kept constant throughout the different

versions of base Schema, shown in box7. After that, physical

annotation on conventional Schema is done by time stamping

techniques, shown in box 6.

Which is chosen by the user, such as where the timestamps

are placed and their kind (e.g., valid time or transaction time)

and the type of representation adopted. Two documents with

the same logical annotation look different if we change or

replace the location of their physical timestamp.

Annotation Schema (ASchema) is annotation document that

represents Schema document with both logical and physical

annotation. Where TSSchema document is a combination of a

conventional schema document as well as the logical

annotation .Finally, the designers tie up conventional schema,

logical annotation, and physical annotations together that

forms standard XML document.

Validator tempvalidator will be processed temporal schema

document in order to ensure that the logical and physical

annotations are

(1) Valid with respect to Annotation Schema, and

(2) Consistent with the conventional Schema. Tempvalidator

generated reports (such as error messages) about valid and

invalid temporal Schema document. SCHEMA MAPPER

generates the output as a representational Schema by

validating consistency of annotation presented in temporal

Schema, Sequence of non-temporal documents and temporal

Schema can be squashed into temporal document. Moreover,

tempValidator is used to validate temporal data against the

representational schema through that reports whether the

temporal data document is valid or invalid. Our editor can

also do the reverse process of Squashing called as Unsquash,

which will able to convert representational Schema into

document slices.

4.1. Steps of working System

Conventional schema and XML data files(Non temporal Data)

this data files are nothing but dataset on which we are

working is of company. Company database includes details of

employee, supplier, and product where the related rules are

included in schema. Each XML document will relate to

company schema needs to validates all constraints specify by

the schema.

4.1.1. Temporal Schema

Step 1:

In this project we found that XML versioning can cause by

two reasons:

1) When constraints get changed or need to change. It directly

causes changes into xml schema. We can consider it as major

change because many XML document needs to validate with

the corresponding new schema. In this project these changes

are done by using annotation file to specify the changes into

the schema.

2) When there is need to modify the previous schema

validated xml document, we can modify it n save it also

compile it, but we can also modify the data and store it as a

new version of document and compile it as a new document.

Step 2:

Changing content itself makes data temporal. TSSchema i.e.

temporal schema document imports xml schema of company

as well as annotation document. TDSchema i.e. temporal xml

data document file consist of tracking of all versioned XML

documents in the form of slices. ASchema contains logical

and physical annotation file that can available when designer

wants to change constraints. This indirectly changes schema.

The new file introduce here because it allows changing the

original schema without actually making physical changes

into the original schema, it simply reflects the changes

logically.

4.1.2. System Modules

SAX parsing Steps:

In this project we use SAX for reading purpose only when

there is requirement of read and write at the same time such as

creating versions then we use DOM parser. We create

package SAX read where we store the code of parsing with

SAX following are the steps which used while reading input

documents:

SAX Parsing Method:

1) Creating the Skeleton

2) Importing Classes

3) Setting Up I/O

4) Implementing the ContentHandler Interface.

5) Handling Content Events

6) Setting up the Parser

7) Setting up Error Handling

8) Implementing SAX Validation

9) Running the SAX Parser Examples with Validation

Squash:
The SQUASH utility takes a sequence of XML documents, a

temporal annotation and a physical annotation as input and

generates a temporal XML document consistent with the

physical annotation. The algorithm for SQUASH tool is given

in Figure It cleverly reuses pushUp, pushDown and coalesce

primitives to create a compressed document from a set of

snapshot documents as per the given temporal schema

The Squash first checks for the consistency of the temporal

and the physical annotations with the snapshot schema. It then

creates a new XML document with <timeVaryingRoot> as its

root and attaches root elements of the snapshot documents as

its versions. At this point, the timestamps are present at the

root level element. pushDown function then moves these

timestamps down the hierarchy to the elements present in the

temporal annotation. Every item is then coalesced to create its

compact representation. The pushUp function then moves the

timestamps up in the hierarchy up to the elements present in

the actual physical annotation.

Unsquash:
The Unsquash utility performs the opposite operation of

SQUASH. It takes a temporal XML document, a temporal

bundle and generates multiple non-temporal XML documents.

It also provides the functionality of extracting a particular

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 16, March 2015

35

snapshot from the given temporal document using

UNSQUASH utility.

The Unsquash first checks for the consistency of the temporal

and physical annotations with the snap-shot schema. It then

constructs the representational schema using SCHEMA

MAPPER and parses the given temporal document against the

representational schema using the conventional validator. The

pushdown function is first called on the given document to

move the timestamps to the temporal elements. A new

physical annotation, containing only the root element, is

created and passed to the function pushUp. The purpose is to

move all the timestamps to the root element. At this moment

every version of the root item element is a snapshot

document. These individual versions are then written to the

separate files.

Temporal Validator:
TempValidator provides the validation procedure. The

temporal bundle document is passed through the

tempValidator which first checks to ensure that the temporal

and physical annotations are consistent with the snapshot

schema and with each other. Once the annotations are found

to be consistent, the logical-to-representational Mapper

(SCHEMA MAPPER) generates the representational schema

from the original snapshot schema and the temporal and

physical annotations. The representational schema is needed

to serve as the schema for a time-varying document and is

used to validate the temporal document using conventional

validator.

5. RESULT ANALYSIS AND

EVALUATION
We now study the performance of squash , unsquash and

tempvalidator when we uses SAX to parse the input files for

all three. For showing the time difference between

conventional method and proposed method of validation we

execute validation process and record the values.

Unsquash is specifically used while adding new versions or

changing schema, and when there is need to view documents

separately, we didn’t include it in analysis purpose of time

instead we use it while working on different data files to

satisfy other relevant goals. TempValidator is the validating

tool for proposed system which accepts SAX parsing input

where XMLLint is base paper validating tool which follows

DOM approach throughout[1].

Figure 2: Validating time required for Referential

Integrity Constraints by both the tools.

Figure 3: Validating time required for Cardinality

Constraints by both the tools.

Figure 4: Validating time required for Transitivity

Constraints by both the tools.

Figure 5: Validating time required for Identity

Constraints by both the tools.

We are focusing on how the time required to process the

document goes from steps squashing to Validating with partial

support of SAX for input processing and with conventional

parser support i.e. DOM throughout the processing. To do so

we use a dataset of company, that supports versioning. Data

files varies from 50 to 800, so the versions are created. For

taking more no of slices in to account for better result we use

function to generate number of slices as per requirement for

testing. Precise difference is recorded when we increase the

size of slices.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 16, March 2015

36

We are working on text data files only each data file is of 1 kb

and total dataset is around 2.0 MB. Major time difference can

be calculated if data size of scale GB.

Figure 6: Total time required for Squashing and

validating by both the tools.

We studied our result in following situations:

1) Use same number data files, squashed them and then

validate. This represented in total system execution time

graph.

2) Increase the number of data files (versioned slices),

generated for each of 4 constraints, squashed them and then

validate. And only record validating time of each constraint

with variable number data slices. We varied the number of

slices from 50 to 800, to examine the time scaling difference,

so as the base paper does. This test perform on basic minimal

system configuration environment i.e. Windows XP having

processor of 2.6 GHz , having data storage capacity 64 GB,

and RAM 2 GB.

6. CONCLUSION AND FUTURE

ENHANCEMENT
In this paper, we propose the approach that will support

Schema versioning for time varying XML documents which is

upward compatible with XML. We have created the

tempValidator tool for validating the temporal document.

Also, we integrate tXSchema with a Schema aware editor,

which are able to browse the base schema from which

versions are created. It will also provide support for a creation

of temporal document, validation for both conventional as

well as temporal schema. As base paper supported the concept

of squashing that integrates non temporal and temporal

document together to form a representational Schema, we

have implemented Unsquash policy which able to reverse the

Squash output, i.e. from representational schema we can

generate Schema slices back.

In the future, we will plan to improve tracking of changes in

XML document, also we plan to add versioning to Xupdate, it

is the language which specifies changes to an XML. By

specifying how the evaluation of an Xupdate statement on an

XML Schema document use to modify a bundle.

One area of future work can be optimization and efficiency

concern. It would be useful to observe the impact of

timestamp placement (physical annotation) and impact of

parameters (logical annotation) such as evaluation window

size on efficiency (document size, IO time).

7. ACKNOWLEDGMENTS
I take this opportunity to express my intense gratitude and

deep regards to my Guide and HOD of information

technology, Prof. S.E.Pawar for her exemplary guidance,

monitoring and constant encouragement throughout this

paper.

I would like to express deepest appreciation towards Prof. Dr.

G.J.Vikhe Patil., Principal of Amrutvahini College of

Engineering, Sangamner, and Prof. B.B.Borkar (ME

Coordinator) who’s invaluable guidance supported me in

completing this paper.

8. REFERENCES
[1] “Adding Temporal Constraints to XML Schema” Faiz A.

Currim, Sabah A. Currim, Member, IEEE, Curtis E.

Dyreson, Richard T. Snodgrass, Senior Member, IEEE,

Stephen W. Thomas, Member, IEEE, and Rui Zhang.

[2] C. Dyreson, H. L. Lin, and Y. Wang, “Managing

Versions of Web Documents in a Transaction-time Web

Server, in Proceedings of World Wide Web”, New York,

NY, pp. 422432, 2004.

[3] J. Chomicki, “Efficient checking of temporal integrity

constraints using bounded history encoding,” ACM

Trans. on Database Systems, vol. 20, no. 2, pp. 149–186,

1995.

[4] J. Chomicki and D. Niwinski, “On the feasibility of

checking temporal integrity constraints,” Journal of

Computer and System Sciences, vol. 51, no. 3, pp. 523–

535, 1995.

[5] J. Chomicki and D. Toman, “Implementing temporal

integrity constraints using an active dbms.” IEEE Trans.

on Knowledge and Data Engineering, vol. 7, no. 4, pp.

566–582, 1995.

[6] S. Y. Chien, V. J. Tsotras, and C. Zaniolo, “Efficient

schemes for managing multiversion XML documents.”

The VLDB Journal, vol. 11, no. 4, pp. 332–353, 2002.

[7] J. F. Roddick, “Schema evolution in database systems:

an annotated Bibliography.” SIGMOD Rec., vol. 21, no.

4, pp. 35–40, 1992.

[8] C. A. Curino, H. J. Moon, and C. Zaniolo, “Graceful

database schemaevolution: the prism workbench” in

Very Large Data Base, 2008.

[9] C. S. Jensen and C. E. Dyreson (Editors), “The

Consensus Glossary of Temporal Database

Concepts,”February 1998 Version.

[10] Document Type Definition (DTD) language. URL

http://www.w3.org/TR/REC-xml/dt-doctype,Viewed

March 25, 2007.

[11] SAX project, Official website. URL

http://www.saxproject.org, Viewed March 26, 2007.

[12] C. S. Jensen and R. T. Snodgrass, “Temporal Database

Management,” TimeCenter TR-17, 1997.

[13] R. T. Snodgrass, “The Temporal Query Language

TQuel,” in ACM Transactions on Database

Systems12(2):247–298, June 1987.

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 16, March 2015

37

[14] Document Object Model, W3C. URL

http://www.w3.org/DOM, Viewed March 26, 2007.

[15] A. Tansel, J. Clifford, S. Gadia, S. Jajodia, A. Segev, and

R. T. Snodgrass, Temporal Databases:Theory, Design,

and Implementation, Benjamin/Cummings Publiihing

Company, 1993.

[16] https://books.google.co.in/books?isbn=3540212000.

[17] http://timecenter.cs.aau.dk/TimeCenterPublications/TR-

89.pdf

[18] http://xml.silmaril.ie/parsers.html.

[19] http://www.researchgate.net/publication/222418199

Validating_quicksand_Temporal_schema_versioning_in

_XSchema.

[20] http://en.wikipedia.org/wiki/Simple_API_for_XML.

IJCATM : www.ijcaonline.org

