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ABSTRACT 

The finite field modular multiplier is the most critical 

component in the elliptic curve crypto processor (ECCP) 

consuming the maximum chip area and contributing the most 

to the device latency. Modular multiplication, point 

multiplication, point doubling are few of the critical activities 

to be carried out by multiplier in ECC algorithm, and should 

be managed without compromising on security and without 

burdening space and time complexities. Since the area 

complexity of the Crypto processor is mainly based on the 

Modular Multiplier incorporated within the ECC processor, 

the major contribution of this work includes the replacement 

of traditional Karatsuba multiplier with the proposed space 

optimized multiplier inside the processor The complete 

modular multiplier and the cryptoprocessor module is 

synthesized and simulated using Xilinx ISE Design suite 14.4 

software. Experimental investigation show an improvement in 

area efficiency of cryptoprocessor, since proposed scheme 

occupies relatively reduced percentage area of FPGA as 

compared to the one using traditional Karatsuba multiplier.  
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1. INTRODUCTION 
The Area occupancy of most popular public key algorithm is 

based on modular arithmetic, where the most critical 

operation is modular multiplication [1]. Hence by targeting 

area occupancy of modular multiplier the overall area 

complexity of cryptoprocessor can be drastically reduced. The 

main advantage of ECC proposed by Victor Miller and Neal 

Koblitz is the usage of shorter key with no compromise on 

security which is at par with RSA. Also, ECC is ideal for 

hardware implementation as the software counterpart is dead 

slow. Hence ECC is the best choice for cryptographic 

hardware implementation and is widely used in embedded 

system for memory data protection. For ECC a number of  

hardware  implementations  have  been proposed,  and  

included  in  many  standards  such  as  IEEE 1363and NIST. 

Double point multiplication and point doubling are the two 

critical operations in the ECC algorithm. Figure 1 and figure 2 

shows double point multiplication and doubling operation to 

be carried out in ECC. Modular multiplication is the most 

primitive and critical operation in ECC. Of the various 

algorithms, Karatsuba algorithm is known to be the most 

optimum algorithm available to perform both the 

multiplication task. So most of the implementations of ECC 

scheme employ Karatsuba multiplier for the task. 

 

Figure 1. ECC Double point multiplication 

 

Figure 2. ECC point doubling 

The design of Finite field multiplier in cryptoprocessor is the 

complex design issue in the implementation of the ECC 

processor. A number of multipliers with different area and 

time complexity are reported in the available literatures. The 

Karatsuba algorithm is agreed upon as a most efficient 

multiplication algorithm and is widely adopted in VLSI 

implementation of ECC processor. We have investigated the 

area impact of replacing traditional Karatsuba multipler. 

Instead of traditional Karatsuba Multiplier, we have replaced 

it with finite field multiplier which adopts a systolic approach. 

The space complexity of the resulting multiplier is found to be 

much better than those of traditional multipliers. This is a 

significant achievement if we intend to use this 

cryptoprocessor in embedded systems. 
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2. RELATED WORK 
Literature is a significant treasure house of various VLSI 

architectures for point multiplication in ECC. Numerous space 

optimized modular multipliers have been proposed in [2,3]. 

Of them all, Karatsuba- Ofman algorithm [4] is considered to 

be highly speed efficient. In [2,4] a variant of Karatsuba 

multiplier of the type GF((2n)8) is presented. Ashkan 

Hosseinzadeh Namin, Huapeng Wu,and Majid Ahmadi 

proposed a word-level finite field multiplier using normal 

basis [5]. In [6] Hossein Mahdizadeh and Massoud Masoumi 

built elliptic curve cryptographic processor by parallelization 

of the multipliers. Bit-parallel [7], bit-serial [8], digit-

serial/parallel [9], multipliers or systolic architectures [10] are 

the existing solutions that can be classified. Each type of these 

solutions has different properties: bit-serial are slow but small, 

bit-parallel solutions are fast but larger. Digit as well as 

systolic architectures provides some tradeoff between speed 

and area of the solution 

Theoretical modeling of elliptic curve scalar multiplier on 

LUT-based FPGAs for area and speed was designed by Sujoy 

Sinha Roy et.al [11]. In this method two primitives used in 

elliptic curve scalar multiplier architecture (ECSMA) 

implemented on k input lookup table (LUT)-based field-

programmable gate arrays to approximate the delay of 

different characteristic. It was used to determine the optimal 

number of pipeline stages and the ideal placement of each 

stage in the ECSMA. In order to perform point addition and 

doubling in a pipelined data path suitable scheduling was 

created. The three stage pipelined architecture for double and 

add based scalar multiplication is performed on Xilinx Virtex 

V platforms over GF (2163). The implementation uses a novel 

pipelined bit-parallel Karatsuba multiplier that has 

subquadratic complexity. In this design efficient choice of 

scalar multiplication algorithm, optimized field primitives, 

balanced pipeline stages, and enhanced scheduling of point 

arithmetic resulted in a high-speed architecture with a 

significantly small area. 

Hossein Mahdizadeh and Massoud Masoumi [12] designed a 

novel architecture for efficient FPGA implementation of 

elliptic curve cryptographic processor over GF (2163). In 

architecture the critical path of the Lopez–Dahab scalar point 

multiplication architecture was organized and reordered by 

the maximum architectural and timing improvements, such 

that logic structures were implemented in parallel and 

operations in the critical path were diverted to noncritical 

paths. In the implemented design the execution delay of the 

LD algorithm has been reduced by parallelization of the 

multipliers in the implementation of the calculations of 

projective coordinates 

Kazuo Sakiyama et.al [13] implemented a tripartite modular 

multiplication. In multiplication for maximizing a level of 

parallelism, systematic approach was implemented for 

modular multiplication. The algorithm which is used in this 

method effectively integrates three different existing 

algorithms they are a classical modular multiplication based 

on Barrett reduction, the modular multiplication with 

Montgomery reduction and the Karatsuba multiplication 

algorithms in order to reduce the computational complexity 

and increase the potential of parallel processing. In 

multiprocessor environment for hardware and software 

implementations this algorithm is very effectively used. In 

this design a modular multiplier using these algorithms 

achieves a higher speed comparing to the other algorithms for 

modular multiplication. 

The Massey-Omura multiplier operates in normal basis 

representations of the field elements. With this representation, 

the structure of the multiplication becomes highly uniform 

resulting in efficient hardware architecture. The architecture 

takes a parallel input but the result is produced serially [14]. 

Another multiplier based on normal basis is the Sunar-Koç 

[15] multiplier. The multiplier requires lesser hardware 

compared to the Massey-Omura multiplier but has similar 

timing requirements. 

Very traditional version  of modular multiplier is a Karatsuba 

Multiplier where the operands „A‟ and „B‟ are  divided into 

two equal-size parts AL and AH,  BL and BH respectively, 

which represent the m/2 higher and lower order bits of A and 

B.   
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equation can be modified as, 
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From the above equation, the architecture for Karatsuba 

multiplier is designed as shown in figure 3. 

 

Figure 3. Traditional Karatsuba Multiplier 
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3. PROPOSED MULTIPLIER DESIGN 
The complication of finite field multiplier architecture mostly 

depends on parameters of the field. These parameters are: 

illustration of the elements of the field (basis), field, size l  

and irreducible polynomial )(xf generating the field. The 

elements are demonstrated by polynomial (standard, 

canonical) basis, in which they are characterized as binary 

polynomials. For representing ECC standards, the two 

parameters (field size l  and irreducible polynomial )(xf ) 

along with the multiplier incorporated in the processor are 

chosen, since the proposed ECC processor should occupy less 

resource. 

 Digit as well as systolic architectures provides some tradeoff 

between speed and area of the solution. It is observed that it 

may be inefficient, especially time inefficient, when we apply 

it to large polynomials and perform operation bit by bit (bit-

serial). But alternatively, it may be area inefficient, if 

operation is performed on all bits parallelly. Instead of 

processing vector (polynomial) bit by bit or parallelly, process 

it in 16-bit words. This 16-bit seems to be the appropriate size 

according to the research conducted [16]. After executing  

vast research [17] on the best word size and although for field 

sizes: 409 or 571 a 32-bit word seems more suitable, research  

shows that in most cases 16-bit word gives enhanced results. 

Thus for such partitioning, proposed multiplier perform 
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1) Multiplication of the polynomial coefficients 
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 2) Reducing the result obtained using irreducible polynomial
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The modification of above equation is given as, 
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Proposed Multiplier processes the two words and generates 

the product using modular arithmetic. 
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Figure 4, shows the finite field multiplier architecture. 

Initially the inputs   and   are partitioned into 16-bits 

using the shift registers. Then the 16-bit word is directly fed to 

the T   block and the other input of the T  block is connected 

to the input   through a single bit bus. T  block incorporates 

an array of tri-state buffers  . Each bit of input   is fed as 

input to the tri-state buffer and the single bit from input   

controls the buffer. For instance if the single bit of   is 1 

then the 16-bits from the input    is allowed to the k  bits 
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left shifter block or else denied. The k  bits left shifter shifts 

the output bits from the T block with respect to the k value. 

The shifted outputs are then XORed using the XORing logic 

block. The XORed output for the first 16-bits is stored in the 

  register which is then updated when the next set of values 

is processed. Once the process as discussed above is 

completed for the l bit inputs the final value in the   

register is fed to the )(mod xf  computation block and 

the final finite field product is  is obtained.  

 

Figure 4. Proposed Finite Field Multiplier 

4. RESULTS AND DISCUSSIONS 
In this section, focus is on the FPGA implementations of the 

cryptoprocessor using proposed and Karatsuba multiplier and 

then comparing area footprints of two cryptoprocessors. The 

architecture is coded in verilog HDL and is synthesized using 

Xilinx ISE version 14.4 design software and is implemented 

on Xilinx Virtex-4 xc4vlx200ff1513 FPGA. The RTL 

schematic for the implemented Finite Field multiplier is 

shown in figure 5.      

 

Figure 5. RTL Schematic for Proposed modular 

Multiplier 

The design is simulated for using ISE Simulator tool present in 

the Xilinx software and the simulation output is as shown in 

figure 6. 

 

Figure 6. Simulation Results for proposed modular 

multiplier 

4.1 Power Requirement 
Power consumed by proposed Modular Multiplier is reported 

in Table 1 below. The clock frequency is varied between 100 

MHz to 1800 MHz and the corresponding power consumed is 

plotted in figure 7. 

Table 1: Power Report for the proposed modular 

multiplier 

 

 

Figure 7. Power consumption of Proposed Multiplier 
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4.2 Multiplier Area Report 
Since the area of the complete processor mainly depends on 

the incorporated GF multiplier, most of the slices in the target 

device are utilized by it. From table 2, for 256 bit 

multiplicands, proposed modular Multiplier needs 374 slices 

out of 89,088 available slices in the target device. Among the 

178,176 available four input LUTs only 583 are used. The 

multiplier also needs only 467 out of 178,176 Flip Flops. 

Table 2: Device utilization Summary for the two 

multipliers 

 Karatsuba Multiplier Proposed Multiplier 

M 

size 

Flip 

flops 
LUTs Slices 

Flip 

flops 
LUTs Slices 

2 227 98 124 240 118 127 

4 236 171 168 265 153 146 

8 242 316 237 307 248 191 

16 245 426 292 387 482 307 

32 525 739 473 467 580 374 

64 534 723 469 467 597 381 

128 620 851 576 467 599 382 

256 579 1535 916 467 583 374 

Thus proposed Modular multiplier as compared in figure 8, 

exhibits a savior of 23.88% in terms of Flip flop slices. 

Proposed Multiplier involves 62 % fewer LUTs and utilizes 

59% fewer slices as compared to traditional Karatsuba 

multiplier for 256 bit multiplication. 

 Figure 8. Resource utilization summary for two 

multipliers for m=256 

4.3 Cryptoprocessor Area Report 
The crypto processor implementation uses a double point 

multiplication algorithm proposed in [18] and area 

comparision is carried out for cryptoprocessors using 

proposed multiplier and Karatsuba multiplier and the one 

proposed in [19].  

Figure 7. Device Utilization Summary for Cryptoprocessor using Proposed Modular Multiplier 

Figure 8. Device Utilization Summary for Cryptoprocessor using Karatsuba Multiplier 
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The device utilization area report as in Figure 9 depicts that 

hardware implementation for the ECC processor employing 

proposed multiplier utilizes 308 out of 89,088 available slices 

in the target device and 456 out of 178,176 available LUTs. 

Among the 383 of 178,176 Slice registers present, 381 act as 

Flip-flops and two of them are used as latch. 7 out of 96 DSP-

48 blocks are utilized by implemented architecture of 

complete ECC processor. 

The device utilization area report as in Figure 10 depicts that 

hardware implementation for the ECC processor employing 

traditional Karatsuba multiplier utilizes 406 out of 89,088 

available slices in the target device and 488 out of 178,176 

available LUTs. Among the 485 of 178,176 Slice registers 

present, 483 act as Flip-flops and two of them are used as 

latch. 22 out of 96 DSP-48 blocks are utilized by ECC 

processor. 

The comparison of implemented ECC processor employing 

proposed modular multiplier and the cryptoprocessor using 

traditional Karatsuba Multiplier for 16 bit operation with 

respect to the area occupied (Slice registers,Slices, LUTs and 

IOBs) is tabulated in Table 3 and compared in figure 11. 

Proposed implementation utilize about 21.03 % reduced 

register slices, 24.13% reduced slices and 6.56 % LUTs. This 

is a significant achievement as ECC cryptoprocessors are 

widely used for security services in embedded system which 

is known to be highly resources thirsty. 

 Table 3: Device Utilization Summary for the two 

implemented Cryptoprocessors 

Cryptoprocessor 

type 
Size Slices LUTs IOBs 

Using 

Karatsuba 

Multiplier 

233 406 488 247 

Using proposed 

Multiplier 
233 308 456 255 

A.Kaleel 

Rahuman et.al 

[19] 

193 466 932 210 

Comparison of built cryptoprocessor with similar reported 

ECC cryptoprocessor [19] shows improvement in terms of 

area occupancy. The experimental results when compared 

with the device utilization reported in similar work showed 

that architecture for ECC processor using proposed multiplier 

needs about 19.31% reduced slices ,42.48% reduced LUTs 

and 72.21% IOBs. Hence proposed hardware implementation 

show an efficiency in terms of the area utilization and a 

tradeoff between area-performance, an added advantage. 

 

Figure 11. Device Utilization comparison chart for the two 

implemented Cryptoprocessors with [19] 

5. CONCLUSION 
We have proposed a novel method to implement the modular 

multiplier for ECC cryptography. Analysis suggests that using 

a proposed multiplier in ECC cryptoprocessor instead of 

traditional Karatsuba Multiplier eventually helps in reducing 

space complexity of cryptoprocessor. This is a significant 

achievement if this multiplier is to be employed in VLSI 

implementation of elliptical curve cryptography for the 

protection of memory in embedded systems. Hardware 

implementation of cryptoprocessor shows an efficiency in 

terms of the area utilization. 
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