
International Journal of Computer Applications (0975 8887)
Volume 113 - No. 13, March 2015

Fast Edge Detection Architecture using Different Levels
of Parallelism on a FPGA

Mohammad Shokrolah Shirazi
Electrical & Computer Engineering Department

University of Nevada, Las Vegas
4505 South Maryland Parkway

Las Vegas, NV, 89154

Brendan Tran Morris
Electrical & Computer Engineering Department

University of Nevada, Las Vegas
4505 South Maryland Parkway

Las Vegas, NV, 89154

ABSTRACT
Implementing edge detection techniques on a FPGA has recently
become more popular since it benefits high speed which is de-
sired for real-time applications. This work presents a fast FPGA-
based architecture for first order derivative edge detection meth-
ods. Fast pipeline-based architectures are presented which are
able to perform edge detection using different levels of paral-
lelism to accelerate the process. This acceleration includes ap-
plying parallelism over convolution masks, edge detection mod-
ules and image intensity values. Two different edge detection
architectures are proposed called one-way and two-way paral-
lel methods. The architectures are implemented using Verilog
HDL for a typical image and we synthesized them for Cy-
clone IV FPGA. Experimental results show the speed-up near
to 460 and 920 for one-way and two-way parallel architectures.

General Terms:
Architecture, Real time applications, Speed-up

Keywords:
Edge detection, Parallelism, FPGA

1. INTRODUCTION
Nowadays, there is a new trend towards implementing image pro-
cessing algorithms over a hardware rather than a software since it
can more efficiently execute the algorithms [8]. As result, instead
of general purpose processors that use software to run image pro-
cessing algorithms, it is preferred to design a dedicated hardware
for real-time image processing applications.
Some hardware approaches use Field Programmable Gate Array
(FPGA) technology in their studies [2, 4, 8]. FPGA typically con-
sists of a logic blocks’ matrices such as look up tables, gates, flip-
flops and memories that are connected via programmable inter-
connections. The FPGA configuration is generally specified using
Hardware Description Languages (HDL) similar to Application-
Specific Integrated Circuits (ASICs) which is custom manufactured
for specific design tasks. FPGAs can be reprogrammed to form a
desired application or functionality requirements after manufactur-
ing. This feature distinguishes FPGAs from ASICs.

There are three major reasons that encourage researchers to imple-
ment their algorithms on the FPGA. First, all logics inside FPGA
can be rewired, or reconfigured with a different design according
to the designers’ demand [14]. Second, the reconfigurable nature of
FPGA allows us to implement different algorithms multiple times
providing more flexibility in comparison with ASICs. Finally, the
hardware nature of FPGA provides greater speed in comparison
with software-based approaches since it uses different hardware
modules that could be run in a parallel manner [3].
Edge detection is one of the popular image processing techniques
that could be implemented on the FPGA. Image edges contain im-
portant information for creating popular image features which con-
tain significant structural properties used in computer vision for ob-
ject recognition, tracking and motion detection [17].
Edge detection is the process of locating brightness discontinuities
between pixels in a digital image. The basic edge detection meth-
ods calculate the first order derivative by using some gradient op-
erators such as Prewit [6, 10, 11], Sobel [1, 6, 11, 12, 15, 16, 18] or
Robert [6]. In these methods, image gradients are obtained by in-
troducing different kernel masks for performing convolution over
the image. These masks are responsible for obtaining image gra-
dients in two different directions. There are also some second or-
der derivative methods such as Laplacian [17], Difference of Gaus-
sian (DOG) [9] and Laplacian of Gaussian [7]. These methods find
zero crossing of the second derivative to determine edges. However,
second derivative methods are not usually used for edge detection
since they are too sensitive to noise [15].
In this paper, we present a fast FPGA-based architecture for first
derivative edge detection by performing either Sobel or (and) Pre-
wit or (and) Robert operation on a given image. Each Sobel, Prewit
or Sobel hardware modules benefit the pipeline structure running
in parallel. The proposed edge detection architecture is fast due to
some design related reasons. First, the entire image is located in-
side FPGA memory [16, 18]. This allows access to several image
pixel values in a single clock cycle which enables pipelining of the
edge detection process. Second, parallelism is used for perform-
ing horizontal and vertical convolutions simultaneously. Moreover,
the Sobel, Prewit or Robert modules can be run simultaneously for
generating multiple output images.
The rest of the paper is organized as follows. Sobel, Prewit and
Robert edge detection operations are presented in Section 3. The
proposed FPGA-based edge detection architecture is presented in
Section 4 and Section 5 calculates the speed-up of the process. Sec-

1

International Journal of Computer Applications (0975 8887)
Volume 113 - No. 13, March 2015

tion 6 provides experimental results and finally Section 7 concludes
the paper.

2. RELATED WORKS
As a new trend towards real-time image processing, some first or-
der derivative edge detection methods have been implemented on
the FPGA [1,6,11,12,15,16,18]. In [6,11], the FPGA-based imple-
mentation of some first order derivative edge detectors like Sobel,
Prewit and Robert is presented. They use Xilinx system generator
to generate synthesizable HDL codes for FPGA-based edge detec-
tors. Although Xilinx system generator makes implementation fast
and simple, it doesnt lead to optimized HDL generation for area
and speed. Moreover, Xilinx system generator is limited to using
Xilinx board and MATLAB Simulink.
In [15], a parallel FPGA-based architecture is proposed to perform
Sobel edge detection. In this method, a binary image is stored in a
text file and it is loaded inside the FPGA memory. Then, two raster
windows are used in parallel to perform both horizontal and vertical
convolutions to compute gradient values. Although performing two
convolutions in parallel leads to high speed, it still can be improved
by introducing more levels of parallelism using pipeline architec-
ture or working on different image regions simultaneously.
In [1], another implementation for Sobel edge detection is pre-
sented. This architecture uses dual port RAM and 3× 3 pixel gen-
erator module to cache line of image data. Pixel generator includes
3 shift registers for each line that causes some delays to provide
image pixel values for convolution module. This delay causes inef-
ficient usage of pipeline since pipeline stalls due to fetching each
pixel value.
In [18], the Sobel operation is controlled by Finite State Machine
(FSM). In this method, there is a Sobel controller block that con-
trols data flowing from SDRAM to FPGA RAM block. This also
performs convolution process and updates the result into FPGA
RAM blocks for next convolution. However, this method is not fast
enough due to using RAM blocks.
The combination of hardware and software is presented in [12] that
implements area efficient Sobel edge detection. Since fully parallel
architecture cannot share hardware over multiple clock cycles, it
uses serial architecture to minimize hardware resources. However,
it is not optimized for speed since it uses serial architecture which is
not well suited for fast architectures. [16] presents a fast Sobel edge
detection hardware that performs convolution using addition and
subtraction instead of multiplication. Their speed is accelerated by
performing convolution in parallel way for finding horizontal and
vertical edges. However, it can be improved using pipeline structure
and other level of parallelism.

3. FIRST ORDER DERIVATIVE EDGE
DETECTION ALGORITHMS

Image edges are one of the most fundamental features for object
recognition in computer vision. Edge detection is a classical prob-
lem in image processing that identifies image locations that have
sharp brightness changed or more formally, discontinuities [6].
First order derivative edge detection algorithms are more desired
than second order derivative edge detection methods since they are
more robust toward noise. They usually find edges by finding the
minimum and/or maximum value in the first derivative of the image
intensity values. It is often convenient to use gradient operators to
obtain the first derivative of an image. There are various types of
the gradient operators, such as Roberts operator [6], Prewit operator
[6, 10, 11] and Sobel operator [1, 6, 11, 12, 15, 16, 18].

We have considered Sobel Prewit and Robert operators for our edge
detection implementation in hardware. Sobel and Prewit use two
3×3 spatial masks and Robert uses two 2×2 spatial masks to find
image edges. These masks are used for computing the gradient of
the image intensity values in horizontal and vertical directions. The
Sobel, Prewit and Robert masks, which are also called convolution
kernels, are shown in Fig. 1 (a)-(c).
By sliding the convolution kernels over the image, the gradient of
the image intensity values along x and y directions is computed.
Fig. 1 (d) shows intensity values of an image for a typical 3 × 3
sub-window. By applying convolution masks on the sub-window,
horizontal (Gx) and vertical edges (Gy) are computed. Formulas
for computing Gx and Gy using convolution masks for Sobel, Pre-
wit and Robert operations are shown in 1, 2 and 3 respectively.

Gx = (D6 + 2D7 +D8)− (D0 + 2D1 +D2)

Gy = (D0 + 2D3 +D6)− (D2 + 2D5 +D8)
(1)

Gx = (D0 +D1 +D2)− (D6 +D7 +D8)

Gy = (D2 +D5 +D8)− (D0 +D3 +D6)
(2)

Gx = (D4)− (D8)

Gy = (D5)− (D7)
(3)

The magnitude of gradients for all three operations is obtained by
4.

|G| =
√
G2

x +G2
y (4)

However, it is not convenient to calculate magnitude of gradients in
hardware by 4 since it cannot be computed in a single clock cycle
as it is desired for pipeline structure. Alternatively, magnitude can
be estimated by 5. Since it can get computed in one clock cycle, it
is used in our edge detection hardware.

|G| = |Gx|+ |Gy| (5)

Although the magnitude implies the strength of the edge at pixel
location (x,y), it is not informative for the direction of the edge
[15] [18]. The gradient direction is computed by 6.

α(x, y) = tan−1(
Gy

Gx

) (6)

The edge detection process for Sobel, Prewit and Robert operations
are similar and the only difference is due to using different convo-
lution masks.

4. FPGA-BASED EDGE DETECTION
ARCHITECTURE

The FPGA-based architecture for edge detection is shown in Fig.
2. Three separated hardware modules are defined to perfrom Sobel,
Prewit and Robert operations. Each hardware is enabled by a 3× 8
decoder that has three inputs (A, B and C). Table 1 shows the re-
lation between inputs and corresponding edge detection modules.
For example, if A, B and C become 0, 0 and 1 respectively, Sobel
edge detection hardware is enabled. Modules are organized in par-
allel that lead them to perform edge detection simultaneously. For
example, if A, B and C become 1, all three edge detection modules

2

International Journal of Computer Applications (0975 8887)
Volume 113 - No. 13, March 2015

Fig. 1: Convolution kernels for gradient operations: (a) Sobel (b) Prewit (c) Robert, d) Intensity values of typical 3× 3 sub-window

Table 1. : Relation between inputs and enabling edge detection modules

Inputs
Operation

A B C

0 0 0 Nothing

0 0 1 Sobel

0 1 0 Prewit

0 1 1 Robert

1 0 0 Sobel+Prewit

1 0 1 Prewit+Robert

1 1 0 Sobel +Robert

1 1 1 Sobel +Prewit + Robert

are enabled and three different operations are done at the same time
in parallel way. As result, the run time of one operation is same as
having two or even three different operations.
As it is shown in Fig. 2, each hardware module has 72 bits input
from the FPGA memory which stores intensity values of the origi-
nal image. This is due to fetching 9 intensity values (i.e. 9×8 bits)
for each edge detection modules at every clock cycle.

4.1 Pipeline Structure
Each edge detection module uses pipeline to speed-up the edge de-
tection process of an image located inside FPGA memory. Since
the edge detection operation is performed by two convolution ker-
nels in parallel, two different pipelines are used for each module.
Since there is no dependency between pipeline stages, they are able
to perform the edge detection process at each clock cycle without
getting stalled. Fig. 3 shows 4 stages of the proposed pipeline struc-
ture.

(1) Fetch: 9 intensity values are read for two separated pipelines
(Gx andGy) of each module. Six intensity values (D0, D1, D2,
D6, D7, D8) are used for computing horizontal gradient (Gx)
and six intensity values (D0, D3, D6, D2, D5, D8) are used
for computing vertical gradient (Gy) of the Sobel and Prewit
modules. Four intensity values (D4, D8) and (D5, D7) are used
to compute (Gx) and (Gy) of Robert module. So, the number
of pipeline registers in Robert module is less than two other
modules. Intensity values are read at one clock cycle and they
are passed to the convolution stage by next clock cycle.

(2) Convolution: Gx and Gy are computed for each pixel located
at the center of 3 × 3 sub-window (D4). As it was shown in
1 and 2, four additions, two multiplications and one subtrac-
tion circuits are needed to compute Gx or Gy (Soble, Prewit

Fig. 2: FPGA-based edge detection architecture

modules). Based on 3, the Robert module only needs one sub-
traction circuit for either Gx or Gy . Having separated combi-
national circuits allows us to perform convolutions in parallel
for (Gx) and (Gy). As it is shown in Table 1, if more than one
module is enabled, pipelines of each related modules are run
simultaneously.

(3) Absolute Value of Gx , Gy: Computed Gx and Gy values of
previous stage, are checked against zero to determine they are
positive or negative. If they are negative, they are multiplied by
-1 to compute the absolute value in a single clock cycle.

(4) |G| = |Gx| + |Gy|: The gradient magnitude is computed us-
ing 5 by adding the absolute magnitude values of Gx and Gy

Although the true magnitude G can be computed by 4, the full
implementation needs conditional loop instructions that will
need more than one clock cycle. It means that the instruction
should be executed several times based on the condition. Since
each pipeline has four stages, four clock cycles are needed to
fill the pipeline. After each pipeline is filled, a final gradient
result (|G|) is generated at each clock cycle. This architecture
is effective since there are no data or control hazards between
pipeline stages and it could be run at full speed with no inter-
ruption [5].

3

International Journal of Computer Applications (0975 8887)
Volume 113 - No. 13, March 2015

Fig. 3: Pipeline stages for each edge detection module

Fig. 4: One-way parallel method. Since intensity values on borders of an
image are not considered for edge detection process, we have not assigned
number to them.

4.2 One-way Parallel Edge Detection Architecture
one-way parallel method works based on performing edge detec-
tion at one region of an image. One region is the whole intensity
values of an image excepting borders. In one-way parallel method,
nine intensity values related to each pixel is fetched in row order.
So, multiplication by convolution masks is done at the next clock
cycle in parallel to compute Gx and Gy .
Fig. 4 depicts the simple picture of the method for the image size
of 128 × 128. Firstly, 9 intensity values regarding to pixel 1 are
read to form the 3 × 3 sub-window. Fetching 9 intensity values
continues in row order from pixel 2 to 15876. A separated pipeline
is used inside each module for each convolution kernel. Pipeline
operations are explained in clock cycle order as below.

Fig. 5: Two-way parallel method, two separated regions are shown by two
different colors

(1) Pipeline starts with pixel 1 and it fetches 9 related intensity
values to form the 3× 3 sub-window at first clock cycle.

(2) While 9 intensity values related to pixel 2 are fetched, 9 in-
tensity values regarding to pixel 1 are already passed to con-
volution stage. It means that at the same clock cycle, pixel 2
is fetched and convolution for pixel 1 is computed. This con-
volution is made for both horizontal and vertical convolution
masks at the same clock cycle.

(3) 9 intensity values related to pixel 3 are fetched, convolution
for pixel 2 is performed and absolute values of Gx and Gy are
computed for pixel 1.

(4) 9 intensity values related to pixel 4 are fetched, convolution is
performed (pixel 3), absolute values of Gx and Gy are com-
puted (pixel 2) and the final magnitude for absolute values |G|
is computed (pixel 1). Pipelines get filled after four clock cy-
cles and final magnitude value (G) is calculated for each pixel
by one clock cycle.

4.3 Two-way Parallel Edge Detection Architecture
The two- way parallel edge detection architecture extends the one-
way process by defining two separated regions in the original im-
age. Convolution is perfromed for each region separately by intro-
ducing additional convolution kernels and pipelines.
Fig. 5 depicts the operation of the two-way parallel method. Two
groups of image intensity values, which split the image along the
diagonal, are distinguished by different colors. Two convolution
masks and two separated pipelines are used for each edge detec-
tion module regarding to each group. For example, fetching of 9
intensity values for pixel 1 and 127 is perfromed simultaneously.
Pipelines are run in full speed since there is no data dependency
between two pipelines. This effectively doubles the speed in com-
parison with one-way method.
The idea of two-way parallel method could also be extended to-
wards m-way parallel method by defining m regions on the origi-
nal image. This extension is effective for increasing the speed-up
but it suffers from an extra overhead related with each additional
pipeline structure. The parallelism is limited by the FPGA hard-

4

International Journal of Computer Applications (0975 8887)
Volume 113 - No. 13, March 2015

ware. We later show that going towards m-way of parallelism is
effective when the image size increased.

5. SPEED-UP CALCULATION
Any hardware that does not use a pipeline must complete each task
to finish an operation. If there are n tasks to be executed, and each
task needs t time then total runtime is obtained by 7.

Ttotal = nt (7)

If each task needs k number of clocks to be completed, 8 is obtained
[5, 13].

Ttotal = nk × clk (8)

where clk represents the clock cycle time. The total runtime of the
same task using a pipeline is obtained by 9.

Ttotal−pipeline = (k + n− 1)× clk (9)

Speed-up of a hardware benefits pipeline over the equivalent hard-
ware is defined by the ratio in 10.

speed− up =
nk × clk

(k + n− 1)× clk
=

nk

k + n− 1
(10)

As the number of tasks increased, n becomes too larger than k and
the speed-up under this condition is simplified by 11.

speed− up =
nk

k
= k (11)

This means that even when there are many instructions, speed-
up gets close to number of the pipeline stages. Therefore, more
pipeline stages are desired for greater speed-up.
9 can be easily used to estimate the run time of the edge detection
process for one-way parallel method,. For example, we just need to
plug in 15870 as number of instructions (n) , 4 as number of each
pipeline stages k and 1

Clock Frequency
as clk for runtime estima-

tion in Table. 3.
In order to reach to m-way parallelism, 9 should get changed since
the longer path determines the total run time of the process. As
result, 12 is obtained to calculate the total runtime when there is
different instructions regarding to each path.

Ttotal−pipeline = (max(n1, n2, ..., nm)− 1 + k)× clk (12)

Where m is number of different parallel regions that each operates
on its own pipeline and k is the number of pipeline stages. These
variables are set for runtime estimation of two-way parallelism by
plugging 2 into m, 4 into k and 1

Clock Frequency
into clk. Note,

n1 = 126×127
2

, n2 = 125×126
2

and max(n1, n2) is 8001.

6. EXPERIMENTAL RESULTS
This section includes three parts. In first part, the implementation
results of the one-way and two-way parallel architectures for a
given 128 × 128 image size is presented. In second part, the run-
time of proposed methods for different image sizes are evaluated
and the speed-up is estimated. Finally, an extension to higher level
of parallelism is proposed when the image size increased in order
to guarantee high speed-up.

Fig. 6: Edge detection of Lenna & Camera man images, (a) Original images
(b) Sobel edge detection (c) Prewit edge detection (d) Robert edge detection

6.1 Implementation
One-way and two-way parallel architectures for a given 128× 128
image was implemented by Verilog HDL and it was simulated us-
ing ModelSim 10.1d from Mentor Graphics Corporation. All im-
ages were first read and pre-processed using MATLAB R2010a to
resize the image to 128× 128 pixels, convert it to grayscale image,
and write the pixel intensity values into a text file in hexadecimal
format. The text file is created to use in the hardware simulator; it
is loaded into the FPGA memory and read by the edge detection
hardware.
Filtered pixels are written into an output text file at each clock cy-
cle after the pipeline initialization. Another MATLAB script re-
arranges the filtered image pixels into a 128×128 final image after
thresholding. As noted in Table. 1, two or even three filtered output
pixels can be generated in a single clock cycle.
Fig. 6 shows the original and final images after performing edge
detection by Robert, Sobel and Prewit modules. Robert shows more
missed edges and both Sobel and Prewit detect thicker edges as it
is expected.
We synthesized both edge detection architectures with Quartus II
9.1 web Edition for the Cyclone IV GX FPGA. Table. 2 shows
the hardware resources that were utilized for EP4CGX150DF31C8
FPGA.
The one-way architecture consumes 18% of the FPGA memory and
it gets double for two-way architecture. The two-way architecture
requires twice the number of the registers due to convolution ker-

5

International Journal of Computer Applications (0975 8887)
Volume 113 - No. 13, March 2015

Table 2. : Device utilization summery for one & two-way parallel architec-
tures

Pins Logic Elements Memory Bits

Available 508 149760 6635520

One-way
Used 78 925 1179648

Utilization 15% 1% 18%

Two-way
Used 143 1588 2359296

Utilization 28% 1% 36%

Table 3. : Runtime results for first & second FPGA-based architectures

Method
MATLAB Architecture

Lenna Camera man First Second

Sobel 0.12581 0.12256 0.00031 0.00016

Prewit 0.12348 0.12303 0.00031 0.00016

Robert 0.11521 0.11682 0.00031 0.00016

Sobel+Prewit 0.15552 0.14476 0.00031 0.00016

Prewit+Robert 0.15871 0.15128 0.00031 0.00016

Sobel+Robert 0.15435 0.14839 0.00031 0.00016

Sobel +Prewit+Robert 0.16342 0.15330 0.00031 0.00016

nels of two pipelines. Since some combinational circuits are shared
between pipelines, total logic elements are not exactly get doubled.
Consumed logic elements of second architecture increased by rate
of 1.71 but it still consumes 1% due to large number of available
logic elements.
Table. 3 presents the runtime of the edge detection process on the
FPGA with 50 MHZ clock frequency. The runtime of Soble, Pre-
wit and Robert functions are measured in MATLAB R2010a on a
machine with 6 Gigabyte RAM and i7 processor. The processor in-
cludes 8 cores with a 2.00 GHZ clock frequency. The average of 10
runtimes are accounted for MATLAB and positive edge triggered
counters are used to estimate runtime on FPGA.
Table. 3 shows more speed-up for multiple edge detection filters.
Although some parallelism is performed using the multiple pro-
cessor cores for MATLAB, it cannot fully execute edge detection
processes in parallel because of its sequential nature. More edge
computation increases runtime in software but FPGA has constant
run-time for all combinations due to usage of parallelism between
edge detection modules.
Runtime of edge detection process for two-way parallel architec-
ture is half of the one-way architecture. This is a direct result of
the transition from one-way parallelism to two-way parallelism.
Although experimental results show large speed-up, the hardware
speed-up depends on the image size. The speed-up calculation for
different image sizes and the architecture extension toward m-way
parallelism is presented in following sub-sections.

6.2 Speed-up analysis
Formulas 9 and 12 are used to estimate the runtime of the pro-
posed methods on FPGA and MATLAB run edge detection func-
tions for different image sizes. Fig. 7 shows the run-time of one-
way and two-way parallel methods versus the software-based ap-
proach when the image size scales by factor of 4. As it is was shown

Fig. 7: Run time of software-based edge detection versus one-way and two-
way parallel method for different image sizes

Fig. 8: Speed-up for different image sizes of Lenna Image

in 9, runtime for one-way and two-way methods is linearly related
with the image size. If the image size increased by factor of 4, the
runtime increased quadratically.
MATLAB R 2010a was used to run each edge detection method
for different image sizes. Lenna image was up-sampled by factor of
four and the average of worst and best 10 runtimes was measured.
Best case is usually achieved when Robert edge detection is only
used due to its smaller kernel mask. On the other hand worst case
happens when all three edge detections are needed to get run for
the given image. The average plot is shown for software-based edge
detection in Fig. 7.
When the image size is less than 1024× 1024, runtime of the edge
detection process does not change significantly. It means that the
run time of the software-based approach doesnt necessarily follow
formula 8 and it doesnt linearly increased due to instruction and
data level parallelism on multi-cores [5]. However, when image
size is larger than 1024, the run time increased as similar as the
proposed parallel methods.
Fig. 8 shows the speed-up results. Speed-up is near to 1000 (log-
arithm of speed-up is near to 3) for 128 × 128 image in two-way
parallel method and it is near to 400 for 256 × 256 image. How-
ever, it goes below 30 when the image size becomes higher than
1024. These effects are shown as plunge in speed-up results in Fig.
8. Although ordinary FPGAs might not have enough memory bits
to keep the large size images, we should find a way to deal with
this issue for those with enough memory bits. In next section, the
higher level of parallelism is proposed for solving this problem. The
m-way parallel approach guarantees a non-decreasing speed-up of
edge detection on large image sizes.

6

International Journal of Computer Applications (0975 8887)
Volume 113 - No. 13, March 2015

Fig. 9: Extending the parallel approach when the image size gets increased

Fig. 10: Final Speed-up using increasing m-way method

6.3 Extension toward m-way parallelism
The extension from 1-way to 2-way and m-ways was shown in for-
mula 12 This parallelism extension is beneficial for large image
sizes. Transition from one-way to two-way parallel method was
previously shown by considering two triangle areas over the image
intensity values. The region that covers more intensity values has a
longer path and it determines the total runtime. As simple solution,
the parallelism can increased when the image size increased.
Fig. 9 shows the transition from 2-way to 8-way, when the image
size increased from 128×128 to 256×256. The same process can
get repetated from 8 way to 32 way when image scales to 512×512.
Larger image sizes can still be broken into smaller sub-images by
utilizing simple two-way parallel blocks. The run time of the full
image is still same as the 128 × 128 image. It has runtime of two-
way parallel method and larger upper triangle still determines the
runtime.
Fig. 10 shows the speed-up for increasing m-way. When the image
size is between 128 × 128 and 1024 × 1024, speed-up is around
1000 and it does not drop for greater image sizes. It actually in-
creased for larger images since software approach can no longer
efficiently utilize the multiple cores.

7. CONCLUSION
A fast FPGA-based architecture for performing first-order deriva-
tive edge detection is presented using a general approach for apply-
ing different levels of parallelism. Two architectures are proposed
that benefit pipeline structure along with different levels of paral-
lelism. Different levels of parallelism are introduced over convo-
lution masks, hardware edge detection modules and image inten-

sity values. The parallel hardware architecture achieved significant
speed-up over software especially when multiple edge detectors are
required. Finally, an extension of the proposed method towards m-
level parallelism is presented to guarantees non-decreasing speed-
up for large image sizes.

8. REFERENCES
[1] G. Anusha, T. J. Prasad, and D. Narayana. Implementation of

sobel edge detection on fpga. Proceeding of the International
Journal of Computer Trends and Technology, 3(3):471–475,
2012.

[2] D. G. Bariamis, D. K. Iakovidis, D. E. Maroulis, and S. A.
Karkanis. An fpga-based architecture for real time image fea-
ture extraction. In Proceedings of the 17th International Con-
ference on Pattern Recognition, pages 801–814, Cambridge,
UK, 2004.

[3] M. P. S. Chikkali and K. Prabhushetty. Fpga based image edge
detection and segmentation. Proceeding of the International
Journal of Advanced Engineering Sciences and Technologies,
9(2):187–192, 2011.

[4] B. A. Draper, J. R. Beveridge, A. P. W. Bhm, C. Ross, and
M. Chawathe. Accelerated image processing on fpgas. IEEE
Transactions on Image Processing, 12(12):1543–1551, 2003.

[5] J. L. Hannesy and D. A. Patterson. Computer Architecture, A
Quantitative Approach. Morgan Kaufmann, 5 edition, 2011.

[6] R. Harinarayan, R. Pannerselvam, M. M. Ali, and D. K. Tri-
pathi. Feature extraction of digital aerial images by fpga based
implementation of edge detection algorithms. In Proceed-
ing of the International Conference on Emerging Trends in
Electrical and Computer Technology, pages 631–635, Tamil
Nadu, India, 2011.

[7] W. Jincheng, Sun Jingrui, and Liu Wenying. Design and im-
plementation of video image edge detection system based on
fpga. In Proceedings of the 3rd International Congress on
Image and Signal Processing, pages 472–476, Yantai, China,
2010.

[8] C. T. Johnston, K. T. Gribbon, and D. G. Bailey. Implement-
ing image processing algorithms on fpgas. In Proceeding
of the Eleventh Electronics New Zealand Conference, pages
118–123, Palmerston North, New Zealand, 2004.

[9] D. Llamocca, C. Carranza, and M. Pattichis. Separable fir fil-
tering in fpga and gpu implementations: Energy, performance,
and accuracy considerations. In Proceedings of the Interna-
tional Conference on Field Programmable Logic and Appli-
cations, pages 363–368, Chania, 2011.

[10] R. Maini and J. S. Sohal. Performance evaluation of prewit
edge detector for noisy images. Proceeding of the Interna-
tional Journal on Graphics, Vision and Image Processing,
6(3):90–95, 2006. December.

[11] S. K. C. J. Majumdar. A novel architecture for real time imple-
mentation of edge detectors on fpga. Proceeding of the Inter-
national Journal of Computer Science Issues, 8(1):193–202,
2011.

[12] R. Mehra and S. Verma. Area efficient fpga implementation
of sobel edge detector for image processing application. Pro-
ceeding of the International Journal of Computer Applica-
tions, 56(16), 2012.

[13] D. A. Patterson and J. L. Hannesy. Computer Organization
and Design, The Hardware/Software Interface. Morgan Kauf-
mann, 5 edition, September 2013.

7

International Journal of Computer Applications (0975 8887)
Volume 113 - No. 13, March 2015

[14] J. M. Ramirez, E. M. Flores, j. Martinez-Carballido, R. En-
riquez, V. Alarcon-Aquino, and D. Baez-Lopez. An fpga-
based architecture for linear and morphological image filter-
ing. In Proceeding of the 20th International Conference on
Electronics, Communications and Computer, pages 90–95,
Cholula, Mexico, 2010.

[15] V. Sanduja and R. Patial. Sobel edge detection using parallel
architecture based on fpga. Proceeding of the International
Journal of Applied Information Systems, 3(14), 2012.

[16] H. Santanu, D. Bhattacharjee, M. Nasipuri, and D. K. Basu. A
fast fpga based architecture for sobel edge detection. In Pro-
ceeding of the 16th International Conference on Progress in
VLSI Design and Test, pages 300–306, Shibpur, India, 2012.
Springer Berlin Heidelberg.

[17] R. Szeliski. Computer Vision: Algorithms and Applications.
Morgan Kaufmann, 2010.

[18] I. Yasri, N. H. Hamid, and V. V. Yap. Performance analysis
of fpga based sobel edge detection operator. In Proceeding
of the International Conference on Electronic Design, pages
1–4, Penang, Malaysia, 2008.

8

	Introduction
	Related Works
	First Order Derivative Edge Detection Algorithms
	FPGA-based Edge Detection Architecture
	Pipeline Structure
	One-way Parallel Edge Detection Architecture
	Two-way Parallel Edge Detection Architecture

	Speed-up Calculation
	Experimental Results
	Implementation
	Speed-up analysis
	Extension toward m-way parallelism

	Conclusion
	References

