
International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 11, March 2015

34

Secure and Efficient Integrity Algorithm based on Existing

SHA Algorithms

 Snigdha Soni Sandeep Pratap Singh

Department of Computer Science & Engineering, Department of Computer Science & Engineering,
 Oriental Institute of Science and Technology Oriental Institute of Science and Technology
 Bhopal, India Bhopal, India

ABSTRACT
In today’s world every person relies on internet for various

purposes. There is always a need to take appropriate measures

for getting secure communication all the way throughout this

unsecure internet. Integrity is one of the most significant

factors in the communication scenario. There are various

algorithms that ensure the integrity but almost all are either not

secure or not efficient. This paper highlights some of such

algorithms and also introduces an integrity algorithm and also

proves its efficiency with its implementation result.

Keywords

Computer Security, SHA, Hash, Message Digest

1. INTRODUCTION
In present technology, security is always an important concern.

Mainly security is based on three parameters i.e. integrity,

confidentiality and authenticity. This paper focuses on

integrity. Many cryptographic hash functions are designed in

order to provide integrity over data. Hash function generates a

message digest of fixed length. Hash function is designed in

such a way that it contains the following properties:

a. It should be easy to compute the hash value for any

given message.

b. It should be infeasible to generate a message that has

a given hash.

c. It should be infeasible to modify a message without

changing the hash.

d. It should be infeasible to find two different messages

with the same hash.[1, 10]

There are many cryptographic hash algorithms: MD4, MD5,

SHA-0, SHA-1 and SHA-2, but all these algorithms are either

not secure or not efficient in terms of time. Hash algorithm

uses a message and generates a message digest of fixed length.

This message digest is appended with the message and then

sent to the other end. At the other end, message and digest are

separated and message again passes through the hash function

and generates another digest. If both the digest are same it

means message is original else the message is discarded. The

key property of a hash algorithm is that it is impossible to

generate a message from digest.

MD-4 is a cryptographic hash algorithm designed by a Ronald

Rivest in the year of 1990. It generates a message digest of 128

bits. MD-4 is not much secure, first full attack on MD-4 is

found in the year of 1995. Latest a 2007 attack found a

collision on MD-4 in less than 2 hash operations [11].

MD-5 is another cryptographic hash algorithm that generates a

message digest of 128 bits. It was developed by Ron Rivest in

1996. Again a 2013 attack by Xie Tao, Fanbao Liu, and

Dengguo Feng breaks MD5 collision resistance in 218 times.

This attack runs in less than a second on a regular computer

[11].

SHA-0 is the first algorithm proposed in SHA family. It

generates a message digest of 160 bits. An attack in 2008

applying the boomerang attack brought the complexity of

finding collisions down to 233.6, which is estimated to take 1

hour on an average PC [11].

SHA-1 is the most popular hash algorithm among all the

existing algorithms, the reason of its popularity is its

efficiency. It generates a message digest of 160 bits but a 2011

attack by Marc Stevens produces hash collisions with a

complexity between 260.3 and 265.3 operations [11].

SHA-2 is the most secure algorithm among all the existing

algorithms but still it doesn’t get that much popularity because

of its inefficiency.

After that many researchers have proposed their own

algorithms because all the existing algorithms are either

breakable or not efficient.

In [2], Authors have proposed there algorithm which generates

a message digest of 192 bits. The internal structure of SHA-

192 is almost similar to the other SHA algorithms.

In [1], Authors have merged the SHA-192 and MD-5 and

proposed their own algorithm. This algorithm also generates a

digest of 192 bits.

In this paper, it proposed its own algorithm in such a way that

it is not only time efficient but also highly secure. Also

proposed algorithm is compared with the existing research

work of SHA-192 and SHA-1.

2. PROPOSED ALGORITHM
Internal design of proposed algorithm is different from the

existing SHA algorithm. Proposed algorithm uses 10 chaining

variable of 16 bits while SHA-1 uses 5 chaining variable of 32

bits and SHA-192 uses 6 chaining variable of 32 bits. Proposed

algorithm generates a message digest of 160 bits and takes 64

rounds for each 512 bits chunk. The modified structure of

proposed SHA-160 algorithm is given in Fig 1.

Steps of Proposed Algorithm are as follows

a. Padding: The first step in Proposed SHA is to add

padding bits to the original message. The aim of this

http://en.wikipedia.org/wiki/Computational_complexity_theory#Intractability

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 11, March 2015

35

step is to make the length of the original message

equal to a value, which is 64 bits less than an exact

multiple of 512. We pad message M with one bit

equal to 1, followed by a variable number of zero

bits.

b. Append length: After padding bits are added, length

of the original message is calculated and expressed as

64 bit value and 64 bits are appended to the end of

the resultant message of step 1.

c. Divide the input into 512 bit blocks: Divide the

input message into blocks, each of length 512 bits,

i.e. cut M into sequence of 512 bit blocks M1,

M2…..MN. Each of Mi parsed into thirty-two 16 bits

words Mi
0, M

i
1……...Mi

32

Fig 1: Elementary Function of Proposed SHA

d. Initialize chaining variables the hash is 160 bits

used to hold the intermediate and final results. Hash

can be represented as ten 16 bits word registers,

A,B,C,D,E,F,G,H,I,J,K. Initial values of these

chaining variables are:

A = 6745

B = 2301

C = EFCD

D = AB89

E = 98BA

F = DCFE

G=1032

H=5476

I=C3D2

J=E1F0

The compression function maps 160 bits value

H=(A,B,C,D,E,F,G,H,I,J) and 512 bit block Mi into 160 bits

value. The shifting of some of the chaining variables by 10 bits

in each round will increase the randomness in bit change in the

next successive routines. If the minimum distance of the

similar words in the sequence is raised then the randomness

significantly raises. A different message expansion is employed

in this hash function in such a way that the minimum distance

between the similar words is greater compared with existing

hash functions.

e. Processing: After pre-processing is completed each

message block is processed in order using following

steps:

I) for i = 1 to N prepare the message

schedule.

Mit, 0≤t≤31

Wt = (Wt-6 XOR Wt-16 XOR Wt-14 XOR

Wt-32) <<1 32≤t≤63

II) Initialize the ten working variables

A,B,C,D,E,F,G,H,I,J with (i-1)st hash

value.

III) for t = 0 to 63

{

Temp = (A<<2) XOR F1 (C, E,

G) XOR I ^Kt ^ Wt

 I = G;

 G = E;

 E = C<<5

 C = A;

 A = Temp

Temp = B<<2 XOR F1 (C, E, G)

XOR J XOR Kt XOR Wt

 e2 = a2;

 a2 = b2;

 b2 = c2;

 c2 = d2;

 d2 = step5;

}

Where Kt is a constant defined by a Table 4.1, F1 is a bitwise

Boolean function, for different rounds defined by,

F1 (C, E, G) = IF C THEN E ELSE G

F1 (C, E, G) = C XOR E XOR G

F1 (C, E, G) = MAJORITY (C, E, G)

F1 (C, E, G) = C XOR E XOR G

Where the “IF….THEN……ELSE “function is

defined by

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 11, March 2015

36

IF C THEN E ELSE G = (CΛE) V ((¬C) ΛG)

And “MAJORITY” function is defined by

MAJORITY (C, E, G) = (CΛE) V (EΛG) V (GΛC)

Also, ROTL is the bit wise rotation to the left by a

number of positions specified as a superscript.

IV) H0 (i) = A + H0 (i-1)

H1 (i) = B + H1 (i-1)

H2 (i) = C + H2 (i-1)

H3 (i) = D + H3 (i-1)

H4 (i) = E + H4 (i-1)

H5 (i) = F + H5 (i-1)

H6 (i) = G + H6 (i-1)

H7 (i) = H + H7 (i-1)

H8 (i) = I + H8 (i-1)

H9 (i) = J + H9 (i-1)

Table 1: Coefficients of each round

Rounds Steps F1 Kt

1 0-15 IF FA92

2 16-31 XOR 6ED9

3 32-47 MAJ 8F1B

4 48-64 XOR CA62

3. PERFORMANCE ANALYSIS
This section provides a comparative analysis between existing

and proposed hash algorithms. To evaluate the efficiency and

the strength of hash algorithms mostly two parameters are

considered. First, Time Efficiency to calculate its efficiency

against time and avalanche effect to calculate the internal

strength of proposed algorithm.

3.1 Timing Analysis
Timing analysis is used to calculate the time efficiency of

proposed algorithm against the existing algorithm. It is a time

of generating message digest for any given text.

Table 2: Timing Comparison between Proposed Algorithm,

SHA-1, and SHA-192 algorithms

File Size in KB Algorithms (Time in Seconds)

SHA-160

Proposed

SHA-160

SHA-192

5 KB 0.187 0.109 0.639

10 KB 0.483 0.374 1.138

20 KB 1.981 1.435 3.151

A graphical representation for the Table 2 is shown in Fig 2,

with blue line for execution time of existing SHA and Proposed

SHA-160 algorithms. According to the graph, there is a

tendency that execution time for Proposed SHA-160 algorithm,

increases with file size. But required time for the execution

through Proposed SHA-160 is much smaller than execution

time for compared SHA-192 and SHA-1.

3.2 Security Analysis
Another parameter that is used to calculate the internal strength

of a hash algorithm is avalanche effect. According to avalanche

effect two texts having a difference of a single bit should

generate digests that are 50 percent different from each other.

An algorithm that is close to this condition is considered better

than other.

Fig 2: Timing Comparison between Proposed Algorithm,

SHA-1, and SHA-192 algorithms

After calculating the avalanche effect, it is found that proposed

algorithm is close to idle condition as compare to others.

Table 3: Avalanche effect of Proposed Algorithm, SHA-

192, and SHA-1 algorithms

Algorithm Avalanche Effect

Message SHA-160
Proposed

SHA-160
SHA-192

 45.65 % 48.725 % 48.12 %

3.3 Space Analysis
Another parameter to evaluate the performance of proposed

algorithm is space. Here, proposed algorithm generates a

message digest of 160 bits therefore it requires a buffer that can

hold 160 bits while on the other hand SHA-1 also requires a

buffer to hold only 160 bits hence SHA-1 requires less space

but on comparing it with SHA-192 algorithms that required a

buffer to hold 192 bits, that requires more space, proposed

algorithm comparatively requires less space and hence is more

efficient in respect of space.

3.4 Analysis of Hash Code
If an algorithm generates a message digest of n bits than

according to birthday attack it requires 2n/2 combinations to

find the collision. SHA-1 generates 160 bits message digest,

0
0.5

1
1.5

2
2.5

3
3.5

Time(in
second)

Time(in
second)

Time(in
second)

SHA-160 Proposed
SHA

SHA-192

5 KB

10 KB

20 KB

International Journal of Computer Applications (0975 – 8887)

Volume 113 – No. 11, March 2015

37

hence it requires 280 combinations to find the collision but in

2011 it is proven that collision can be found after 261

combinations; SHA-192 generates 192 bits message digest

hence it requires 296 combinations and proposed algorithm

generates 160 bits message digest therefore 280 combinations

are required to find collision. This value is enough large that

supercomputer needs millions of year to solve this value.

Fig 3: Avalanche effects of Proposed Algorithm, SHA-1 and

SHA-192[1] algorithms

4. CONCLUSION
As discussed, there is always a demand of modification or

replacement of existing algorithms with the modified or latest

algorithms. This paper discussed one of the problems faced in

integrity algorithms that all the existing algorithms are either

proven breakable or not time efficient. This paper studied all

such algorithms and also proposed its own integrity algorithm

which is not only secure but also time efficient too. This paper

shows its implementation results and also proved that proposed

algorithm is the efficient and better option to be used in places

where data integrity is considered essential. Authors have

tested the above results on number of sample files and

proposed there results.

Future Scope: There is always a chance of improvement;

authors have tried their best to design this algorithm but still in

future it can be further improved and be more efficient.

5. REFERENCES
[1] Garbita Gupta and Sanjay Sharma, “Enhanced SHA-192

Algorithm with Larger Bit Difference” IEEE International

Conference on Communication Systems and Network

Technologies, 2013

[2] L.Thulasimani and M.Madheswaran “Security and

Robustness Enhancement of Existing Hash Algorithm”

IEEE International Conference on Signal Processing

Systems 2009.

[3] A new Hash Function Based on Combination of Existing

Digest Algorithms pub 2007.

[4] The Collision Rate Tests of Two Known Message Digest

Algorithms 2009.

[5] Harshvardhan Tiwari. A Secure Hash Function MD-192

with Modified Message Expansion” Vol. 7 No. 2 February

2010 International Journal of Computer Science and

Information Security.

[6] Marc Stevens hash clash - Framework for MD5 & SHA-1

Differential Path Construction and Chosen-Prefix

Collisions for MD5

[7] X. Wang, H. Yu and Y.L. Yin, “Efficient Collision Search

Attacks on SHA-0”,(Pub 2005)

[8] K. Matusiewicz and J. Pieprzyk, “Finding good

differential patterns attacks on SHA-1”, (Pub 2004),

Available: http://eprint.iacr.org/2004/364.pdf

[9] William Stallings, “Cryptography and Network Security:

Principles and Practice. Third edition, Prentice Hall.2003.

[10] Florent Chabaud, Antoine Joux, “Differential collisions in

SHA-0,” Advances in Cryptology-CRYPTO’98, LNCS

1462, Springer-Verlag, 1998.

[11] http://en.wikipedia.org/wiki/Secure_Hash_Algorithm

[12] Ricardo Chaves, Georgi Kuzmanov, Leonel Sousa, and

Stamatis Vassiliadis “ Cost-Efficient SHA Hardware

Accelerators” IEEE transactions on very large scale

integration (VLSI)Systems, VOL. 16, NO. 8, AUGUST

2008

44.00%

45.00%

46.00%

47.00%

48.00%

49.00%

SHA-160 Proposed
SHA-160

SHA-192

IJCATM : www.ijcaonline.org

