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ABSTRACT
Database sequencing applications such as sequence comparison
process large size of sequences and considered to be high con-
sumers of computation time. Heuristic algorithms have the prob-
lem of sensitivity since they trim the search and miss unexpected
but important homologies. Traditional optimal methods apply these
applications on the whole database to find the most matched se-
quences but this consumes very high computation time. We in-
troduce novel and efficient technique which optimizes the perfor-
mance of the database sequencing applications by reducing the
computation time of finding the optimal matched sequence in a
large database. Our technique uses our new similarity functions
which are based on the mathematical parameters: frequency and
mean of the codes of each sequence in the database. Using our
technique, we explicitly accelerate the database sequencing appli-
cations by 60% in comparison to the traditional known methods.
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1. INTRODUCTION
Sequence computing applications such as sequence analysis,
sequence comparing, sequence alignment, sequence searching, etc,
are widely used in different research fields: In Biology [11, 12],
rapid analysis of DNA and Protein sequences are performed to
search a large database of sequences for close matches to particular
sequence of interest, typically a recently discovered protein. If
correlations are found, new drugs may be developed or better
techniques invented to treat the disease.
In Computer science [16], sequence comparison is used under the
term ”string editing” for error correction routines such as spell
checkers and file comparison algorithms. It is based on searching
or comparing a large database of sequences (word or words) for a
particular one. In social science [3, 6, 10, 8], Sequence comparison
involves a bewildering variety of topics, from careers to daily life
to national histories. In video processing [17], a frame sequences
which contain the video spatial and temporal information are
aligned to identify nearly repetitive contents in a stream of video.
All previous applications are considered to be high consumers of
computation time because it is based on searching or comparing
a particular sequence with large database of sequences. Heuristic

algorithms, such as FASTA [4] and BLAST [5], are fast in finding
approximate solutions. These algorithms have the problem of
sensitivity since they trim the search and miss unexpected but
important homologies. On the other hand, The Needleman-Wunsch
[1] and Smith-Waterman [2] algorithms guarantee the return of the
optimal comparison results of two sequences. In these algorithms,
the searched sequence, we call it query sequence, needs to be
compared with each sequence of the database. For each pairwise
comparison process, an similarity score (alignment score) is
computed which refers to the metric distance between the two
compared sequences (explained later). The highest score refers
to the sequence of the database which is most close to the query
sequence.
The Needleman-Wunsch [1] and Smith-Waterman [2] algorithms
are based on the dynamic programing, programing that handles
a large computing problem by solving a set of smaller problems
whose results depend dynamically on one another. The results are
provided in a time that is proportional to the product of the lengths
of the two sequences being compared. i.e, if n is the length of the
query sequence and m is the length of the database sequence, then
the previous algorithms provide the optimal alignment in n x m
steps. Therefore when searching a whole database the computation
time grows linearly with the size of the database.

An efficient techniques or powerful platforms are proposed to
process these large amounts of data in a reasonable time [13].

In [13], the authors used GPU and CPU to improve the perfor-
mance of aligning the sequences by running the long sequences
on the GPU and the short ones on the CPU. Another different
methods were introduced for heuristic sequence alignment.
In [7], the authors presented CUDA-based implementation of
the Smith-Waterman Algorithm using GPU cards in common
workstation.
The authors in [9] accelerated the Smith-Waterman using the
GeForce 8800 GTX card. They used the on-chip shared memory
to reduce the data amount being transferred between off-chip
memory and processing elements in the GPU.
In [15], the authors proposed similarity measure between two
web pages and a method of clustering the web sessions using a
developed Fast Optimal Global Sequence Alignment Algorithm
(FOGSAA). Their method aligns the sessions in an average time
gain of 35.84% over the conventional dynamic programming

1



International Journal of Computer Applications (0975 8887)
Volume 112 - No. 5, February 2015

Needleman-Wunsch method.

In all previous work and applications, similarity measure is used
to measure how one object is close to the other. The object might
be database sequence, string file, video stream, website page, etc.
Any object is a sequence in a database and consists of different
frequently repeated letters (codes).
In this contribution, we propose new similarity measures (we call
them similarity functions) which are based on the mathematical
parameters: frequency, and mean of the codes of each sequence in
the database. Using our similarity functions, we reduce the time
required to measure the similarity between two objects (database
sequences), explicitly. In addition to that, we introduce a novel and
efficient technique to reduce the computation time required to com-
pute the similarity between the query sequence and all database
sequences Our technique computes the similarity function scores
for all database sequences and excludes sequences which have low
score from the comparison process.In this case, we just need to
apply the dynamic programing algorithm (Needleman-Wunsch or
Smith-Waterman) on part of the database and not on the whole of
it.
Using our technique, we explicitly reduce the time required for the
database sequence comparison applications by 50% in comparison
to the traditional methods used. This may open new era in database
comparison applications.
The crux of our technique is that it may be applied in conjunction
with the previous state-of-the-art methods (as in [15] and [14]) to
further improve their time performance.

Our novel contributions are as follows:
(1) New similarity functions based on mathematical parameters

are proposed to measure the similarity between two objects in
reasonable time. The functions are frequency and mean of the
codes of each sequence in the database.

(2) New technique is introduced to reduce the computation time
required for optimal database sequence computing applica-
tions. This may open new era in database comparison appli-
cations.

(3) Our technique may be applied in conjunction with the pre-
vious state-of-the-art methods to further improve their time
performance.

The concept of reducing the the database computation time by
using the function ”frequency” first proposed in our previous
work [18]. In this paper, we have refined this function, proposed
new function ”mean”, and combined the two functions ”Fre-
quency+Mean” to improve the results.

The rest of the paper is organized as follows. In Section 2, we
present the sequencing applications using traditional methods. In
Section 3, we propose our similarity functions and demonstrate an
example for them. Our technique to reduce the computation time of
the sequencing applications and its time complexity are introduced
in Section 4. Experimental results are presented in Section 5. We
conclude this paper in Section 6.

2. SEQUENCING APPLICATIONS USING
TRADITIONAL METHODS

The traditional methods are based on aligning the two sequences
and computing the alignment score AS which refers to the simi-
larity between two sequences. To search one sequence (query) in

D : LLFGGTTACCAAAGTT

D : LLFTGAAACCCCAGTT

D : TCCGGTTATTAAAGGT

D : AFAGGTTACCNKAGLL

D : TLLKKTTACCCCMGTT
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Each code of the query Q has to be compared 

with all codes of the database sequence D

Q: TATCGGFFFAAAAAGLT

Fig. 1. Sequence alignment. Each element (code) in the query sequence
has to be compared with all elements of the database sequences

a database sequences, the query sequence has to be aligned with
each sequence of the database starting from the first sequence of the
database till the last one the alignment score AS for each alignment
process has to be computed. In each alignment process, each ele-
ment (code) in the query sequence has to be compared with all ele-
ments of the database sequences (see Fig. 1). The alignment score
is based on the result of the comparison, which is either match, or
mismatch. If the sequences are mismatched, then one of three oper-
ations may be done: insertion, deletion, or substitution. Gaps may
be added to one or both sequences to make them close to each oth-
ers Each of these operations has a previously defined score.
For each alignment process between the query and the database se-
quences, an alignment score (AS) is computed as following:

AS = (# of matches × match score) (1)
+ (# of gaps × gap score)
+ (# of mismatches × mismatch score)

Usually, the match score is positive but the mismatch and the gap
scores are negative. Therefore, more number of matches increases
the alignment score but more number of gaps or mismatches de-
creases the alignment score. The scores of match, mismatch and
gap are given as input parameters.
The optimal number of matches, mismatches and gaps are com-
puted using the Needleman-Wunsch algorithm [1] or Smith-
Waterman [2] algorithm. In any algorithm, a scoring matrix of size
m x n (m being the length of the query sequence and n being that
of the database sequence) is first formed. The optimal score at each
matrix element is calculated by adding the current match score to
previously scored positions and subtracting gap penalties. Each ma-
trix element may have a positive, negative or 0 value according to
a score defined previously [1]. After the T matrix is filled up, to
determine an optimal alignment of the sequences from scoring ma-
trix, a method called trace back is used. The trace back keeps track
of the position in the scoring matrix that contributed to the highest
overall score found. The positions may align or may be next to a
gap, depending on the information in the trace back matrix. There
may exist multiple maximal alignments.
The time required to get the optimal alignment for two sequences
(the query sequence and just one sequence of the database) is pro-
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portional to the product of the lengths of the two sequences being
compared, i.e, n x m steps.

3. OUR PROPOSED SIMILARITY FUNCTIONS
As explained in Section 2, to measure the similarity using tradi-
tional methods, each element (code) in the query sequence has to
be compared with all elements of the database sequences. This will
take long time especially if the two sequences being compared are
too long as the computation time is based on the product of the
lengths of these two sequences. In this chapter, we propose our
new similarity measures, we call them similarity functions. These
functions are based on the mathematical parameters: frequency
and mean of the codes of each sequence in the database.
Considering that each sequence consists of different repeated
code, we introduce our first similarity function which is called
”Frequency Function”. It is based on the code frequency for
all sequences. The frequency is the number of repeated code
in the sequence. It is an indicator for the similarity between
two sequences. For instance, if the frequency of the code in a
sequence is close to its frequency in another sequence, this is
a good indicator that the two sequences might be similar. But
if it is far from each other, that means, the sequences are not similar.

Usually, the sequence has more than one different codes, to find
if there is similarity between two sequences each have different
codes, we compute the frequency difference score (FDS). The fre-
quency difference score is the sum of the absolute values of the
differences between the two sequences for each code type.
Mathematically, the frequency difference score (FDS) between the
query sequence ‘Q’ and the database sequence ‘D’ is defined as
following considering that both sequences have ‘n’ alphabet codes:

FDS = |Freq code 1(Q)− Freq code 1(D)|
+|Freq code 2(Q)− Freq code 2(D)|
+|Freq code 3(Q)− Freq code 3(D)|
+ . . . (2)
+ . . .

+|Freq code n(Q)− Freq code n(D)|

Where ”Freq code 1(Q)” is the frequency of code 1 in the query
sequence. ‘”Freq code 1(D)” is the frequency of code 1 in the
database sequence, etc.

To find the frequency for each code in the sequence, we scan the
database sequence starting from the first code till the last one using
number of counters equal to the different codes. One counter for
each code. Each counter is incremented by one when it meets new
code of the same type. By the end of the scanning, all counters
save their values beside the database sequence. The counter values
beside any sequence refer to the frequency of codes types for that
sequence.

Our first similarity function does not give always correct results.
For example, if the two sequences have the same (or close) number
of codes frequencies but the codes are distributed in different way
between the two sequences. In this case the frequency score is not
correct score to measure the similarity.
Therefore, we introduce our second similarity function which is
called ”Mean Function”. The mean (also known as average), is

Untitled
Q : AACAAGGACCATAGATTATGCAGGATCGCCACATGATTCGTATGCGTCAG
D1: TCTCCTTCCACAGTTTATTTCCTCGCTTCCTTTGCATCTAAACCTTTCTT
D2: TGTTTCCACTTCATGGGATATGACTCCATCACAATGAAAATGGGTCCAGT
D3: ACTGACCTAGCAGATGTGTGGAAAAGGAATCAGATCTTGATTCTTCTGGG
D4: CTCTCTGGAGGTACTGAGACAGGGTGCTGATGGGAAGGAGGGGAGCCTTT
D5: GTGGGAGGGTGAGATGTGAAGATGTGGGATGAACCTGGAATGAACGAATT

Fig. 2. Demonstration example for 5 database sequences (D1, D2, D3, D4,
D5) and query sequence (Q), each of 50 codes (nucleotides) length

obtained by dividing the sum of observed codes by the number of
observations. It is defined as following:

X̄ =

∑i=n

i=1
Xi

n

In our case, it is useful to identify the central location of the code
or its concentration. So, it is good indicator to show the similarity
between two sequences. For instance, if the mean of the code in a
sequence is close to its mean in another sequence, this is a good
indicator that the two sequences might be similar.

If the sequence has different codes, to find if there is similarity
between them, we compute the mean difference score (MDS). as
we defined the frequency difference score (FDS) .

Our second similarity function does not give always correct results.
For example, if the two sequences have the same (or close) mean
of each code but the number of codes is not the same in the two
sequences. In this case the ”Mean Score” is not correct score to
measure the similarity.
Therefore, we propose our third similarity function which is called
”Frequency+Mean Function”. In this score, we add the two
scores ”Frequency” and ”Mean” to measure the similarity between
two sequences. This score is good indicator for the similarity be-
cause it does not consider the number of codes in each sequence
only but also the concentration of the code in the sequence.

3.1 Demonstration Example
As a demonstration example, we assume that we have a DNA
database (illustrated in Fig. 2) which contains 5 sequences, each
of length 50 codes. The different alphabet codes in each sequence
are (A,C,G,T) 1.
Assuming we want to search this database to find the most closest
sequence to the query sequence (Q) (illustrated in Fig. 2).

Using our first similarity function ”Frequency Function”, we need
to find the frequency of the codes for the query and for each
database sequence as following:
Freq Q(A,C,G,T) = (16,11,12,11)

Freq D1(A,C,G,T) = (7,17,3,23)
Freq D2(A,C,G,T) = (14,11,10,15)
Freq D3(A,C,G,T) = (14,8,14,14)
Freq D4(A,C,G,T) = (10,8,21,11)
Freq D5(A,C,G,T) = (15,3,21,11)

To find the most closest sequence of the database to the query
sequence, we need to compute the frequency difference score

1the codes in our example are called nucleotides in Biology
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(FDS)for each sequence of the database.
FDS(D1) = |16− 7|+ |11− 17|+ |12− 3|+ |11− 23| = 36
FDS(D2) = |16− 14|+ |11− 11|+ |12− 10|+ |11− 15| = 8
FDS(D3) = |16− 14|+ |11− 8|+ |12− 14|+ |11− 14| = 10
FDS(D4) = |16− 10|+ |11− 8|+ |12− 21|+ |11− 11| = 18
FDS(D5) = |16− 15|+ |11− 3|+ |12− 21|+ |11− 11| = 18

From the previous computations, we may conclude that the
database sequence D2 and D3 which have the lowest difference
score based frequency, are the closest sequences to the query
sequence.

Using our second similarity function ”Mean Function”, we need
to find the Mean of the codes for the query and for each database
sequence as following:
Mean Q(A,C,G,T) = (18.6,25.6,27.0,29.0)

Mean D1(A,C,G,T) = (27.2,22.4,23.0,25.3)
Mean D2(A,C,G,T) = (28.2,23.1,27.6,19.8)
Mean D3(A,C,G,T) = (20.2,21.7,25.7,29.0)
Mean D4(A,C,G,T) = (25.2,19.3,26.5,23.5)
Mean D5(A,C,G,T) = (28.8,37.0,18.7,26.0)

To find the most closest sequence of the database to the query
sequence, we need to compute the mean difference score (MDS)
for each sequence of the database.
MDS(D1) = 19.4
MDS(D2) = 21.7
MDS(D3) = 6.9
MDS(D4) = 18.8
MDS(D5) = 32.7

From the previous computations, we may conclude that the
database sequence D3 and D4 which have the lowest difference
score based mean, are the closest sequences to the query sequence.

Using our third similarity function ”Frequency+Mean Function”,
we need to add the Frequency to the Mean of the codes for the
query and for each database sequence, then we need to compute
the Frequency+Mean difference score (FMDS) for each sequence
of the database.
FMDS(D1) = FDS(D1) + MDS(D1) = 55.4
FMDS(D2) = FDS(D2) + MDS(D2) = 29.7
FMDS(D3) = FDS(D3) + MDS(D3) = 16.9
FMDS(D4) = FDS(D4) + MDS(D4) = 36.8
FMDS(D5) = FDS(D5) + MDS(D5) = 50.7

From the previous computations, we may conclude that the
database sequence D3 which has the lowest difference score based
Frequency+Mean, are the closest sequence to the query sequence.

To check if our proposal is correct, we use the traditional methods,
which align the query (Q) with each sequence of the database,
separately, by applying Needleman-Wunsch Algorithm 5 times
(one for each database sequence). If we select The score of
match, mismatch, gap open, and gap extend to be +2, -3, -5, -2,
respectively, the alignment score (AS) of the query sequence with
each database sequence will be:
AS(D1) = −58
AS(D2) = −50
AS(D3) = −42
AS(D4) = −65

AS(D5) = −60

From the previous results, we find that the sequence ‘D3’ is the
most closest sequence to the query (Q) because it has the highest
alignment score. Then D2 comes next.
This results are very close to the results we got using our first and
second similarity functions but they are the same results as we got
using our third similarity function ”Frequency+Mean Function”.

4. SEQUENCING APPLICATIONS USING OUR
TECHNIQUE

In this section, we introduce our novel and efficient technique to
reduce the computation time required for sequencing applications.
Our technique uses our similarity functions we defined in Section 3
as a measure to compute the similarity between the query sequence
and all database sequences.

The database of the sequencing applications contains large num-
ber of sequences (as explained in Section 1). To align the query
sequence (Q) with each sequence of the database (D), we need to
apply Needlman-Wunsch algorithm on each pair of sequences (as
explained in Section 2).
Our technique is based on filtering the database such that the
database sequences which are not similar (not close) to the query
are excluded from the searching and the Neddleman-Wunsch
algorithm is applied only on the database sequences which are
similar (close) to the query.

Our technique selects one of the similarity functions and computes
the difference score of all different codes for each database
sequence. The difference scores are stored beside each related
sequence. This step may take long time as the database includes
large number of sequences, but it is done off-line, i.e., independent
from the comparison process. Therefore, it does not matter how
long time it takes because we do it only one time and prepare the
database for future comparison process.

Once a query sequence needs to be searched in (compared with) all
database sequences, our technique computes the similarity function
”Frequency Mean Score” of all different codes for it, first. Then, it
computes the difference score (DS) which is the sum of the abso-
lute values of the differences between the two sequences for each
code type (as explained in Section 3.1).
In the next step, our technique sorts the database sequences accord-
ing to their difference score (DS), such that the sequences which
have low difference scores (more close to the query sequence) are
shifted to the top of the database.
In the last step, our technique applies the Needleman-Wunsch Al-
gorithm only on the sequences, which have low difference scores
(selected in the previous step). The sequences which have high
difference scores will be excluded. This will provide the optimal
alignment in reasonable time because Needleman-Wunsch Algo-
rithm is applied only on a part of the database and not on whole of
it. The next section shows how fast is our technique in comparison
with the traditional methods by introducing its time complexity.

4.1 COMPLEXITY OF OUR TECHNIQUE
In case of traditional methods, when Needleman-Wunsch Al-
gorithm is used, the complexity is based on the two sequences
being compared and the number of sequences in the database. Let
m, n are the lengths of the query sequence Q and the database
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sequence D, respectively. As the Needleman-Wunsch Algorithm
is based on dynamic programing, then the complexity to perform
the alignment for one sequence is O(m × n). If s is the number
of sequences in the database, then the total complexity will be
O(m× n× s).

In case of our technique, assuming we have c different codes. To
compute the distribution of the c codes in the query sequence,
we need to scan the query along its length. If the length of the
query sequence is m, then we need m steps to perform the scan.
To compute the difference score (DS) between the query and one
database sequence, we need c steps to perform the subtraction for
the c codes and c− 1 steps to sum up the results. If s is the number
of sequences in the database, then we need ((2c − 1) × s) steps
to compute the difference score. To sort the s difference scores
from the smallest to the largest one using Heap sort or merge sort
algorithm, we need (s× logs) steps.
Assuming that 50% of the database sequences are selected to apply
Needleman- Wunsch Algorithm on them. To perform this step we
need m× n× s/2 steps.
Consequently, the total steps of our technique is
((m + (2c − 1) × s + s × logs) + (m × n × s/2)), i.e.,
the complexity is O(m× n× s/2).

For instance, if the length of the query m = 500, and the num-
ber of the database sequences s = 10000. Each sequence of the
database has length n = 500. To compare the query sequence with
the database sequences using the traditional method, we need: 500
x 500 x 10000 = 2500000000 steps (2500 Million steps). Using our
technique, and assuming that the data are codded with 4 different
codes, we need:
500 + (7 x 10000) + (10000 x log 10000)+ (500 x 500 x 5000) =
≈ 1250 Million steps.
Using our technique we save 50% of the time required to align the
sequences using the traditional methods.

5. EXPERIMENTAL RESULTS
In this section, we present the experimental results of our tech-
nique. To evaluate our technique, DNA sequences of the database
DNA Data Bank of Japan (ddbj) [19] are used. 100 sequences
of BCT and CON divisions are selected as case study. Each
sequence has length of 400 nucleotides. The accession numbers
of the selected sequences are presented in Fig. 3. We compare our
technique with the traditional methods which use the first widely
used program for optimal sequence alignment Needleman-Wunsch
Algorithm [20]. The score of match, mismatch, gap open, and gap
extend are selected to be +2, -3, 0, -4, respectively. As our database
has 100 sequences, 100 cases are tested considering different
query sequence for each case, i.e., in the first case, we consider the
first sequence as query sequence and the remaining sequences as
database. In the second case, we consider the second sequence as
query sequence and the remaining sequences as database, and so
on.

Figures 4, 5, and 6 shows the results for 100 cases when our
similarity functions, Frequency, Mean and Frequency+Mean are
used, respectively. In these figures, we define new parameter called
”Threshold”. The threshold for any test case is the number of sorted
sequences between the sequence which has the lowest difference
score (DS) and the highest alignment score (AS). In other words.
The threshold refers to the number of sequences we need to ap-
ply Needlman-Wunsch Algorithm on them (using our technique)
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Fig. 4. The threshold for each case of the 100 cases when the frequency
function is used
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Fig. 5. The threshold for each case of the 100 cases when the mean func-
tion is used

instead of applying it on the whole database sequences (using the
traditional methods).
In these figures, all 100 cases were tested to find the highest
alignment score and the lowest difference score for each case
(one case for each different query), and then the threshold were
computed. The threshold differs from one case to another one
based on the query sequence. In Figure 4, where our similarity
function ”Frequency” is used, the maximum threshold among all
other cases is ‘46’ which appears in the case number 40. This is
the worst case in which we need to apply Needleman-Wunsch
Algorithm on 46 sequences. In this figure, we notice that there
are many cases in which the threshold is ”0”, i.e., the sequence
which has the highest alignment score, has the minimum frequency
difference score.

When our similarity function ”Mean” is used (Figure 5), the max-
imum threshold (worst case) among all other cases is ‘78’ which
appears in the case number 17.
From the previous results, we notice that using any similarity
function alone (without combination) does not give good results.
The reason for that is the following: if the two sequences have the
same (or close) number of codes frequencies but the codes are
distributed in different way between the two sequences. In this
case, the frequency difference score (FDS) is not correct score to
measure the similarity. And also, if the two sequences have the
same (or close) Mean but the code frequency for each sequence
is different. In this case, the mean difference score (MDS) is not
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seq1-10 seq11-20 seq21-30 seq31-40 seq41-50 seq51-60 seq61-70 seq71-80 seq81-90 seq91-100

AB048424 AB233194 AB256443 AF083417 AF361720 AJ244499 AM082509 AY368739 AY721420 DQ193481

AB048476 AB256167 AB256455 AF092571 AF385397 AJ244503 AM083243 AY368750 AY660004 DQ193505

AB048512 AB256226 AB258189 AF135506 AF392312 AJ279078 AY081821 AY368768 AY721329 DQ383588

AB118108 AB256251 AB275608 AF184043 AF392313 AJ279147 AY270261 AY368825 AY721471 DQ485151

AB203159 AB256261 AB275613 AF202091 AJ000375 AJ334829 AY270800 AY368834 D32048 DQ654400

AB203551 AB256290 AB542708 AF228327 AJ132359 AJ336366 AY270823 AY368871 DQ181568 DQ654394

AB203561 AB256318 AF020672 AF232285 AJ133733 AJ428187 AY271174 AY368885 DQ193231 DQ654417

AB204837 AB256429 AF041005 AF255440 AJ236690 AJ509885 AY368704 AY370795 DQ193375 DQ654427

AB233178 AB256431 AF044558 AF275139 AJ237739 AJ575010 AY368712 AY721370 DQ193400 DQ654434

AB256340 AB256440 AF083410 AF282555 AJ238233 AM077987 AY368722 AY642038 DQ193459 DQ654441

Fig. 3. The accession numbers of our evaluation database which consists of 100 sequences, each of 400 codes (nucleotides) length
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Fig. 6. The threshold for each case of the 100 cases when the fre-
quency+mean function is used

correct score to measure the similarity.
Therefore, a combination of the two similarity functions ”Fre-
quency” and ”Mean” can give better results. This combination can
be done by adding the frequency to the mean, i.e., our similarity
function ”Frequency+Mean” is used (Figure 6). In this figure, the
maximum threshold (worst case) among all other cases becomes
‘40’ which appears in the case number 48. This means that
using the similarity function ”Frequency+Mean” to measure the
similarity shows the best results.
In other words, when our technique is applied only on the top 40%
of the database sequences, then the maximum AS, in any query
case, will be included in this top part. I.e., applying Needleman-
Wunsch Algorithm on this 40% of the database sequences will
be enough to find the maximum alignment score instead of
applying the algorithm on the whole database sequences as done
by traditional methods.

Using the combination similarity function ‘Frequency + Mean’
gives better results than using the ‘Frequency’ alone. Figure 7
shows the threshold improvement when the combination is used.
In this figure, 57 cases are improved (bars located in the positive
area). The maximum improvement is ‘33’ which appears in the
case number 4 (the threshold of this case is ‘33’ for similarity
function ‘Frequency’ and becomes ‘0’ for ‘Frequency + Mean’ ).
There are 24 cases where the threshold is ’0’ using the similarity
function ‘Frequency’ and they remain the same in the similarity
function ‘Frequency + Mean’. The remaining 19 cases are changed

10-

5-

0

5

10

15

20

25

30

35

1 4 7

1
0

1
3

1
6

1
9

2
2

2
5

2
8

3
1

3
4

3
7

4
0

4
3

4
6

4
9

5
2

5
5

5
8

6
1

6
4

6
7

7
0

7
3

7
6

7
9

8
2

8
5

8
8

9
1

9
4

9
7

1
0

0

T
h

re
sh

o
ld

 I
m

p
ro

ve
m

e
n

t 
 

Case ID 

 

Fig. 7. Improvement of the threshold when the similarity function ’Fre-
quency + Mean’ is used instead of the function ’Frequency’
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Fig. 8. The worst case threshold (the query is the sequence number 40)
when our similarity function ”Frequency” is used

negatively (bars located in the negative area).

Figures 8, and 9 show The worst case threshold when our sim-
ilarity functions ”Frequency” and ”Frequency+Mean” is used,
respectively. In these figures, the left y-axis shows the alignment
score (AS) using Needleman-Wunsch Algorithm. The right y-axis
shows the difference score (DS) of our technique. The x-axis
shows the ID of the database sequences.
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Fig. 9. The worst case threshold (the query is the sequence number 48)
when our similarity function ”Frequency+Mean” is used

The alignment score (AS) and the difference score (DS) in these
figures are computed for the query sequence (sequence number 40
in Fig. 8, and sequence number 48 in Fig. 9) with each sequence
of the database. Then, The sequences are sorted based on their dif-
ference score in ascending form, i.e. from the sequence which has
the smallest difference score to the one which has the highest score.

In Fig. 8, the frequency difference score (FDS) curve is marked
with a red label ”11, 14”. This label means that the minimum
frequency difference score ‘14’ occurs at the sequence ‘11’.
The alignment score (AS) curve is marked with a blue label
”42,-266”. It means that the maximum alignment score ‘-266’
occurs at the sequence ‘42’. The number of sorted sequences on
the x-axis which are located between the minimum frequency
difference score sequence and the maximum alignment sequence
(i.e. ”Threshold”) is 46.

In Fig. 9, the frequency+mean difference score (FMDS) curve
is marked with a red label ”50, 73”. This label means that the
minimum frequency+mean difference score ‘73’ occurs at the
sequence ‘50’. The alignment score (AS) curve is marked with a
blue label ”64,-225”. It means that the maximum alignment score
‘-225’ occurs at the sequence ‘64’. The ”Threshold” in this figure
is 40.

The common result in these two figures is, when the difference
score (DS) is increased across the sequences, the alignment score
(AS) is decreased (or vice versa). This result shows that the crite-
rion we use in our technique, for selecting the sequences to which
we may apply Needleman-Wunsch Algorithm on instead of the
whole database sequences, is correct. This is because the sequences
which have low difference scores have high alignment scores.
When our technique is applied on less than 40 sequences of the
database (i.e, more than 60 sequences are removed) and repeated
for 100 cases (each case with different query), then the result will
not be correct for all the 100 cases, i.e. the sequence which has the
lowest difference score is not the same as the sequence which has
highest similarity score. The results differ based on the number of
removed sequences from the database.
Fig. 10 shows the error rate resulted from removing sequences
from the database. The x-axis shows the number of removed
sequences from each database for 100 cases. The y-axis shows the
number of wrong cases resulted from removing sequences from the
database. For example, when 99 sequences are removed from the
database and our technique is repeated for the 100 cases, there will
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Fig. 10. Execution time comparison between traditional methods and our
technique
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Fig. 11. Execution time comparison between traditional methods and our
technique

be ‘61’ wrong cases and only ‘39’ cases will have correct results,
i.e., in each case of the 39 cases, the the sequence, which has the
lowest difference score, has the highest similarity score. When the
number of removed sequences decreases, the error rate will be
decreased and the number of correct cases will be increased. When
the number of removed sequences is ‘60’, i.e. only ‘40’ sequences
are remained in the database, there will be no wrong cases. This is
the best case in terms of the size of the database and the execution
time. Removing less number of sequences will not effect on the
result but negatively will increase the size of the database and
consequently the time required to analyze it.

Fig. 11 shows the effect of removing more sequences from the
database on the time required to find the highest similarity score
sequence. Using the traditional methods by applying Needleman-
Wunsch Algorithm on the whole database sequences, i.e. without
removing any sequence, needs 5.9 seconds to get the optimal so-
lution. When the the number of removed sequences increases, the
execution time will be reduced but the error rate will be increased
as shown in Fig. 10.
Fig. 12 shows comparison between the execution time of tra-
ditional methods and our technique. In this figure, The x-axis
shows the 100 cases (not all cases are shown for clarity purpose).
For each case, different query sequence used to be aligned with
the remaining sequences of the database. The y-axis shows the
execution time required for each case. The blue bar shows the
time for traditional methods which apply NW algorithm on whole
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Fig. 12. Execution time comparison between traditional methods and our
technique

database sequences while the red one shows the time for our
technique which applies NW algorithm on selected 40% of the
database sequences. The last bars show the average execution time
through all 100 cases.
In this figure, the execution time using our technique is 60%
improved in comparison to the execution time required using the
traditional methods. (the average time for traditional methods is
4.18 sec. while the average time for our technique is 1.7 sec.).
This result we got because we have excluded selected 60% of
the sequences from the process of applying Needleman-Wunsch
Algoritm by using our technique.

6. CONCLUSIONS
We have proposed new similarity functions to measure the similar-
ity between two sequences. And we have presented technique to
reduce computation time required for database sequencing appli-
cations. Our technique computes the difference score for each se-
quence of the database and then selects the sequences which have
the low scores. The alignment algorithms then are applied on these
selected sequences. Using our technique saves almost 60% of the
time required to perform the sequence comparing. This may open
new era in database comparison applications.
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