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ABSTRACT

In this paper, we employ extended tanh-function method and the
(%)—expansion method to find the exact traveling wave solutions
involving parameters of nonlinear evolution equation Modified Li-
ouville equation and comparison between this two method and an-
other method which have been solved it. When these parameters
are taken to be special values, the solitary wave solutions are de-
rived from the exact traveling wave solutions. It is shown that the
proposed methods provides a more powerful mathematical tool for
constructing exact traveling wave solutions for many other nonlin-
ear evolution equations.
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1. INTRODUCTION

The investigation of exact traveling wave solutions of nonlinear
partial differential equations (NLPDESs) plays an important role in
the analysis of complex physical phenomena. The NLPDEs ap-
pear in physical sciences, various scientific and engineering prob-
lems, such as, fluid mechanics, plasma physics, optical fibers, bi-
ology, solid state physics, chemical kinematics, chemical physics,
chemistry and many others. In recent years, to obtain exact trav-
eling wave solutions of NLPDEs, many effective and powerful
methods have been presented in the literature, such as the Back-
lund transformation [1]], The modified simple equation method [2],
the exp (¢(&))-expansion Method [3]], Extended Jacobian Ellip-
tic Function Expansion Method [4]], the Adomian decomposition
method [5], [6], the homotopy perturbation method (7], the F-
expansion method [8], the Hirota’s bilinear method [9], the exp-
function method [[10], the Cole-Hopf transformation [11], the gen-
eral projective Riccati equation method [12] and others [13]-[20]
and extended tanh - method [21]-[23]], ,the extended tanh method,

developed by Wazwaz [24]]-[25] and (% )- expansion method [26]]-
[28] and so on.

Nowaday, searching analytical solutions of the NLPDEs has be-
come more lucrative partly due to the accessibility computer sym-
bolic systems, like Maple, Mathematica, and Matlab, which help us
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to calculate the complicated and wearisome algebraic calculations
on computer.

The objective of this article is to apply the extended tanh-function
method and the (%)-expansion method for finding the exact trav-
eling wave solution of Modified Liouville equation which play an
important role in biology and mathematical physics.

The rest of this paper is organized as follows: In Section 2] we give
the description of the extended tanh-function method and the (% -
expansion method. In Section[3] we use this methods to find the ex-
act solutions of the nonlinear evolution equations and some figures
of it and make the comparison between two method. In Section 4]
conclusions are given.

2. DESCRIPTION OF METHOD
2.1 The extended tanh-function method

Consider the following nonlinear evolution equation
F(u7ut7um7utt7uzz7“-~) :07 (1)

where F is a polynomial in u(x,t) and its partial derivatives in
which the highest order derivatives and nonlinear terms are in-
volved. In the following,we give the main steps of this method [21]-
[25]]:

Step 1. We use the wave transformation

u(z,t) = u(f),

where c is a constant, to reduce Eq. ([)to the following ODE:

E=z—ct, @)

P(u, v, u" u",.....) =0, 3)

where P is a polynomial in u(§) and its total derivatives,while
_d’

=%} .

Step 2. Suppose that the solution of Eq. (3) has the form:

m

u(@) =ao+ Y (a:¢' +b; 67, @)

where a;, b; are constants to be determined, such that a,, # 0 or
b # 0 and ¢ satisfies the Riccati equation

¢ =b+¢? )



where b is a constant. Eq. (3) admits several types of solutions ac-
cording to :
Case 1. If b < 0, then

—V/=b tanh(vV/=b £),

Case 2. If b > 0, then
¢ = Vbtan(Vb ),

Case 3. If b = 0, then

or ¢ = —v/—bcoth(v/=b§). (6)

or ¢=—-Vb cot(\/gé). @)

1
=—-. 8

¢ 3 ®)
Step 3. Determine the positive integer m in Eq. (@) by balancing
the highest order derivatives and the nonlinear terms.
Step 4. Substitute Eq. (@) along Eq. () into Eq. (B) and collecting
all the terms of the same power ¢*, i = 0,+1,4+2,£3,.... and
equating them to zero, we obtain a system of algebraic equations,
which can be solved by Maple or Mathematica to get the values of
a; and bl
Step 5. substituting these values and the solutions of Eq. @) into
Eq. (@) we obtain the exact solutions of Eq. (T).

2.2 The <—) -expansion method

In (g ) -expansion method, the solution u (&) of Eq. (1) can be ex-
pressed as following:

M a\’
u(€) = ao + Zaj <G> , Gm #0, )
j=1

where ag and a;, for (j = 1,2, 3, ..., M), are constants to be deter-
mined later, G() satisfies a second order linear ordinary differen-
tial equation (LODE):

G + )G +uG =0, (10)

where A and y are arbitrary constants.The positive integer M can be
determined by considering the homogeneous balance between the
highest order derivatives and nonlinear terms appearing in Eq. (3).

Step 1. Substitute Eq. (9) along Eq. @) into Eq. (3) and collectmg

all the terms of the same power ( ) ,J =0,%£1,£2,4£3,.
equating them to zero, we obtain a system of algebralc equatlons
which can be solved by Maple or Mathematica to get the values of
aj, since a,, # 0.

The solution of Eq. (10| . ) depending on whether A2 — 4y > 0, A2 —
4p < 0, A2 — 4p = 0 are given as

Case 1. When A2 — 4, > 0

(€4 A2 —4 A
<G> =Y () (11)
Since,

M (Alsmh %\/ 4 5 +A2C05h VA2 —4p) >
L=

Case 2. When A2 — 4, < 0

<G> = L‘;_v (My) — 2. (12)

G
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Since,

Mo — —Alsin(%\/élu A2)E + Ajcos %\/4/1 A2)¢
: Alcos(%w/4 2)¢ + Agsin( %\/

Case 3. When \?

—4p =0

G\ A A
(c> S A 2 4

Step 2. Substituting these values and the solutions of Eq. (I0) into
Eq. (9) we obtain the exact solutions of Eq. (T).

3. APPLICATION

Here, we will apply the extended tanh-function method and the

(%)-expansion method described in Sec to find the exact trav-

eling wave solutions and then the solitary wave solutions for the
following nonlinear evolution equations.

3.1 Example 1: Modified Liouville equation using the
extended tanh-function method.
Now, let us consider the Modified Liouville equation [29].
aPUyy — Ugy + beP Y = 0, (14)
respectively, where a, 8 and b are non zero and arbitrary coeffi-
cients. Using the wave transformatlon u(z,t) = u(f), £ = kz+wt,
v = e?*, to reduce Eq. (14) to be in the form:
k%a? W%, k?a?  w?, ,
— —)v'v — — =W+’ =0. (15)
Balancing v"v and v® in Eq. yields, N + 2+ N = 3N =
N = 2. Consequently, we have the formal solution:
b1 b

v:a0+alq>+a2¢2+5+@, (16)
, b1b bab b
v :a1b+a1¢2+2a2¢b+2a2©3—é—bl 2%—2%
17
U”:2a1¢b—|—2a1¢‘3+2a2b2+8agb<1>2—|—6a2<1>4
b1 b? b1b bob? baob (18)
+27¢)3 +2€+67¢4 +SE+2b2

Substituting Eq. (T6) and its derivatives in Eq. (T3] and equating the
coefficient of different power’s of ¢ where i = 0, 1, 2, 3.
to zero, we get

2.2 2
) (k; J;) 022 + bay® — 0, 19)
2 2 2
4 <k - wﬁ) a102 +3b(11a22 =0, (20)

B
8 (k:Z;Z _ %2) a22b— (kQﬁQQ - 7) (80,2 b—|—a1 ) (21)
+b (3a0a22 +3a; ag) =0,

(k2a2 _ %) (10 a1bas + 2aia0 + 6 azby)

2,2 2
- (kﬁa - wﬂ) (Salbag - 4a2b1) (22)

+b (6 agaras + 3az’by + a1”) =0,




k?a? - LQ (8a2ba0+2a12b+8a2b2+2a22b2+2a1b1)

B B
— % — w;) (2a1%b — 8 asby + 4as%b? — 2a,by)
+b (6 ajasby + 3a02a2 + 3a0a12 + 3a22b2) =0,
(23)
(kzﬂ‘lz — %) (2ai1bag + 2 azb?a; + 10 axbb; +4aibs)
— (k;aQ - u;j) (4a2b2a1 — 8asbby — 4a1b2) (24)

+b (6 a0a2b1 + 6a1a2b2 + 3a02a1 + 3&12171) = 0,

<k2a2 — %2) (4 albbl + 16 azbbg + 2&2()2&0 + 2b2a0)

B
2.2 2
- (k; - %) (—4a1bb; — 16 asbby + a,%b? + b;%)
+b (6 aoaabs 4 3a12by + 6 agarby + 3azhi® + 1103) =0,

(25)

/N

k2a’ - %) (10 albbg + 4a2b2b1 + 2b1ba0 + 2b2b1)

B
kQ 2 2
ﬂa — a;j) (—8 a1b62 — 4a2b2b1 + 4b2b1) (26)

+b (6 agarby + 6 agbiby + 3a1by”® +3ao’by) =0,

TN

(k2ﬁa2 - %2) (8 a2b2b2 + 21)162111 =+ 8b2ba0 —+ 2b12b —|— 2b22)

k2a2 w2
,3 - F (—8 a2b2b2
—2b1b%aq + 2b12b + 4 by

+b (6 a1biby +3a0”by + 3aghs” + 3ashy?) =0,

(27)
(k;‘” - %) (2b1b%ag + 10 bybby + 6 byb2ay)
2.2 2
- (k; - ‘2) (—4bsb?a; + 8bybbs) (28)
+b (6 aobiby +3a1bo? + b13> =0,
k242 w? 2 2 2712
(E5° — ) (6baba0 + 80,2 +20,%2)
2.2 2
kﬂa B c;) (8b5% + b,%F) (29)
+b (3 b12b2 + 3(lob22) = O7
k202 2
4 ( ﬂ“ - “’B) byb2by + 3bbyby> = 0, (30)
2.2 2
2 <k; - “ﬁ> by2b? + bby® = 0. 31)
Eqs. (I9)- (31) yields
a=a,b=bk=k w=w,a =ay=5b; =0,
—2b (k2a? — w?) -2 (k?a? — w?)
by = —_———, g = .
B B
So that the solution be in the form:
9 (k202 — w2 9% (k2a2 — w2) 1
o (k*a* —w?)  2b(k%a w)ﬁ‘ (32)
B B ¢
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Let us now discuss the following case:
Case 1. If b < 0, then

-2 (k?a? — w?) 2b (k2a? — w?)
v = - 7, (33)
B B (—vV=btanh(vV=b¢))
for this
Ly (v) (34)
u= —In(v).
B
Case 2. If b > 0, then
-2 (k2?a? — w?)
V= —" (35)
B
for this
1
=-1 . 36
U 3 n(v) (36)
Case 3.If b = 0, then
—2(k%a® —w?)  2b(k2a® —w?)&?
= — , 37)
’ E E (
for this
1
=—1 . 38
u 3 n(v) (38)
3.2 Example 2. Modified Liouville equation using the

( % ) -expansion method.

Using the (%I)-expansion method, we have the formal solution of

Eq. (13):
2
G’ G’
v=ag+a <G> + ag (G) 5 (39)

V' = —aip — (—ar A+ 2a2) (£) — (a1 + 2a2)) (%)2

3
el
—2@2 (G> 5

(40)
V" = ai A+ 2a9p42 + (a1 A + 2a3p + 6aa\p) (%)
2
G/
2
+(3a1)\+4a2)\ +8CI/2,U/) 6 ) (41)

a\’ a\’
+(2a1+10a2)\) (G) +6(12 (G) .

Substituting Eq. (39) and its derivatives in Eq. (Z) and equating the
coefficient of different power’s of (%) to zero, we get

2.2 2
2 (k; - %) as? + bas® = 0, (42)

2.2 2
(’C a _“) (4aras +2a5°)) +3baras® =0,  (43)

(ki}uz - %2) (5 al)\ag + 6&2(10 + a12)

(44)
+b (3 a0a22 + 3(112a2) = 0,



(k2"2 — “’;) (2aipas + aiX2ay +10asXag — 2 az%p A
+a1’X+2apa1) + b (6 apa1ae + a13) =0,

45)
<k2;2 _ %2) (BaiAag + 8azpag +4das\2aq
—ai A prag — 2 ax’p?) (46)
+b (3 (102(12 -+ 3(100,12) = 0’
(’“2‘12 B w_2> (2a1pao — ar®Ap+ arN’ag — 2azp’ay
B B @7)
+6 aQ/L/\a/O) + 3ba02a1 = 0’
k202 w2 (a1 A 2 20— ai202) + baad —
B 3 1Apag + 2aspag — a1’ p?) + bag® =
(48)
Egs. (#2)- @) yields
p (K?a? - w?) A (K2a? — w?)
=2——"2 g =(-2"—"F—"=
ag b,B , a1 bIB ,
k202 — w2
= —2—
Qo bIB
Let us now discuss the following case:
Case 1. When A\? — 4 > 0
24202 242_42
v= 2t ) gk L ()
bB b3
o (Pa* —w?) s (49)
2y (M)
for this
1
u=—In(v (50)
3 (v)
Case 2. When A2 — 44 < 0
2a2-w? 25242
v= _2M(k b6 L <2A(k b8 )) (My)
k?a? — w? 5 (51
bﬂ ( 2) )
for this
oy (v) (52)
u = —In(v).
B
Case 3. When A2 — 44 =0
L pnled) (AR
v=-2 8 —(2 b3 )(A1+342§_§)
9 k%*a? — w? Ay A 2 (53)
b3 A+ A6 2 ’
for this
Ly (v) (54)
u = —In(v).
B

3.3 Comparison

The extended tanh-function method is reliable and effective and
gives more solutions .The applied method will be used in further
works to establish more entirely new solutions for other kinds of
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[Eq.

[Eq.

Fig. 1. The solitary wave solutions of Egs. (34), (36)

nonlinear equations.

The (%)-expansion method is direct, concise, powerful, effec-
tive and convenient technique and can be used for all integrable
and non-integrable nonlinear models. Performance of this method
is reliable, simple and gives many new solutions. It is also a stan-
dard and computerization method which allows us to solve com-
plicated nonlinear evolution equations in diverse areas of science.
Moreover, this method is capable of greatly minimizing the size of
computational work compared to other existing techniques.
Comparison between our results obtained in the present article
with the well-known results obtained by other authors using
different methods as follows: Our results of Modified Liouville
equation are new and different from those obtained in [29].

From the above it is possible concluded the following : we have
arrived at the observation that these exact solutions are equivalent.

4. CONCLUSION
Gy,

The extended tanh-function method and the ( & ) expansion
method has been applied in this paper to find the exact traveling



[Eq.

[Eq.

[Eq.

54

Fig. 2. The solitary wave solutions of Egs. (50), and (34)
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wave solutions and the solitary wave solutions of Modified Liou-
ville equation and Fig. () and Fig. () show that. Making the com-
parison between two methods and others methods and clarify the
advantages and disadvantages of each of these methods. The sim-
ilarities and differences between both of them. To our knowledge,
these solutions have not been reported in previous literature’s. All
of our results have been verified with Maple 16 by putting them
back into the original equation. The transformation formula were
used for every type of non linearity to show that our analysis is ap-
plicable to a variety of nonlinear problems. We have emphasized
in this work that this relevant transformation is powerful and can
be effectively used to discuss nonlinear evolution equations and re-
lated models in scientific fields. The availability of computer sys-
tems like Mathematica or Maple facilitates the tedious algebraic
calculations.
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