
International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 6, January 2015

30

An Approach for Designing and Implementing Eager and

lazy Data Replication

Mohamed Osman Ali Hegazi
Department of Computer Science, College of Computer Engineering and Sciences, Salman Bin Abdulaziz

University, Alkharj, Saudi Arabia
Department of Computer Science, Faculty of Computer Science and Information Technology, Alzaeim

Alazhari University, Khartoum North, Sudan

ABSTRACT

Replication can be a success factor in database systems as

well as perhaps being one of the needs of proliferation,

expansion, and the rapid progress of databases and distributed

technology, despite there being a strong belief among

database designers that most existing solutions are not feasible

due to their complexity, poor performance and lack of

scalability. This paper provides an approach that can help

designers in implementing eager and lazy replication

mechanisms. The proposed approach contains two phases: In

the first phase, the database is designed to have indicator

fields that can carry the update status, and to consider the

replication concepts by classifying, categorizing and

determining the kinds and locations of data objects; in the

second phase, the updating methodology is provided to make

the implementation of eager and lazy replication mechanisms

easier and reliable.

General Terms
Computer Science, Database, Distributed Database System.

Keywords
Replication, database, eager replication, lazy replication,

distributed database.

1. INTRODUCTION

Replication is the storing of copies of the same data in more

than one location (site) and then consistently updating these

copies. There are two basic parameters to be selected when

designing replication data: when and where. According to

GRAY, J., HELLAND, P., O’NEIL, P., AND SHASHA, D.

[4] these mechanisms can be categorized according to when

updates are propagated and which copies can be updated [5].

Controlling the updating of replicated data is undertaken by

two mechanisms, eager and lazy. In eager applications,

updating can be carried out within the transaction boundaries,

while in lazy replication updating can be undertaken outside

the transaction boundaries.

Data replication can be one of the success factors for database

systems because it can improve performance by eliminating

remote access and it can improve fault tolerance by increasing

availability. In addition, data replication is needed to provide

information sharing for the continuity of business,

organizations, and applications. Data replication can also be

one of the factors serving the technology revolution and the

explosion in data growth by providing data everywhere.

A large number of existing protocols provide data consistency

and fault tolerance in data replication but, according to

Kemme and Alonso [5] few of these ideas have ever been

used in commercial products. There is a strong belief among

database designers that most existing solutions are not feasible

due to their complexity, poor performance and lack of

scalability. As a result, current products adopt a very

pragmatic approach: copies are not kept consistent, updates

are often centralized, and solving inconsistencies is left to the

user [5].

This paper presents an approach that can help the designer to

design and implement a consistent replication database and

make the implementation of eager and lazy updating

mechanisms easier and more reliable.

2. RELATED WORKS
Much scientific research has dealt with providing solutions for

database replication, with most of it dealing with developing

solutions to provide consistency, the ability to serialize and/or

fault tolerance in replicated data by providing functions or

protocols for controlling the process for replicated data, for

example [12], [5],[6], [2] and [7]. However, most of these

solutions still work on controlling the process at the

middleware level; they do not provide a solution at the design

and implementation levels. Even those which have tried to

obtain a solution at the design level or those that tried to

implement the replication technique have not provided a

standard solution that can help the designer in designing

consistent replication data. Most of the work is concerned

with special kinds of systems or environments, specific

projects or web applications, for example [11], [8] and [10]. In

the context of commercial databases, we found that most of

the modern software products, such as PostgreSQL, MySQL

and Microsoft SQL Server, use asymmetric replication at the

middleware level stage by providing functions for saving the

modifications using transactions to carry this out, and then use

these amendments as inputs to the rest of the copies (see [3]).

Oracle works with the same idea, but through a special

protocol (replication protocol) instead of functions in

Oracle10g, or through Materialized View and administrative

tools in Oracle advance replications Oracle11g [9].

The contribution of this paper is in providing a simple and

consistent method to design and implement replication

mechanisms. The approach presented provides a solution for

the complexity of replication design, and provides an

implementation methodology that can lead to obtaining

feasible and reliable systems.

3. THE PROPOSED APPROACH
The proposed approach contains two phases. In the first phase,

the database is designed to have indicator fields that can carry

the update status, and also to consider the replication concepts

by classifying, categorizing and determining the kinds and

locations of data objects. In the second phase, an updating

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 6, January 2015

31

methodology is provided to facilitate the implementation of

eager and lazy replication mechanisms.

3.1 The Design Phase
The design algorithm:

1- First: Create indicator fields for each replicated data

(updated flag and counter).These fields will be used to

carry the update situations.

2- Second: Determine the location. The location of the

replicated data is determined according to the following

(Figure 1):

a. The location of the author system (or user).

The place in which the data are created or

initialized.

b. The locations of the copies. The other places

in which the data are replicated.

3- Third: Categorize the data. The replicated data is

categorized as follows:

a. static data(not frequently updated),

b. data updated in one place and read only in

other places,

c. frequently updated data or data that is updated

from many locations.

Figure 1: The design concept for the proposed approach

4- Fourth: Apply the data replication constraints. If the

replicated data needs to be frequently updated or

updated from many locations, then one of the following

solutions will be used:

a. either add additional fields to carry a lock flag,

and then keep the master data in a global

place.

b. or use linking techniques to link the data on

all sites; Figure 2 shows an example of linking

global or remote data inside Microsoft Access.

Figure 2: An example of linking global or remote

data inside local data.

3.2 The Updating Phase
3.2.1 Eager Replication
This approach provides three ways of implementing eager

replication:

3.2.1.1 Eager replication algorithm for

infrequently updated data or for data that is

updated from only one location
First: Each replicated data has master data in the system’s

database. Each master data has an indicator field (counter) in

which the last update is recorded.

Second: At each location, where these data are replicated, the

indicator field (counter field) is then checked by the user

transaction and compared with the field of the main system

data. If these fields are different then the transaction updates

the local data before proceeding. Otherwise, the user

transaction goes ahead without any updating to the local data.

In both cases the transaction finally updates the master data as

seen in Figure 3.

3.2.1.2 Eager replication algorithm for frequently

updated data or data that is updated from many

locations
First: Each replicated data has master data in the system’s

database. Each master data has an indicator field to carry the

last update counter and a flag field to lock the data.

Second: A copy of the replicated data is stored in a global

location (primary copy approach).

Third: At each location, where these data are replicated, the

local transaction first checks the lock flag on the global data

Master data

FC

Replicated

data

Replicated

data

FC FC

Replicated

data

FC

Author data

FC

Data replicated on different sites

if master data IndicatorField> the local data

IndicatorField

then overwrite the local data

end if

Do Local transactions & operations

Update master data

Master IndicatorField= Master IndicatorField +1

Local IndicatorField= Master IndicatorField

Figure 3: Eager replication algorithm for

infrequently updated replicated data

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 6, January 2015

32

(master data); if the flag is on then the transaction waits

otherwise the transaction changes the field to on and compares

the indicator fields (updated count field); if there is no

difference between the local field value and the global field

value then the transaction will carry out the update process,

otherwise the transaction will update this local data first (by

overwriting this local data) and then carry out the updating

process, see Figure 4.

3.2.1.3 Using the linking approach
Another way of applying eager replication for all kinds of data

is by using linking techniques, by which all data will be linked

on every site, then all the local systems will work directly on

the main system data through the link layer and any updating

for these data will be effective on all locations.

Linking can be applied either by using one of the DBMS

linking techniques such as import and export (example Figure

2) or by using connection tolls or functions such as

programming language code.

3.2.2 Lazy replication
According to our proposed approach, lazy replication can be

implemented using the following algorithm:

1- After the master system has finished updating the

master copy it then increments the indicator field

(the account field).

2- Any process on replicated sites compares the

indicator field with the master data field; if the

value of its field is less than the value of the master

data field it then overwrites its local copy before

undertaking any transaction, otherwise it proceeds

with its transaction without making any changes to

the replica data.

3- Usually in the lazy approach, the replicated data is

updated from one site (master system). But if any

site needs to do any updating for the replicated

data then it must first check if its local copy is up-

to-date using step 2 above, after that it can update

the global replica data using the following

algorithm:

 First update the local data.

 Once the local updating is finished

overwrite the master copy.

 Increment the master copy indicator field

and let the local field equal that field.

3.2.3 Join replications
According to our proposed approach, we can join the two

replication techniques by using the following algorithm:

(1) Once the author’s system has finished the

transaction on the data, it then updates the main data

located in the global area.

(2) Any one of the other subsystems that needs to use

this data goes directly to the global area and

overwrites its local data (bringing this data onto its

machine). There is no need for the queries to check

whether or not the data is updated.

The join algorithm in this approach is for the kind of data

that does not need to be frequently updated.

4. RESULTS AND DISCUSSIONS
This approach provides a mechanism that can facilitate the

implementation of replication databases for the designer;

hence it can be applied at the design stage without restrictions

on the kind of DBMS, the number of copies, or/and the

locations of the replica data. Therefore, it may be suitable for

developing large database systems or unifying a heterogonous

database system.

The approach supports both eager and lazy replication

mechanisms. In addition, it can join these two techniques.

This provides more flexibility; hence we can apply the most

suitable technique to the particular data. In practice, the lazy

mechanism is easily implemented for infrequently updated

data, while eager replication may be more suited to data

needing frequent updating; in addition, joining these two

replication techniques can be easily implemented and also

helps in some operations, such as coordination among faraway

systems.

The updating techniques presented in this paper provide an

approach that deals with one master table and the transaction

either, in lazy replication, uses a primary copy approach in

which all updates are first performed on a primary copy (the

master data) and are then propagated to the secondary copies

by overwriting the existing copies, or by just updating the

corresponding fields, or, in eager replication, uses the

updating everywhere method, in which the user’s transaction

updates all copies (everywhere) of the data immediately after

the updating of the master data is completed.

The approach presented in this paper provides a different

concept for applying the replication mechanism, hence most

of the scientific work focuses on providing a solution at the

middle layer, or providing a solution for a special

environment. For example, this approach provides a solution

that can help the designer implement replicated data starting

from the conceptual design through to the implementation and

handling of the updating of the replicated data.

Despite most DBMS providing a mechanism for

implementing replication, its tools needs to be used by the

system designer, besides most of these tools are functions or

protocols working mainly to maintain the consistency of the

replica data; for example, Oracle stream replications manage

transaction replication and SQL Server is used in transaction

replication for the same purpose and both of them have

snapshot replication for merging the replication or for

capturing the replication process (or Materialized View on

Oracle Advance [9]) [1]. The approach presented in this

paper, in addition to providing a solution starting from the

design level, also provides a mechanism that can make use of

these tools in such a way that it is easy for the designer to

If LockFlag on then do waiting loop until LockFlag off

end if

LockFlag=on

if master data IndicatorField> the local data

IndicatorField

then overwrite the local data

end if

Do Local transactions & operations

Update master data

Master IndicatorField= Master IndicatorField +1

Local IndicatorField= Master IndicatorField

LockFlag=off

Figure 4: Eager replication algorithm for frequently

updated replicated data or for data that are

updated from any replicated site

International Journal of Computer Applications (0975 – 8887)

Volume 110 – No. 6, January 2015

33

implement data replication. Also, this approach can work on

integrated data and develop replication of heterogonous

database systems which cannot be provided by the tools of

one kind of DBMS.

5. REFERENCES
[1] Ashok, G. & Randal, P. S. (2011) SQL Server

replication: Providing high availability using database

mirroring. © 2011 Microsoft Corporation.

[2] Cecchet, E.,Ailamaki, A., & Candea,

G.(2008)Middleware-based database replication: The

gaps between theory and practice. SIGMOD '08

Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data.

[3] GORDA, deliverable D1.1 report (2006) State of the art

in database replication. GORDA is specific targeted

research Project Group for Open Replication of

Database. Supported by the European Community under

the Sixth European Union Framework Programs for

Research and Technological Development Coordinator:

University of Minho

[4] GRAY, J., HELLAND, P., O’NEIL, P., & SHASHA, D.

(1996). The dangers of replication and a solution.

SIGMOD '96 Proceedings of the 1996 ACM SIGMOD

international conference on Management of data. Pages

173-182. ACM New York, NY, USA

[5] Kemme, B. & Alonso, G. (2000) A new approach to

developing and implementing eager database replication

protocols.ACM Transactions on Database Systems,

25(3), p. 333.

[6] Manassiev, K. & Amza, C. (2005) Scalable database

replication through dynamic multiversioning. CASCON

'05: Proceedings of the 2005 conference of the Centre for

Advanced Studies on Collaborative Research, IBM

Press, October 2005.

[7] Milan-Franco1, J. M., Jim´enez-Peris, R.,Pati˜no-

Mart´ınez, M., &Kemme, B. (2004) Adaptive

middleware for data replication. LNCS 3231, IFIP

International Federation for Information Processing, pp.

175–194.

[8] Nithiyalakshmi, P. & Kumar,V. U. (2014)Data

consistency for cooperative caching in mobile

environments. International Journal of Science and

Research (IJSR) 3(1), January 2014.

[9] Oracle(2008) Oracle database advanced replication, 11g

Release 1 (11.1) B28326-03, 2008, Oracle. Primary

Author: Randy Urbano

[10] Plattner, C.& Alonso, G. (2004) Scalable replication for

transactional web applications. In Proc. of Middleware,

2004.

[11] Sivasubramanian. Swaminathan, Alonso. Gustavo ,

Pierre. Guillaume, and Steen. Maarten van. 2005.

GlobeDB: Autonomic Data Replication for Web

Applications. International World Wide Web Conference

(WWW 2005), May, 2005, Chiba, Japan. ACM

[12] Sleit. Azzam, AlMobaideen. Wesam, Al-Areqi Samih,

and Yahya. Abdulaziz. (2007) A dynamic object

fragmentation and replication algorithm in distributed

database systems. American Journal of Applied Sciences

4 (8): pp.613–618.

IJCATM : www.ijcaonline.org

