Fuzzy Medial Ideals of BCI-Algebras with Interval-Valued Membership Function

S. M. Mostafa, A. E. Radwan, A. M. Menshawy, R. Ghanem
Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

ABSTRACT
In this paper the notion of interval–valued Fuzzy medial-ideals (briefly i-v fuzzy medial -ideal) in BCI-algebras is introduced. Several theorems are stated and proved. The image and pre-image of interval–valued fuzzy medial -ideals are defined and how the homomorphic images and pre-images of interval–valued fuzzy medial -ideals become interval–valued fuzzy medial -ideals in BCI-algebras is studied as well.

Keywords
Fuzzy medial-ideals- interval valued fuzzy medial-ideals

AMS Subject Classification: 06F35, 03G25, 08A72

1. INTRODUCTION
The notion of BCK-algebras was proposed by Iseki[2,3,5]in 1966. In [4], Isei introduced the notion of a BCI-algebra which is a generalization of BCK-algebra . Since then numerous mathematical papers have been written investigating the algebraic properties of the BCK / BCI-algebras and their relationship with other structures including lattices and Boolean algebras. There is a great deal of literature which has been produced on the theory of BCK/BCI-algebras, in particular, emphasis seems to have been put on the ideal theory of BCK/BCI-algebras. For the general development of BCK/BCI-algebras the ideal theory plays an important role. The concept of fuzzy sets was first introduced by Zadeh [10]. From that time, the theory of fuzzy sets which has been developed in many directions and found applications in a wide variety of fields. In 1991, Xi [9] applied the concept of fuzzy sets to BCI, BCK, MV-algebras. The ideal theory and its fuzzification play an important role. In [7] J. Meng and Y.B.Jun studied medial BCI-algebras. In [8] S.M.Mostafa, Y.B.Jun and EL-menshawy introduce the notion of medial ideals in BCI-algebras, they state the fuzzification of medial ideals and investigate its properties in [11]. Zadeh made an extension of the concept of fuzzy set by an interval-valued fuzzy set (i.e., a fuzzy set with an interval-valued membership function). In [1], Biswas defined interval-valued fuzzy subgroups and investigated some elementary properties.

In this paper, we use the notion of interval-valued fuzzy set by Zadeh to introduce the concept of an interval-valued fuzzy medial-ideal of BCI-algebras. Then we state and prove some theorems which determine the relationship between these concepts and BCI-sub-algebras. We give relations between interval–valued fuzzy subalgebras and interval–valued fuzzy medial- ideals. Moreover, We prove that every interval–valued fuzzy medial -ideal of a BCI-algebra X can be realized as medial -ideal of X. In connection with the notion of homomorphism, we study how the images and pre-images of interval–valued fuzzy medial -ideal become interval–valued fuzzy medial –ideal in BCI-algebra .

2. PRELIMINARIES AND NOTATIONS
In this section , we review some definitions and properties that will be useful in our results.

Definition 2.1. [4] An algebraic system $(X, *, 0)$ of type $(2, 0)$ is called a BCI-algebra if it satisfying the following conditions:

(BCI-1) $((x * y) * (x * z)) * (z * y) = 0,$
(BCI-2) $(x * (x * y)) * y = 0,$
(BCI-3) $x * x = 0,$
(BCI-4) $x * y = 0$ and $y * x = 0$ imply $x = y$.

For all x, y and $z \in X$. In a BCI-algebra X, we can define a partial ordering \preceq by $x \preceq y$ if and only if $x * y = 0$.

In what follows, X will denote a BCI-algebra unless otherwise specified.

Definition 2.2.[7] A BCI-algebra $(X, *, 0)$ of type $(2, 0)$ is called a medial BCI-algebra if it satisfying the following condition:

$$(x * y) * (z * u) = (x * z) * (y * u)$$

for all x, y, z and $u \in X$.

Lemma 2.3.[7]. An algebra $(X, *, 0)$ of type $(2, 0)$ is a medial BCI-algebra if and only if it satisfies the following conditions:

(i) $x * (y * z) = z * (y * x)$
(ii) $x * 0 = x$
(iii) $x * x = 0$.

Lemma 2.4.[7]. In a medial BCI-algebra X, the following holds:

$x * (x * y) = y$, for all $x, y \in X$.
Lemma 2.5. Let X be a medial BCI-algebra, then
\[0 \ast (y \ast x) = x \ast y, \] for all \(x, y \in X \).

Proof. It is cleared.

Definition 2.6. A non empty subset \(S \) of a medial BCI-algebra X is said to be medial sub-algebra of X, if \(x \ast y \in S \), for all \(x, y \in S \).

Definition 2.7.[4]. A non-empty subset I of a BCI-algebra X is said to be a BCI-ideal of X if it satisfies:

\[(1) \quad 0 \in I, \]
\[(2) \quad x \ast y \in I \text{ and } y \in I \text{ implies } x \in I \text{ for all } x, y \in X. \]

Definition 2.8.[8] A non-empty subset \(M \) of a BCI-algebra X is said to be a medial ideal of X if it satisfies:

\[(M1) \quad 0 \in M, \]
\[(M2) \quad z \ast (y \ast x) \in M \text{ and } y \ast z \in M \text{ imply } x \in M \text{ for all } x, y \in X. \]

Proposition 2.9.[8]. Any medial ideal of a BCI-algebra must be a BCI-ideal but the converse is not true.

Proposition 2.10. Any BCI-ideal of a medial BCI-algebra is a medial ideal.

Proof. It is cleared.

Example 2.11. Let \(X = \{0, 1, 2, 3, 4, 5\} \) be a set with a binary operation \(\ast \) defined by the following table:

<table>
<thead>
<tr>
<th>*</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Using the algorithms in Appendix B, we can prove that
\((X, \ast, 0) \) is a BCI-algebra and
\(A = \{0, 1, 2, 3\} \) is a medial-ideal of X.

Definition 3.1.[6]. Let \(\mu \) be a fuzzy set on a BCI-algebra X, then \(\mu \) is called a fuzzy BCI-subalgebra of X if:

\[(FS1) \quad \mu(x \ast y) \geq \min \{ \mu(x), \mu(y) \}, \text{ for all } x, y \in X. \]

Definition 3.2.[6]. Let X be a BCI-algebra, a fuzzy set \(\mu \) in X is called a fuzzy BCI-ideal of X if it satisfies:

\[(FI1) \quad \mu(0) \geq \mu(x), \]
\[(FI2) \quad \mu(x) \geq \min \{ \mu(x \ast y), \mu(y) \}, \text{ for all } x, y, z \in X. \]

Definition 3.3.[8]. Let X be a medial BCI-algebra. A fuzzy set \(\mu \) in X is called a fuzzy medial ideal of X if it satisfies:

\[(FM1) \quad \mu(0) \geq \mu(x), \]
\[(FM2) \quad \mu(x) \geq \min \{ \mu(z \ast (y \ast x)), \mu(y \ast z) \}, \text{ for all } x, y, z \in X. \]

Lemma 3.4: Any fuzzy medial-ideal of a BCI-algebra is a fuzzy BCI-ideal of X.

Proof. It is cleared.

Definition 3.5.[6]. Let \(f \) be a mapping from the set \(X \) to a set \(Y \). If \(\mu \) is a fuzzy subset of \(X \), then the fuzzy subset \(B \) of \(Y \) defined by

\[f(\mu)(y) = B(y) = \begin{cases} \sup_{x \in f^{-1}(y)} \mu(x), & \text{if } f^{-1}(y) \neq \emptyset \\ 0, & \text{otherwise} \end{cases} \]

is called the image of \(\mu \) under \(f \). Similarly, if \(B \) is a fuzzy subset of \(Y \), then the fuzzy subset defined by \(\mu(x) = B(f(x)) \) for all \(x \in X \), is said to be the preimage of \(B \) under \(f \).

Definition 3.6.[6]. Let \((X, \ast, 0) \) and \((Y, \ast', 0') \) be BCI-algebras. A mapping \(f : X \rightarrow Y \) is said to be a homomorphism if \(f(x \ast y) = f(x) \ast' f(y) \) for all \(x, y \in X \).

3. THE IMAGE AND THE PRE-IMAGE OF FUSZ MEDIAL IDEAL UNDER HOMOMORPHISM OF BCI-ALGEBRAS

Theorem 3.7. An into homomorphic preimage of a fuzzy medial-ideal is also fuzzy medial-ideal.

Proof. Let \(f : X \rightarrow X' \) be an into homomorphism of BCI-algebras, B a fuzzy medial-ideal of \(X' \) and \(\mu \) the preimage of B under f, then \(B(f(x)) = \mu(x) \). For all \(x \in X \), (FM1) hold, since

\[\mu(0) = B(f(0)) \geq B(f(x)) = \mu(x). \]

Let \(x, y, z \in X \) then
\[\mu(x) = B(f(x)) \geq \min \{ B(f((z \ast (y \ast x))) \ast (f(x))) \}, B(f(y) \ast f(z)) \]
\[= \min \{ B(f((z \ast (y \ast x))), B(f((y \ast z)))) \} \]
\[= \min \{ \mu(z \ast (y \ast x)), \mu(y \ast z) \}. \]

Hence
\[\mu(x) = B(f(x)) = (B \ast f)(x) \] is a fuzzy medial-ideal of X. The proof is completed.
Theorem 3.8. Let $f : X \rightarrow Y$ be a homomorphism between BCI-algebras X and Y. For every fuzzy medial-ideal μ in X, $f(\mu)$ is a fuzzy medial-ideal of Y.

Proof. By definition, $B(y') = f(\mu)(y') := \sup_{x \in f^{-1}(y')} \mu(x)$ for all $y' \in Y$ and $\sup \phi := 0$.

We have to prove that $B(x') \geq \min \{ B((z'*(y'*X)), B(y'*z') \}$, for all $x', y', z' \in Y$.

(i) Let $f : X \rightarrow Y$ be an onto homomorphism of BCI-algebras. Let μ be a fuzzy medial-ideal of X with sup property and B the image of μ under f. Since μ is a fuzzy medial-ideal of X, we have $\mu(0) \geq \mu(x)$, for all $x \in X$.

Note that $0 \in f^{-1}(0')$, where 0 and $0'$ are the zeroes of X and Y respectively. Thus, $B(0') = \sup_{x \in f^{-1}(0')} \mu(t) = \mu(0) \geq \mu(x)$, for all $x \in X$, which implies that $B(0') \geq \sup_{x \in f^{-1}(x')} \mu(t) = B(x')$, for any $x' \in Y$.

For any $x', y', z' \in Y$, let $z_0 \in f^{-1}(z')$, $y_0 \in f^{-1}(y')$, and $x_0 \in f^{-1}(x')$, be such that $\mu(x_0) = \sup_{z \in f^{-1}(x')} \mu(t)$ and $\mu(y_0) = \sup_{y \in f^{-1}(y')} \mu(t)$, $\mu(z_0) = \sup_{z \in f^{-1}(z')} \mu(t)$, hence

$$\mu((z_0*(y_0*x_0)) = B(f((z_0*(y_0*x_0))) = B(B((z'*y'x'))) = \sup_{(z''y''x'') \in f^{-1}(z'y'x')} \mu((z_0*(y_0*x_0)))$$

And then

$$B(x') = \sup_{z \in f^{-1}(x')} \mu(t) = \mu(x_0) \geq \min \{ \sup_{z \in f^{-1}(x')} \mu(t), \sup_{y \in f^{-1}(y')} \mu(t) \} = \min \{ \sup_{z \in f^{-1}(z')} \mu(t), \sup_{y \in f^{-1}(y')} \mu(t) \} = \min \{ B((z'*y'x')), B(y'*z') \}$$

Hence B is a fuzzy medial-ideal of Y.

(ii) If f is not onto. For every $x' \in Y$, we define $X_{x'} := f^{-1}(x')$. Since f is a homomorphism, we have $(X_{x'}(X_{y'}*X_{z'})) \subseteq X_{(z'*y'*x')}$. Hence $B(x') \geq 0 = \min \{ B((z'^*y'^x'), B(y'^z') \}$.

for all $x', y', z' \in Y$. Let $x', y', z' \in Y$ be an arbitrary given. If $z'*y'*x') \notin \text{Im}(f) = f(X)$, then by definition $B(z'^*(y'^*x')) = 0$. But if $z'^*(y'^*x')) \notin f(X)$ i.e. $X_{(z'^*(y'^*x'))} = \phi$, then by (*) at least one of x', y' and $z' \notin f(X)$, and hence $B(x') \geq 0 = \min \{ B((z'^*y'^*x'), B(y'^z') \}$. This completes the proof.

4. INTERVAL-VALUED FUZZY MEDIAL-IDEAL OF BCI-ALGEBRAS

In this section, we begin with the concepts of interval-valued fuzzy sets.

An interval number is $\tilde{a} = [a^L, a^U]$, where $0 \leq a^L \leq a^U \leq 1$. Let $D[0,1]$ denote the family of all closed subintervals of $[0,1]$, i.e.,

$$D[0,1] = \{ \tilde{a} = [a^L, a^U] : a^L \leq a^U \text{ for } a^L, a^U \in [0,1] \}$$

We define the operations $\leq, \geq, = \cdot \text{min} \text{ and } \text{max}$ in case of two elements in $D[0,1]$. We consider two elements $\tilde{a} = [a^L, a^U]$ and $\tilde{b} = [b^L, b^U]$ in $D[0,1]$. Then

1. $\tilde{a} \leq \tilde{b}$ iff $a^L \leq b^L, a^U \leq b^U$;
2. $\tilde{a} \geq \tilde{b}$ iff $a^L \geq b^L, a^U \geq b^U$;
3. $\tilde{a} = \tilde{b}$ iff $a^L = b^L, a^U = b^U$;
4. $r \min \{ \tilde{a}, \tilde{b} \} = \left[\min \{ a^L, b^L \}, \min \{ a^U, b^U \} \right]$;
5. $r \max \{ \tilde{a}, \tilde{b} \} = \left[\max \{ a^L, b^L \}, \max \{ a^U, b^U \} \right]$.

Here we consider that $\tilde{0} = [0,0]$ as least element and $\tilde{1} = [1,1]$ as greatest element.

Let $\tilde{a}_i \in D[0,1]$, where $i \in \Lambda$. We define
An interval valued fuzzy set (briefly, i-v-f-set) \(\tilde{\mu} \) on X is defined as
\[
\tilde{\mu} = \left\{ (x, [\mu^L(x), \mu^U(x)], x \in X) \right\},
\]
where \(\mu^L : X \to [0,1] \) and \(\mu^U : X \to [0,1] \), for all \(x \in X \). Then the ordinary fuzzy sets \(\mu^L : X \to [0,1] \) and \(\mu^U : X \to [0,1] \) are called a lower fuzzy set and an upper fuzzy set of \(\tilde{\mu} \) respectively.

Definition 4.1. [6] An interval-valued (briefly i-v) fuzzy set A in X is called an interval-valued fuzzy BCI-subalgebra of X if \(\tilde{\mu}_A(x*y) \geq r \min\{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\} \), for all \(x, y \in X \).

Example 4.2. Let \(X = \{0,1,2,3\} \) be a set with a binary operation * define by the following table:

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Using the algorithms in Appendix B, we can prove that \((X,*,0)\) is a BCI-algebra. Define \(\tilde{\mu}_A(x) \) as follows:
\[
\tilde{\mu}_A(x) = \begin{cases}
[0,3,0,9] & \text{if } x = \{0,1\} \\
[0,1,0,6] & \text{otherwise}
\end{cases}
\]
It is easy to check that A is an interval-valued fuzzy sub-algebra.

Lemma 4.3. If A is an interval-valued fuzzy BCI-subalgebra of X, then \(\tilde{\mu}_A(0) \geq \tilde{\mu}_A(x) \), for all \(x \in X \).

Proof. For every \(x \in X \), we have \(\tilde{\mu}_A(0) = \tilde{\mu}_A(x * y) \geq r \min\{\tilde{\mu}_A(x), \tilde{\mu}_A(y)\} = \tilde{\mu}_A(x) \).

Lemma 4.4. Let A be an interval-valued fuzzy BCI-subalgebra of X. If there exist a sequence \(\{x_n\} \) in X such that
\[
\lim_{n \to \infty} \tilde{\mu}_A(x_n) = [1,1]
\]
then \(\tilde{\mu}_A(0) = [1,1] \) [6].

Definition 4.5. An interval-valued fuzzy set \(A = \{(x, \tilde{\mu}_A(x)), x \in X\} \) in BCI-algebra X is called an interval-valued fuzzy medial-ideal (i-v fuzzy medial-ideal, in short) if it satisfies the following conditions:
\[
\begin{align*}
(1) & \quad \tilde{\mu}_A(0) \geq \tilde{\mu}_A(x), \\
(2) & \quad \tilde{\mu}_A(x) \geq r \min\{\tilde{\mu}_A(z*(y*x)), \tilde{\mu}_A(y*z)\}
\end{align*}
\]
for all \(x, y, z \in X \).

Example 4.6. Let \(X = \{0, 1, 2, 3\} \) as in example (4.2). Define \(\tilde{\mu}_A(x) \) as follows:
\[
\tilde{\mu}_A(x) = \begin{cases}
[0,2,0,8] & \text{if } x = \{0,1\} \\
[0,1,0,5] & \text{otherwise}
\end{cases}
\]
It is easy to check that A is an interval-valued fuzzy medial-ideal of X.

Theorem 4.7. An interval-valued fuzzy set \(A = [\mu^L_A, \mu^U_A] \) in X is an interval-valued fuzzy medial-ideal of X if and only if \(\mu^L_A \) and \(\mu^U_A \) are fuzzy medial-ideal of X.

Proof. Let \(\mu^L_A \) and \(\mu^U_A \) are fuzzy medial-ideal of X and \(x, y, z \in X \). Consider
\[
\tilde{\mu}_A(x) = [\mu^L_A(x), \mu^U_A(x)]
\]
Conversely, suppose A is an interval-valued fuzzy medial-ideal of X. For any \(x, y, z \in X \), we have \([\mu^L_A(x), \mu^U_A(x)] \) is a fuzzy subalgebra of X and
\[
\begin{align*}
\tilde{\mu}_A(x) & = \left[\min\{[\mu^L_A(z*(y*x)), \mu^L_A(y*z)] \}, \min\{[\mu^U_A(z*(y*x)), \mu^U_A(y*z)] \} \right] \\
& = r \min\{[\mu^L_A(z*(y*x)), \mu^L_A(y*z)] \}, \min\{[\mu^U_A(z*(y*x)), \mu^U_A(y*z)] \}
\end{align*}
\]
Hence we get that \(\mu^L_A \) and \(\mu^U_A \) are fuzzy medial-ideal of X.

Theorem 4.8. Let A1 and A2 be interval-valued fuzzy medial-ideals of X. Then \(A_1 \cap A_2 \) is an interval-valued fuzzy medial-ideal of X.

Proof.
\[
\tilde{\mu}_{A_1 \cap A_2}(0) = \left[\min\{\mu^L_{A_1}(0), \mu^U_{A_1}(0)\}, \min\{\mu^L_{A_2}(0), \mu^U_{A_2}(0)\} \right] \geq [\mu^L_{A_1}(x), \mu^U_{A_1}(x)] = \tilde{\mu}_{A_1}(x)
\]
Corollary 4.9: Let \(A \) be a family of interval-
valued fuzzy medial-ideals of \(X \). Then \(\bigcap_{i \in A} A \) is also an
interval-valued fuzzy medial-ideal of \(X \).

Definition 4.10. The non empty set
\(\bar{U}(A;[\delta_1, \delta_2]) : \{ x \in X \mid \bar{\mu}_A(x) \geq [\delta_1, \delta_2] \} \)

is called the interval-valued level fuzzy medial-ideal of \(A \), where
\([\delta_1, \delta_2] \in D[0,1]\).

Theorem 4.11: Let \(A \) be an interval-valued fuzzy set in \(X \).
Then \(A \) is an interval-valued fuzzy medial-ideal of \(X \) if and only if
the non empty set
\(\bar{U}(A;[\delta_1, \delta_2]) : \{ x \in X \mid \bar{\mu}_A(x) \geq [\delta_1, \delta_2] \} \)
is a medial-ideal of \(X \) for every
\([\delta_1, \delta_2] \in D[0,1].\)

Proof. Assume that \(A \) is an interval-valued fuzzy medial-ideal
of \(X \). Let \([\delta_1, \delta_2] \in D[0,1]\) be such that
\[z \ast (y \ast x), y \ast z \in \bar{U}(A;[\delta_1, \delta_2]) \]

then
\[\bar{\mu}_A(x) \geq r \min \{ \bar{\mu}_A(z \ast (y \ast x)), \bar{\mu}_A(y \ast z) \} \geq \]
\[r \min \{ [\delta_1, \delta_2], [\delta_1, \delta_2] \} = [\delta_1, \delta_2] \]

and
\[x \in \bar{U}(A;[\delta_1, \delta_2]). \]

Thus
\[\bar{U}(A;[\delta_1, \delta_2]) \]
is a medial-ideal of \(X \).

Conversely, assume that
\[\bar{U}(A;[\delta_1, \delta_2]) \neq \phi \]
is a medial-ideal of \(X \). For every
\([\delta_1, \delta_2] \in D[0,1]\), suppose that there exist
\(x_0, y_0, z_0 \in X \) such that
\[\bar{\mu}_A(x_0) < r \min \{ \bar{\mu}_A(z_0 \ast (y_0 \ast x_0)), \bar{\mu}_A(y_0 \ast z_0) \}. \]

Let
\[\bar{\mu}_A(z_0 \ast (y_0 \ast x_0)) = [\gamma_1, \gamma_2]. \]

\[\bar{\mu}_A(y_0 \ast z_0) = [\gamma_3, \gamma_4] \]

and
\[[\delta_1, \delta_2] < r \min \{ [\gamma_1, \gamma_2], [\gamma_3, \gamma_4] \}. \]

Taking
\[[\gamma_1, \gamma_2] = \left\lfloor \{ \bar{\mu}_A(x_0) + r \min \{ \bar{\mu}_A(z_0 \ast (y_0 \ast x_0)), \bar{\mu}_A(y_0 \ast z_0) \} \right\rfloor \]

\[= \left\lfloor \{ \bar{\mu}_A(x_0) + r \min \{ \bar{\mu}_A(z_0 \ast (y_0 \ast x_0)), \bar{\mu}_A(y_0 \ast z_0) \} \right\rfloor \]

\[= \left\lfloor \{ \bar{\mu}_A(x_0) + r \min \{ \bar{\mu}_A(z_0 \ast (y_0 \ast x_0)), \bar{\mu}_A(y_0 \ast z_0) \} \right\rfloor \]

\[\bar{\mu}(z \ast (y \ast x)) \leq [\gamma_1, \gamma_2]. \]

On the other hand
\[\bar{\mu}(z \ast (y \ast x)) = [\gamma_1, \gamma_2] \geq [\lambda_1, \lambda_2], \]

so
\[\bar{\mu}(z \ast (y \ast x)) \geq [\lambda_1, \lambda_2] \geq [\delta_1, \delta_2] = \bar{\mu}_A(x_0) \]

It contradicts that
\[\bar{U}(A;[\lambda_1, \lambda_2]) \]
is a medial-ideal of \(X \). Hence
\[\bar{\mu}_A(x) \geq r \min \{ \bar{\mu}_A(z \ast (y \ast x)), \bar{\mu}_A(y \ast z) \} \]

for all \(x, y, z \in X \).

Theorem 4.12. Every medial-ideal of \(X \) can be realized as an
interval-valued level fuzzy medial-ideal of \(X \).

Proof. Let \(Y \) be a medial-ideal of \(X \) and let \(A \) be an interval-
valued fuzzy set on \(X \) defined by
\[\bar{\mu}_A = \begin{cases} \{ [\alpha_1, \alpha_2] \} \text{ if } x \in Y \\ \{ [0,0] \} \text{ otherwise } \end{cases} \]

where \(\alpha_1, \alpha_2 \in (0,1) \) with \(\alpha_1 < \alpha_2 \).

It is clear that
\[\bar{U}(A;[\alpha_1, \alpha_2]) = Y. \]
We show that \(A \) is an interval-valued fuzzy medial-ideal of \(X \). Let
\(z \ast (y \ast x), y \ast x \in Y \), then \(x \in Y \), and
\[\bar{\mu}_A(x) \geq [\alpha_1, \alpha_2] = r \min \{ [\alpha_1, \alpha_2], [\alpha_1, \alpha_2] \} = \]
\[r \min \{ \bar{\mu}_A(z \ast (y \ast x)), \bar{\mu}_A(y \ast z) \}. \]

If \(z \ast (y \ast x), y \ast z \not\in Y \), then
\[\bar{\mu}_A(z \ast (y \ast x)) = [0,0] = \bar{\mu}_A(y \ast z) \]

and thus
\[\bar{\mu}_A(x) \geq [0,0] \geq r \min \{ [0,0], [0,0] \} = \]
\[r \min \{ \bar{\mu}_A(z \ast (y \ast x)), \bar{\mu}_A(y \ast z) \}. \]

If \(z \ast (y \ast x) \in Y \) and \(y \ast z \not\in Y \), then
\[\bar{\mu}_A(x) \geq [0,0] = r \min \{ [0,0], [0,0] \} \]

and then
\[\bar{\mu}_A(x) \geq r \min \{ \bar{\mu}_A(z \ast (y \ast x)), \bar{\mu}_A(y \ast z) \}. \]

Similarly for the case \(z \ast (y \ast x) \not\in Y \) and \(y \ast z \in Y \), we
get \(\tilde{\mu}_A(x) \geq r \min\{\tilde{\mu}_A(z*(y*x)), \tilde{\mu}_A(y*z)\} \).

Therefore A is an interval–valued fuzzy medial-ideal of X. This completes the proof.

Theorem 4.13: Let Y be a subset of X and let A be an interval–valued fuzzy set on X defined by

\[\tilde{\mu}_A = \begin{cases} \{\alpha_1, \alpha_2\} & \text{if } x \in Y \\ [0,0] & \text{otherwise} \end{cases} \]

if A is an interval–valued fuzzy medial-ideal of X, then Y is medial-ideal of X.

Proof. Assume that A is an interval–valued fuzzy medial-ideal of X, and let \(z*(y*x), y*z \in Y \), then

\[\tilde{\mu}_A(z*(y*x)) = [\alpha_1, \alpha_2] = \tilde{\mu}_A(y*z) \],

and so

\[\tilde{\mu}_A(x) \geq r \min\{\tilde{\mu}_A((z*(y*x)), \tilde{\mu}_A(y*z)) \} = r \min\{[\alpha_1, \alpha_2], [\alpha_1, \alpha_2]\} = [\alpha_1, \alpha_2] \]

this implies that \(x \in Y \). Hence Y is medial-ideal of X. This completes the proof.

Theorem 4.14: If \(A \) is an interval–valued fuzzy medial-ideal of X, then the set \(\bar{X}_A := \{x \in X | \tilde{\mu}_A(x) = \tilde{\mu}_A(0)\} \) is a medial-ideal of X.

Proof. Let \(z*(y*x), y*z \in X_{\tilde{\mu}_A} \). Then

\[\tilde{\mu}_A(z*(y*x)) = \tilde{\mu}_A(0) = \tilde{\mu}_A(y*z), \]

and so

\[\tilde{\mu}_A(x) \geq r \min\{\tilde{\mu}_A((z*(y*x)), \tilde{\mu}_A(y*z)) \} = r \min\{\tilde{\mu}_A(0), \tilde{\mu}_A(0)\} = \tilde{\mu}_A(0) \]

Combining this with condition 1 of definition 4.5. We get

\(\tilde{\mu}_A(x) = \tilde{\mu}_A(0) \), that is \(x \in X_{\tilde{\mu}_A} \). Hence \(X_{\tilde{\mu}_A} \) is a medial-ideal of X. This completes the proof.

Definition 4.15. [1].

Let \(f : X \to Y \) be a mapping from set X into a set Y. Let B be interval–valued fuzzy subset in Y. Then the inverse image of B, denoted by \(f^{-1}(B) \), is interval–valued fuzzy set in X with the membership function given by

\[\tilde{\mu}_{f^{-1}(B)}(x) = \tilde{\mu}_B(f(x)), \]

for all \(x \in X \).

Lemma 4.16. [1]. Let f be a mapping from set X into a set Y, let \(m = [m^l, m^u] \) and

\[n = [n^l, n^u] \]

be interval–valued fuzzy set in X and Y respectively. Then

\[\begin{align*}
(1) & f^{-1}(m) = [f^{-1}(n^l), f^{-1}(n^u)], \\
(2) & f(m) = [f(m^l), f(m^u)].
\end{align*} \]

Theorem 4.17: Let f be homomorphism from a BCI-algebra X into a BCI-algebra Y. If \(\tilde{B} \) is an interval–valued fuzzy medial-ideal of Y, then the inverse image \(f^{-1}(\tilde{B}) \) of \(\tilde{B} \) is interval–valued fuzzy medial-ideal of X.

Proof. Since \(\tilde{B} = [\mu_B^l, \mu_B^u] \) is an interval–valued fuzzy medial-ideal of Y, it follows that from theorem 4.7, that \(\mu_B^l \) and \(\mu_B^u \) are fuzzy medial-ideal of Y. hence by lemma 4.16, we conclude that \(f^{-1}(\tilde{B}) = [f^{-1}(\mu_B^l), f^{-1}(\mu_B^u)] \) is an interval–valued fuzzy medial-ideal of X.

Theorem 4.18: Let f be a homomorphism from a BCI-algebra X into a BCI-algebra Y. If \(\tilde{A} \) is an interval–valued fuzzy medial-ideal of X, then \(f [\tilde{A}] \) is an interval–valued fuzzy medial-ideal of Y.

Proof. Assume that \(\tilde{A} = [\mu_A^l, \mu_A^u] \) is an interval–valued fuzzy medial-ideal of X. It follows from theorem 4.7, that the images \(f(\mu_A^l) \) and \(f(\mu_A^u) \) are fuzzy medial-ideal of Y. Combining theorem 4.7, and lemma 4.16, we conclude that \(f(\tilde{A}) = [f(\mu_A^l), f(\mu_A^u)] \) is an interval–valued fuzzy medial-ideal of Y.

5. CARTESIAN PRODUCT OF INTERVAL–VALUED FUZZY MEDIAL–IDEALS

Definition 5.1. [1].

Let \(\tilde{\mu} \) and \(\tilde{\beta} \) be interval–valued fuzzy subset of a set S, the Cartesian product of \(\tilde{\mu} \) and \(\tilde{\beta} \) is define by \((\tilde{\mu} \times \tilde{\beta}) \).

\((x, y) = r \min\{\tilde{\mu}(x), \tilde{\beta}(y)\}, \forall x, y \in S \).

Remark: Let X and Y be BCI–algebras, we define * on X × Y as follows, for every

\((x, y), (u, v) \in X \times Y, (x, y) * (u, v) = (x * u, y * v) \),

then clearly \(X \times Y, *, (0, 0) \) is a BCI–algebra.

Theorem 5.2: Let \(\tilde{\mu} \) and \(\tilde{\beta} \) be interval–valued fuzzy medial- ideals of BCI -algebra X, then \(\tilde{\mu} \times \tilde{\beta} \) is interval–valued fuzzy medial- ideals of \(X \times X \).

Proof: for any \((x, y) \in X \times X \), we have ,

\((\tilde{\mu} \times \tilde{\beta})(0, 0) = r \min\{\tilde{\mu}(0), \tilde{\beta}(0)\} \geq r \min\{\tilde{\mu}(x), \tilde{\beta}(y)\} = (\tilde{\mu} \times \tilde{\beta})(0, 0) \).

Now let \((x_1, x_2), (y_1, y_2), (z_1, z_2) \in X \times X \), then ,

\((\tilde{\mu} \times \tilde{\beta})(x_1, x_2) = r \min\{\tilde{\mu}(x_1), \tilde{\beta}(x_2)\} \geq r \min\{r \min\{\tilde{\mu}(z_1 \times (y_1 * x_1)), \tilde{\beta}(y_1 \times z_1)\}, \tilde{\beta}(z_2 * (y_2 * x_2))\} = r \min\{r \min\{\tilde{\mu}(z_1 \times (y_1 * x_1)), \tilde{\beta}(y_1 \times z_1)\}, \tilde{\beta}(z_2 * (y_2 * x_2))\} \).

(\tilde{\mu} \times \tilde{\beta})(x_1, x_2) = r \min\{\tilde{\mu}(x_1), \tilde{\beta}(x_2)\} \geq r \min\{r \min\{\tilde{\mu}(z_1 \times (y_1 * x_1)), \tilde{\beta}(y_1 \times z_1)\}, \tilde{\beta}(z_2 * (y_2 * x_2))\} = r \min\{r \min\{\tilde{\mu}(z_1 \times (y_1 * x_1)), \tilde{\beta}(y_1 \times z_1)\}, \tilde{\beta}(z_2 * (y_2 * x_2))\} \).

International Journal of Computer Applications (0975 – 8887)
Volume 109 – No. 2, January 2015

29
\(z_2 \) \(= \min \{ (\tilde{\mu} \times \tilde{\beta}) (z_1 \ast (y_1 \ast x_1) \), z_2 \ast (y_2 \ast x_2)) (\tilde{\mu} \times \tilde{\beta}) (y_1 \ast z_1, y_2 \ast z_2) \}. \) Hence \((\tilde{\mu} \times \tilde{\beta}) \) is interval-valued fuzzy medial ideal of \(X \times X \).

6. CONCLUSIONS
In the present paper, we have introduced the concept of interval-valued fuzzy medial ideals of BCI-algebras and investigated some of their useful properties. We believe that these results are very useful in developing algebraic structures also these definitions and main results can be similarly extended to some other algebraic systems such as PS-algebras, Q-algebras, SU-algebras, IS-algebras, \(\beta \)-algebras and semirings (hemirings). It is our hope that this work would other foundations for further study of the theory of BCI-algebras. In our future study of fuzzy structure of BCI-algebras, may be the following topics should be considered:

1. To establish \(\tilde{\tau} \) - interval-valued fuzzy medial ideals of BCI-algebras;

2. To consider the structure of \((\tilde{\tau}, \tilde{\rho}) \), interval-valued fuzzy medial ideals of BCI-algebras

3. To get more results in \(\tilde{\tau} \) - cubic medial ideals and it’s application.

7. ACKNOWLEDGEMENTS
The authors would like to express sincere appreciation to the referees for their valuable suggestions and comments helpful in improving this paper.

8. APPENDIX B. ALGORITHMS
This appendix contains all necessary algorithms.

8.1 Algorithm for BC-I-Algebras
Input \((X : \text{set}, \ast : \text{binary operation})\)
Output (“\(X \) is a BC-I-algebra or not”)
Begin
\[\text{If } X = \emptyset \text{ then go to (1.)} \]
End If
\[\text{If } 0 \not\in X \text{ then go to (1.)} \]
End If
\[\text{Stop: =false;} \]
\[i := 1; \]
While \(i \leq |X| \) and not (Stop) do
\[\text{If } x_i \ast x_i \neq 0 \text{ then} \]
\[\text{Stop: =true;} \]
End If
\[j := 1 \]
While \(j \leq |X| \) and not (Stop) do
\[\text{If } x_i \ast (y_j \ast x_j) \neq 0, \text{ then} \]
\[\text{Stop: =true;} \]
End If
End

8.2 Algorithm for Fuzzy Subsets
Input \((X : \text{BCI-algebra}, \mu : X \rightarrow [0,1]);\)
Output (“\(\mu \) is a fuzzy subset of \(X \) or not”)
Begin
\[\text{Stop: =false;} \]
\[i := 1; \]
While \(i \leq |X| \) and not (Stop) do
\[\text{If } (\mu(x_i) < 0) \text{ or } (\mu(x_i) > 1) \text{ then} \]
\[\text{Stop: =true;} \]
End If
End If
End
If Stop then
Output (“\(\mu \) is a fuzzy subset of \(X \) ”)
Else
Output (“\(\mu \) is not a fuzzy subset of \(X \) ”)
End If
End.
8.3 Algorithm for Medial -Ideals

Input (\(X\) : BCI-algebra, \(I\) : subset of \(X\));

Output (“\(I\) is an medial -ideals of \(X\) or not”);

Begin

If \(I = \emptyset\) then go to (1);

End If

If \(0 \notin I\) then go to (1);

End If

Stop: =false;

1: =i;

While \(i \leq |X|\) and not (Stop) do

\(j := 1\);

While \(j \leq |X|\) and not (Stop) do

\(k := 1\);

While \(k \leq |X|\) and not (Stop) do

\(z_k \cdot (y_j \cdot x_i) \in I\) and \(y_j \cdot z_k \in I\) then

If \(x_i \notin I\) then

Stop: = true;

End If

End If

End If While

End If While

End If

If Stop then

Output (“\(I\) is is an medial -ideals of \(X\)”)

Else (1.) Output (“\(I\) is not is an medial -ideals of \(X\)”)

End If

End.

9. REFERENCES

