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ABSTRACT 
The common problem of multiprocessor scheduling can be 

defined as allocating a task graph in a multiprocessor system 

so that schedule length can be improved. Task scheduling in 

multiprocessor system is a NP-complete problem. A number 

of heuristic methods have been cultivated that achieve partial 

solutions in less than the minimum computing time. Genetic 

algorithms have obtained much awareness as they are robust 

and provide a good solution. In this paper, genetic algorithm 

based on the principles of evolution to obtain an optimal 

solution for task scheduling is developed. Genetic algorithm is 

based on three operators: Natural Selection, Crossover and 

Mutation. The simulation results prove that the method 

proposed generates better results.  

Keywords 
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1. INTRODUCTION 
Parallel systems are important resources that are generally 

shared by communities of users. Users frequently submit jobs 

to the system, each with unique resource and service-level 

requirements as well as value to the user and resource owner. 

The charge of job scheduling is to decide when and how each 

job should carry out in order to exploit the system’s 

cumulative value to its owners [1]. The difficulty of 

scheduling a set of circulated resources for parallel execution 

of tasks connected with a single job arises in a wide range of 

circulated computer applications, manufacturing systems and 

communication network environments. The way in which the 

processors are allocated to the tasks of such parallel 

applications is fundamental to realizing the high performance 

[2] of the corresponding systems, such as minimizing mean 

job response time and maximizing system throughput. 

Task scheduling [3] can be classified as static and dynamic. 

Some study basis makes static scheduling enviable. First, 

static scheduling occasionally results in lesser execution times 

than dynamic scheduling. Second static scheduling permits 

only single process per processor, which leads to reduced 

process creation and termination overhead. Third, static 

scheduling can be used to foretell the expedite that can be 

attained by a meticulous parallel algorithm on a target 

machine, presuming that no pre-emption of processes occurs. 

The scheduling problem has - next to search for a most 

favourable mapping of the task and their sequence of 

execution and also search for a best possible configuration of 

the parallel system. The [4] computational convoluted course 

cannot be executed on the parallel computing machine in an 

acknowledged interval time. So to avoid such type of 

hindrance, the big task must be divided into small sub-process 

and further the sub-process can be executed either in the 

expensive multiprocessor or in the parallel distributed system. 

An entire parallel system is superlative and can be employed 

due to its cost and performance ratio. 

There are two different types of scheduling problems, they are 

given below: 

(1) Job scheduling and 

(2) Task scheduling.  

Job scheduling compacts with the scheduling of autonomous 

jobs; whereas tasks scheduling is linked to scheduling of tasks 

belonging to a solitary application program. In general the aim 

of job scheduling is to have first-rate load balancing amid the 

processors, whereas for the later minimization of overall 

execution time is the main concern [5]. The chief intention 

behind both is to exploit the parallel system’s throughput by 

effecting maximum number of jobs in the given time span. 

Load balance [6] is considered as a major problem in parallel 

computing when scheduling is for multiple jobs with limited 

resources where more number of jobs is required to run on the 

same processor again and again. The load balance should be 

minimized to prevent the system throughput and efficiency 

thus the job is optimized with load balance also to run on the 

appropriate processors. 

Heuristic optimization algorithm [6] is broadly used to solve a 

diversity of NP-complete problems. Abraham et al and Braun 

et al [7] proposed three basic heuristics implied by Nature for 

Grid scheduling, namely Genetic Algorithm [8], Simulated 

Annealing [9] and Tabu Search [10], and heuristics derived by 

a combination of these three algorithms. GA and SA are 

powerful stochastic optimization methods, which are inspired 

form the nature. GA is simulated the evolutionary natural 

selection process. The improved solution of generation is 

estimated according to the fitness value and the candidates 

with better fitness values are used to generate additional 

solutions through crossover and mutation processes. 

Simulated annealing is based on the process of annealing 

about the solid matter in physics. Both methods are valid and 

have been applied in various fields due to their strong 

convergence properties. 

If these criteria’s are considered then there will be another 

issue often occurred in parallel computing, called processor 

idle time. During the optimization some processors may be 

left alone by does not allocate any jobs on to them where the 

act is called as an idle time of a processor. This idle time is 

subject to discard by assigning task duplication in which a 

task is duplicated and allocated to respective processors that 

may have dependent relationship with some other tasks and 

are executed concurrently. These are the significant concerns 

takes place in parallel processing which encourage performing 

various investigations and optimization techniques for 

scheduling to conquer the problems arise in parallel 

computation. In this paper, the task scheduling problem 



International Journal of Computer Applications (0975 – 8887)  

Volume 108 – No 16, December 2014 

35 

having some specific characteristics are discussed, genetic 

approach is discussed in detail in the next section and the last 

section presents experiments and results. 

The paper is structured as section 2 specifies the related task 

scheduling works in literature; the genetic algorithm is 

explained in section 3 and the experimental results are 

discussed in the next section. The work is finally concluded in 

section 5. 

2. RELATED WORKS 
Moraglio et.al [11] have presented a new technique that uses a 

population of Taboo Search runs in a Genetic Algorithm 

structure: GAs focuses high-quality areas of the solution space 

so that TS can start its search with capable initial solutions. 

The curiousness of the Genetic Algorithm they propose 

consists in a natural demonstration which covers all and only 

the feasible solution space and assurances the transmission of 

meaningful description. The results show that this technique 

outperforms many others generating best worth results in less 

time. 

Ratan Mishral and Anant Jaiswal [12] have proposed this 

paper based on Ant Colony optimization to resolve the 

problem of load balancing in cloud environment. In this 

paper, a heuristic algorithm based on ant colony optimization 

has been anticipated to instigate the service load distribution 

underneath cloud computing architecture. The pheromone 

update mechanism has been proved as an efficient and 

effective tool to balance the load. This adaptation ropes to 
minimize the make span of the cloud computing based 

services and portability of checking the request also has been 

congregating using the ant colony optimization technique. 

Z. Pooranian et.al [13] proposed this paper for the rationale of 

task scheduling.  In this paper the researchers unite the genetic 

algorithm and GELS (GAGELS) as a scheme to resolve 

scheduling trouble by which concurrently pay attention to two 

factors of time and number of missed tasks. Results illustrate 

that the anticipated algorithm can diminish make span while 

decreasing the number of missed tasks contrasted with the 

conventional methods. 

Dervis Karaboga and Bahriye Basturk [14] have proposed this 

paper to demonstrate the evaluation results on the presentation 

of the Artificial Bee Colony (ABC) algorithm for embarrassed 

optimization exertions. The ABC algorithm has been initially 

proposed for unhindered optimization troubles and showed 

that it has better performance on these kinds of problems. In 

this paper, the ABC algorithm has been unmitigated for 

solving inhibited optimization problems and functional to a 

set of constrained problems. 

Mohammad Shojafar et.al [15] have proposed this work by 

focus of the present involvement, where they have urbanized a 

new hybrid scheduling algorithm GGA that coalesces GA and 

the gravitational emulation local search (GELS) algorithm. 

The remarkable feature of the proposed best possible 

scheduler is that it reduces runtime and the number of 

acquiesced tasks whose deadlines are missed. An evaluation 

of the concert of their proposed joint optimal scheduler to 

similar techniques shows that it produces more optimal 

computation time. 

Rizos Sakellariou and Viktor Yarmolenko [16] have proposed 

this paper, they squabble for the need to afford more 

flexibility in the level of service accessed by Grid-enable 

high-performance, parallel, supercomputing possessions. It 

foresees that such need could be contented by making detach 

Service Level Agreements (SLAs) between the resource 

owner and the user who wants to submit and run a job on 

these resources. A number of issues related to the 

materialization of this vision are highlighted in the paper. 

Vishnu Kant Soni et.al [17] have proposed this paper and 

evaluates an extension from Computational-Communication 

to Computational- Communication-Memory based Grouping 

Job Scheduling strategy. This approach exploits the 

consumption of Grid resources, decreases processing time of 

jobs and network delay to programmed and execute jobs on 

the Grid. The sculpt exchanges light weight jobs into coarse-

grained job or grouped job according to the necessity jobs and 

source capacity. This Grouping technique courts the 

processing power, memory-size and bandwidth desires of 

each job to recognize the real grid system. The investigational 

grade shows that the proposed scheduling algorithm 

resourcefully reduces the processing time of jobs in 

comparison to others. 

U. Karthick Kumar et.al [18] have proposed this paper, that a 

Load balancing algorithm for fair scheduling, and they 

compare it to other scheduling schemes for a computational 

grid. It addresses the fairness issues by using mean waiting 

time. It scheduled the task by using fair completion time and 

rescheduled by using mean waiting time of each task to attain 

load balance. This algorithm method tries to offer optimal 

solution so that it diminishes the execution time and expected 

price for the execution of all the jobs in the grid system is 

minimized.  

S. Selvi et.al [19] have proposed this paper in which they 

introduce a novel approach based on Differential Evolution 

algorithm for scheduling jobs on computational grid. The 

proposed approach creates an optimal programmed so as to 

fulfill the jobs within a minimum period of time and 

exploiting the possessions resourcefully. Grid computing 

refers to the amalgamation of computer assets from multiple 

secretarial provinces to reach common goal. Grids offer a way 

of using the information technology possessions optimally 

inside an association. Grid environments assist distributed 

estimation. Hence the scheduling of grid jobs should be 

measured as an important issue. 

Jim Blythe et.al [20] have proposed this paper by recognizing 

two families of resource allocation algorithms: task-based 

algorithms, that greedily allocate tasks to resources, and 

workflow-based algorithms, that search for a proficient 

allotment for the complete workflow. They evaluate the 

performance of workflow-based algorithms and task-based 

algorithms, using simulations of workflows drawn from a real 

submission and with varying ratios of computation cost to 

data transfer cost. They examine that workflow-based 

advances have a probable to work better for data-intensive 

functions even when assess about future tasks are erroneous. 

Angelos Michalas et.al [21] have proposed this work of task 

scheduling problem in Grid computing surroundings has been 

addressed. To determine the problem a set of Grid Services 

are definite and implemented conforming to the OGSA 

standards. The proposed scheduling architecture is 

semantically improved and affords the most apposite 

obligation of tasks to computing resources, given the current 

load conditions of each computing resource and the network 

status. The Ant Colony Optimization algorithm (ACO) was 

used to efficiently assign tasks to computing resources.  
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3. MULTIPROCESSOR TASK 

SCHEDULING 
Several parallel applications contain various functional units. 

Whereas the execution of some of the tasks depends on the 

output of the additional tasks, others can be executed 

individually at the same time, which escalations parallelism of 

the problem. The task scheduling problem is the difficulty of 

conveying the tasks in the multiprocessor system in a manner 

that will improve the overall performance of the application, 

while improving the efficiency of the outcome. 

Multiprocessor scheduling problems can be categorized into 

many different sorts based on characteristics of the program 

and tasks (R) to be arranged, the multiprocessor system, and 

the accessibility of information shown in fig 1. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2: A sample directed acyclic graph 

The two main categories of Multiprocessors Task scheduling 

are: Static and dynamic task scheduling. A static or 

deterministic task scheduling is one in which preference 

constrictions and the associations mid the assignment are 

known well in progress while non-deterministic or dynamic 

scheduling is one in which these evidence is not known in 

advance or not known till run time. Static task scheduling 

algorithms can be categorized into two parts: Heuristic Based 

and Guided random Search Based Algorithms. Heuristic 

based algorithm quests a path in the solution space based on 

the heuristic used while snubbing other probable paths. List 

scheduling algorithms, clustering and duplication based 

algorithms come in the same category. In List Scheduling 

algorithms, each query is allocated significance then added to 

a queue of waiting queries in order of diminishing importance. 

As processors become free, the task with the highest priority 

is removed from the queue and allotted to the most suited 

processor. In Clustering Heuristic, tasks of a given task graph 

are mapped into an unrestricted number of clusters. In this 

heuristic, each reiteration hones the foregoing clustering by 

merging some clusters. If two tasks are dispensed to the same 

cluster, they will be accomplished on the same processor. In 

replication based algorithm, scheduling of a task graph is done 

by mapping some of its task excessively, which reduces the 

inter process communication overhead. 

4. PROBLEM FORMULATIONS 
Scheduling problems with the below given characteristics are 

considered in this work: 

1. Tasks are non initiative in general. Preference 

relations between the tasks exist. 

2. Cost for communication does not exist. 

3. In a Multiprocessor System, all the processors are 

heterogeneous denotation thereby a task may take 

unlike execution time on each processor. 

The three main components of Scheduling are: A 

multiprocessor system, an application and an objective for 

scheduling. The multiprocessor system consists of a limited 

number of fully connected heterogeneous processors (HP1, 

HP2... HPm). An application comprises tasks and their 

dependencies on each other. It can be represented as a directed 

acyclic graph (DAG), (see Fig.2) G = (V, E, W), where the 

vertices set V consists of v non-initiative tasks, and vi denotes 

the ith task. The edge set E represents the precedence 
Relationship among tasks. A directed edge eij in E indicated 

that vj cannot begin its execution before receiving data from 

vi. W is a matrix of vxm, and wij in W represents the estimated 

execution time of vi on jth processor A directed edge eij in E 

indicated that vj cannot begin its execution before receiving 

data from vi. W is a matrix of vxm, and wij in W represents the 

estimated execution time of vi on jth processor. 
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Fig 1. Classification scheduling algorithm 
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5. GENETIC ALGORITHM 

STRUCTURE 
Genetic algorithm structure for scheduling problem depends 

on five things which are as follows: 

 Representation of chromosomes. 

 Construction of genetic operators. 

 Selection of Fitness Function. 

 Probabilities that can control genetic operators. 

 Generation count. 

The output obtained and the performance of genetic 

 algorithm is greatly influenced by the above 

 objectives A Genetic Algorithm Structure consists 

 of the  following steps: 

 Initialization – Defining the population. 

 Evaluation – estimate the chromosome using fitness 

function. 

 Genetic operations –Selection of parent 

chromosomes, perform genetic operators on them to 

generate new children chromosome. 

5.1 Population Initialization 
In Genetic Algorithm initializing the chromosome is an 

important task. The chromosome structure is defined as a 
combination of two strings SQ and SP of length same as the 

number of tasks.  SQ (scheduling queue) maintains superiority 

constraints between tasks, and an item in TS denotes a task to 

be scheduled. An entry in SP (scheduling processor) 

represents the processor the corresponding task is scheduled 

onto. The generation of chromosome is explained in the below 

steps: 

 1: A task is selected randomly from the entire entry tasks. 

This task is scheduled as the first task in SQ. 

2: Repeat step 3 for (v-1) times. 

3: Select a task randomly that is not in SQ with its 

predecessors all have been in SQ, this task is added to SQ. 

Steps 2 and 3 are repeated until termination condition reached 

 4: In SP, an integer number between 1 and m for each task in 

SQ is randomly generated and add it to SP. 

5.2 Estimation and Selection 
In genetic algorithm the fitness function is a exclusive 

objective function that should be enhanced to solve the 

problem. The chromosomes are evaluated using the fitness 

function. The fitness function is defined as: 

F (i) = (maxCT-CT (i) +1/ (maxCT-minCT+1) (1) 

where:  

MaxCT and minCT is the maximum and minimum 

completion time of chromosomes in current generation, 

respectively. CT (i) is the completion time of the ith 

chromosome. After evaluating the fitness values of all the 

chromosomes the higher fitness value chromosome are 

selected. 

 

 

5.3 Crossover and Mutation 

5.3.1 Crossover 
Crossover mechanism reproduces new children chromosomes 

which have some parts of both parent's chromosomes. The 

common type of crossover is a single-point crossover. 

Multipoint crossover uses m randomly chosen crossover 

positions. Bits between successive crossover points are 

exchanged producing two new offspring. As the chromosomes 

comprises two separate parts SP and SQ having dissimilar 

distinctiveness, for each part here employ different crossover 

policies. In this randomly select one or the second part and 

apply two different crossover operators for these two parts. 

Details about crossover are given in following steps: 

 C1: Input the Crossover probability Pc. 

 C2: Randomly select pairs of chromosomes and 

generate a float number (FLC) between 0 and 1 for 

each pair. 

 C3: If FLC <= Pc, then recur step CR4 to step CR5. 

Else unswervingly reproduce those two 

chromosomes to the next generation. 

 C4: Arbitrarily produce two crossover points, p and 

q, between 1 and v and crossover flag CF between 0 

and 1. 

 C5: If CF=0 then rearrange the order of tasks in SQ 

between p and q of one chromosome according to 

the order of tasks of another chromosome, the rest 

of the two chromosomes are continued. Else 

exchange the part in SP between p and q of two 

chromosomes and the rest of the two chromosomes 

are remained. 

5.3.2 Mutation 
Mutation is a genetic operator that alters one or more gene 

values in a chromosome from its primary state. This can result 

in completely new chromosomes being added to the 

population. With these new chromosomes, the genetic 

algorithm may be able to achieve a better solution than was 

formerly possible. Mutation can be considered as a random 

alternation of the individual. Then employ two policies to 

mute the chromosome as given in following steps: 

 M1: Input the Mutation probability Pm. 

 M2: For each chromosome, generate a float number 

(FLM) between 0 and 1. 

 M3: If FLM <= Pm, then repeat step MT4 to step 

MT5 Else directly reproduce this chromosome to 

the next generation. 

 M4: Randomly generate a mutation point p between 

1 and v and mutation flag MF between 0 and 1. 

 M5: If MF=0 then select randomly a location 

between location of the nearest immediate 

predecessor and that of successor of sqp. Then move 

sqp to this location. Else change randomly the 

processor of sqp between 1 and m as spp. 

5.3.3 Performance Evaluations 
The implemented system automatically generates the 

scheduling problems of required sizes. These have been done 

to avoid biasing in giving values of dissimilar parameters 

necessary for the problems. The proposed system fits random 
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values to these parameters in suitable ranges. The produced 

problems for our experiments with the subsequent uniqueness: 

 Size of problem ranges from 25 to 65 with an 

interval of 5. 

 There is no limit on the number of successors of 

each task except the exit task which does not have 

any successor. 

 The execution time for each task is a random 

number between 5 and 25. 

 Number of processors varies from 4 to 8 according 

to the size of problems. 

As here not put any restriction over the number of successor a 

task may have, task graph may be much problematical. So, the 

problems have chosen may be judged complex in comparison 

to the kind of problems that was normally seen in literature, 

where a constraint on maximum number of successor tasks 

has been put. 

6. EFFECT OF MUTATION 

PROBABILITY ON THE 

PERFORMANCE OF GA 
As mutation is the solution to modify the section of search 

space, mutation probability may have leading role in finding 

solutions of good quality. Thus, experiments are repeated by 

fixing crossover probability and changing mutation 

probabilities from 0.05 to .40 and noted average schedule 

lengths. Experiments had been done on the problem having 

size 65. Here observation shows similar trend in the problems 

of all sizes. The below graph shows the further average of 

results, mixing the effect of all crossover probabilities which 

clearly shows that up till mutation probability is .20, increase 

in mutation probability leading to better results. After .20 

results are fluctuating in a small range but normally are not 

better than that obtained for .20. So, here it was found best 

mutation probability for our set of problems as .20. 

    Fig. 3. Effect of mutation probability on avg. schedule length 

 

Fig4. Comparison on Speedup with 3 processors 

The efficiency, schedule length, speedup and utilization can 

be computed for three processors with GA approach is shown 

as below: 

i).  𝑆𝑐𝑕𝑒𝑑𝑢𝑙𝑒 𝐿𝑒𝑛𝑔𝑡𝑕 =  𝑚𝑎𝑥 {𝐸_𝑇𝑖𝑚𝑒 ( 𝑡𝑖  )} = 33.0  

(Because the three processors have the execution time as 33, 

32 and 31 respectively)  

ii).  𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝐿

𝐴𝑣𝑔(𝑃𝑇)
  = 33.0/52.0 = 0.6346 

(SL is the schedule length and it is 33.0. Average processor 

time for three processors is 52.0 (33.0+10+9), which was 

computed through the simulator.) 

iii).  𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
    = 0.6346/3 = 

0.2115 
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Table 1: Parameters Analyzed with three processors 

Parameters 

Analyzed with Four 

Processors 

GA  

3 4 5 

F
o

r 
1
0

 T
a

sk
s 

Efficiency 0.1136 0.1052 0.1136 

Schedule 

Length 

20.0 16.0 30.0 

Speed Up 0.4545 0.4210 0.4545 

Utilization 1.0 0.9531 0.9166 

 

Fig.5. Comparison of Efficiency with 4 

processors 

Where, 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑗 =

 
  𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛  𝑡𝑖𝑚𝑒   𝑁𝑜.𝑜𝑓 .𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠  𝑁𝑜 .  𝑜𝑓  𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

𝑗=1

𝑁𝑜.𝑜𝑓 .𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠
   

Average Execution time of three processors = 

32.333 

Load Balance = 33.0/32.333 = 1.0206 

iv). Utilization =  
 𝐹𝐸𝑃𝑃𝑖

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
 

FEP for processor LB1 = 33/33 =1 

FEP for processor LB2 = 30/33 = 0.9090 

FEP for processor LB3 = 1.0301 

Total FEP for three processors is = 2.9391 

Utilization = 2.9391/3 = 0.9797 

The above Table shows the efficiency, schedule length, 

speedup, and utilization. The table is made throughout with 

four processors with a dynamic number of tasks and 

duplicated tasks. The efficiency of the parallel processor is 

calculated as follows: 

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
          

 

Table 2: Parameters analyzed with four processors 

Parameters 

Analyzed with 

Three Processors 

GA  

3 4 5 

F
o

r 
1
0

 T
a

sk
s 

Efficiency 0.2115 0.1842 0.30952 

Schedule 

Length 

33.0 21.0 39.0 

Speed Up 0.6346 0.5526 0.9285 

Utilization 0.9797 0.9682 0.8888 

The formula of efficiency derives the speedup of the 

processor with the all parallel processors which is taken into 

account. 

The efficiency of the parallel processors is high using the 

proposed GA. Finally, the utilization of the parallel processors 

can be defined as follows: 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
 𝐹𝐸𝑃𝑃𝑖

𝑇𝑜𝑡𝑎𝑙  𝑛𝑢𝑚𝑏𝑒𝑟  𝑜𝑓  𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
                                        

           Where 𝐹𝐸𝑃𝑃𝑖
 

denotes each processors scheduling time and  𝐹𝐸𝑃𝑃𝑖
  is 

calculated as follows: 

𝐹𝐸𝑃𝑃𝑖
=

𝑃𝑖
𝑡𝑕𝑆𝐿

𝑆𝐿
                                                                

           Where 𝑃𝑖
𝑡𝑕𝑆𝐿 

denotes the 𝑖𝑡𝑕  processors schedule length and 𝑆𝐿 denotes the 

processors maximum schedule length among all the parallel 

processors. 

7. CONCLUSIONS 
In this paper, genetic algorithm for task scheduling in parallel 

systems is implemented. The genetic operations like crossover 

and mutation take place as usual to maintain the diversity 

among the chromosomes. The parameters taken are schedule 

length, efficiency, and utilization. And also have assembled a 

system which automatically generates the problems of 

required sizes and also fits values to the parameters. The 

performance of our algorithm for robustness is analyzed. It 

has been seen that in GA, Average Schedule Length 

continuously decreases as the number of generation increases. 

This shows that genetic algorithm is robust and gives a 

guarantee for good results. Lastly, the effect of mutation 

probability on the performance of GA is analyzed. It was 

found that mutation is a mechanism to avoid premature 

convergence. Mutation can be considered as an occasional 

random alternation of the value of a string. 
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