
International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

34

Task Scheduling in Parallel Systems using Genetic

Algorithm

Rachhpal Singh
Sr. Asstt. Professor, Department of Computer Sc. and Applications

Khalsa College,
Amritsar-Punjab

ABSTRACT
The common problem of multiprocessor scheduling can be

defined as allocating a task graph in a multiprocessor system

so that schedule length can be improved. Task scheduling in

multiprocessor system is a NP-complete problem. A number

of heuristic methods have been cultivated that achieve partial

solutions in less than the minimum computing time. Genetic

algorithms have obtained much awareness as they are robust

and provide a good solution. In this paper, genetic algorithm

based on the principles of evolution to obtain an optimal

solution for task scheduling is developed. Genetic algorithm is

based on three operators: Natural Selection, Crossover and

Mutation. The simulation results prove that the method

proposed generates better results.

Keywords
Parallel computing, Heterogeneous system, Task scheduling,

Task duplication, Schedule length and Load balance.

1. INTRODUCTION
Parallel systems are important resources that are generally

shared by communities of users. Users frequently submit jobs

to the system, each with unique resource and service-level

requirements as well as value to the user and resource owner.

The charge of job scheduling is to decide when and how each

job should carry out in order to exploit the system’s

cumulative value to its owners [1]. The difficulty of

scheduling a set of circulated resources for parallel execution

of tasks connected with a single job arises in a wide range of

circulated computer applications, manufacturing systems and

communication network environments. The way in which the

processors are allocated to the tasks of such parallel

applications is fundamental to realizing the high performance

[2] of the corresponding systems, such as minimizing mean

job response time and maximizing system throughput.

Task scheduling [3] can be classified as static and dynamic.

Some study basis makes static scheduling enviable. First,

static scheduling occasionally results in lesser execution times

than dynamic scheduling. Second static scheduling permits

only single process per processor, which leads to reduced

process creation and termination overhead. Third, static

scheduling can be used to foretell the expedite that can be

attained by a meticulous parallel algorithm on a target

machine, presuming that no pre-emption of processes occurs.

The scheduling problem has - next to search for a most

favourable mapping of the task and their sequence of

execution and also search for a best possible configuration of

the parallel system. The [4] computational convoluted course

cannot be executed on the parallel computing machine in an

acknowledged interval time. So to avoid such type of

hindrance, the big task must be divided into small sub-process

and further the sub-process can be executed either in the

expensive multiprocessor or in the parallel distributed system.

An entire parallel system is superlative and can be employed

due to its cost and performance ratio.

There are two different types of scheduling problems, they are

given below:

(1) Job scheduling and

(2) Task scheduling.

Job scheduling compacts with the scheduling of autonomous

jobs; whereas tasks scheduling is linked to scheduling of tasks

belonging to a solitary application program. In general the aim

of job scheduling is to have first-rate load balancing amid the

processors, whereas for the later minimization of overall

execution time is the main concern [5]. The chief intention

behind both is to exploit the parallel system’s throughput by

effecting maximum number of jobs in the given time span.

Load balance [6] is considered as a major problem in parallel

computing when scheduling is for multiple jobs with limited

resources where more number of jobs is required to run on the

same processor again and again. The load balance should be

minimized to prevent the system throughput and efficiency

thus the job is optimized with load balance also to run on the

appropriate processors.

Heuristic optimization algorithm [6] is broadly used to solve a

diversity of NP-complete problems. Abraham et al and Braun

et al [7] proposed three basic heuristics implied by Nature for

Grid scheduling, namely Genetic Algorithm [8], Simulated

Annealing [9] and Tabu Search [10], and heuristics derived by

a combination of these three algorithms. GA and SA are

powerful stochastic optimization methods, which are inspired

form the nature. GA is simulated the evolutionary natural

selection process. The improved solution of generation is

estimated according to the fitness value and the candidates

with better fitness values are used to generate additional

solutions through crossover and mutation processes.

Simulated annealing is based on the process of annealing

about the solid matter in physics. Both methods are valid and

have been applied in various fields due to their strong

convergence properties.

If these criteria’s are considered then there will be another

issue often occurred in parallel computing, called processor

idle time. During the optimization some processors may be

left alone by does not allocate any jobs on to them where the

act is called as an idle time of a processor. This idle time is

subject to discard by assigning task duplication in which a

task is duplicated and allocated to respective processors that

may have dependent relationship with some other tasks and

are executed concurrently. These are the significant concerns

takes place in parallel processing which encourage performing

various investigations and optimization techniques for

scheduling to conquer the problems arise in parallel

computation. In this paper, the task scheduling problem

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

35

having some specific characteristics are discussed, genetic

approach is discussed in detail in the next section and the last

section presents experiments and results.

The paper is structured as section 2 specifies the related task

scheduling works in literature; the genetic algorithm is

explained in section 3 and the experimental results are

discussed in the next section. The work is finally concluded in

section 5.

2. RELATED WORKS
Moraglio et.al [11] have presented a new technique that uses a

population of Taboo Search runs in a Genetic Algorithm

structure: GAs focuses high-quality areas of the solution space

so that TS can start its search with capable initial solutions.

The curiousness of the Genetic Algorithm they propose

consists in a natural demonstration which covers all and only

the feasible solution space and assurances the transmission of

meaningful description. The results show that this technique

outperforms many others generating best worth results in less

time.

Ratan Mishral and Anant Jaiswal [12] have proposed this

paper based on Ant Colony optimization to resolve the

problem of load balancing in cloud environment. In this

paper, a heuristic algorithm based on ant colony optimization

has been anticipated to instigate the service load distribution

underneath cloud computing architecture. The pheromone

update mechanism has been proved as an efficient and

effective tool to balance the load. This adaptation ropes to
minimize the make span of the cloud computing based

services and portability of checking the request also has been

congregating using the ant colony optimization technique.

Z. Pooranian et.al [13] proposed this paper for the rationale of

task scheduling. In this paper the researchers unite the genetic

algorithm and GELS (GAGELS) as a scheme to resolve

scheduling trouble by which concurrently pay attention to two

factors of time and number of missed tasks. Results illustrate

that the anticipated algorithm can diminish make span while

decreasing the number of missed tasks contrasted with the

conventional methods.

Dervis Karaboga and Bahriye Basturk [14] have proposed this

paper to demonstrate the evaluation results on the presentation

of the Artificial Bee Colony (ABC) algorithm for embarrassed

optimization exertions. The ABC algorithm has been initially

proposed for unhindered optimization troubles and showed

that it has better performance on these kinds of problems. In

this paper, the ABC algorithm has been unmitigated for

solving inhibited optimization problems and functional to a

set of constrained problems.

Mohammad Shojafar et.al [15] have proposed this work by

focus of the present involvement, where they have urbanized a

new hybrid scheduling algorithm GGA that coalesces GA and

the gravitational emulation local search (GELS) algorithm.

The remarkable feature of the proposed best possible

scheduler is that it reduces runtime and the number of

acquiesced tasks whose deadlines are missed. An evaluation

of the concert of their proposed joint optimal scheduler to

similar techniques shows that it produces more optimal

computation time.

Rizos Sakellariou and Viktor Yarmolenko [16] have proposed

this paper, they squabble for the need to afford more

flexibility in the level of service accessed by Grid-enable

high-performance, parallel, supercomputing possessions. It

foresees that such need could be contented by making detach

Service Level Agreements (SLAs) between the resource

owner and the user who wants to submit and run a job on

these resources. A number of issues related to the

materialization of this vision are highlighted in the paper.

Vishnu Kant Soni et.al [17] have proposed this paper and

evaluates an extension from Computational-Communication

to Computational- Communication-Memory based Grouping

Job Scheduling strategy. This approach exploits the

consumption of Grid resources, decreases processing time of

jobs and network delay to programmed and execute jobs on

the Grid. The sculpt exchanges light weight jobs into coarse-

grained job or grouped job according to the necessity jobs and

source capacity. This Grouping technique courts the

processing power, memory-size and bandwidth desires of

each job to recognize the real grid system. The investigational

grade shows that the proposed scheduling algorithm

resourcefully reduces the processing time of jobs in

comparison to others.

U. Karthick Kumar et.al [18] have proposed this paper, that a

Load balancing algorithm for fair scheduling, and they

compare it to other scheduling schemes for a computational

grid. It addresses the fairness issues by using mean waiting

time. It scheduled the task by using fair completion time and

rescheduled by using mean waiting time of each task to attain

load balance. This algorithm method tries to offer optimal

solution so that it diminishes the execution time and expected

price for the execution of all the jobs in the grid system is

minimized.

S. Selvi et.al [19] have proposed this paper in which they

introduce a novel approach based on Differential Evolution

algorithm for scheduling jobs on computational grid. The

proposed approach creates an optimal programmed so as to

fulfill the jobs within a minimum period of time and

exploiting the possessions resourcefully. Grid computing

refers to the amalgamation of computer assets from multiple

secretarial provinces to reach common goal. Grids offer a way

of using the information technology possessions optimally

inside an association. Grid environments assist distributed

estimation. Hence the scheduling of grid jobs should be

measured as an important issue.

Jim Blythe et.al [20] have proposed this paper by recognizing

two families of resource allocation algorithms: task-based

algorithms, that greedily allocate tasks to resources, and

workflow-based algorithms, that search for a proficient

allotment for the complete workflow. They evaluate the

performance of workflow-based algorithms and task-based

algorithms, using simulations of workflows drawn from a real

submission and with varying ratios of computation cost to

data transfer cost. They examine that workflow-based

advances have a probable to work better for data-intensive

functions even when assess about future tasks are erroneous.

Angelos Michalas et.al [21] have proposed this work of task

scheduling problem in Grid computing surroundings has been

addressed. To determine the problem a set of Grid Services

are definite and implemented conforming to the OGSA

standards. The proposed scheduling architecture is

semantically improved and affords the most apposite

obligation of tasks to computing resources, given the current

load conditions of each computing resource and the network

status. The Ant Colony Optimization algorithm (ACO) was

used to efficiently assign tasks to computing resources.

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

36

3. MULTIPROCESSOR TASK

SCHEDULING
Several parallel applications contain various functional units.

Whereas the execution of some of the tasks depends on the

output of the additional tasks, others can be executed

individually at the same time, which escalations parallelism of

the problem. The task scheduling problem is the difficulty of

conveying the tasks in the multiprocessor system in a manner

that will improve the overall performance of the application,

while improving the efficiency of the outcome.

Multiprocessor scheduling problems can be categorized into

many different sorts based on characteristics of the program

and tasks (R) to be arranged, the multiprocessor system, and

the accessibility of information shown in fig 1.

Fig 2: A sample directed acyclic graph

The two main categories of Multiprocessors Task scheduling

are: Static and dynamic task scheduling. A static or

deterministic task scheduling is one in which preference

constrictions and the associations mid the assignment are

known well in progress while non-deterministic or dynamic

scheduling is one in which these evidence is not known in

advance or not known till run time. Static task scheduling

algorithms can be categorized into two parts: Heuristic Based

and Guided random Search Based Algorithms. Heuristic

based algorithm quests a path in the solution space based on

the heuristic used while snubbing other probable paths. List

scheduling algorithms, clustering and duplication based

algorithms come in the same category. In List Scheduling

algorithms, each query is allocated significance then added to

a queue of waiting queries in order of diminishing importance.

As processors become free, the task with the highest priority

is removed from the queue and allotted to the most suited

processor. In Clustering Heuristic, tasks of a given task graph

are mapped into an unrestricted number of clusters. In this

heuristic, each reiteration hones the foregoing clustering by

merging some clusters. If two tasks are dispensed to the same

cluster, they will be accomplished on the same processor. In

replication based algorithm, scheduling of a task graph is done

by mapping some of its task excessively, which reduces the

inter process communication overhead.

4. PROBLEM FORMULATIONS
Scheduling problems with the below given characteristics are

considered in this work:

1. Tasks are non initiative in general. Preference

relations between the tasks exist.

2. Cost for communication does not exist.

3. In a Multiprocessor System, all the processors are

heterogeneous denotation thereby a task may take

unlike execution time on each processor.

The three main components of Scheduling are: A

multiprocessor system, an application and an objective for

scheduling. The multiprocessor system consists of a limited

number of fully connected heterogeneous processors (HP1,

HP2... HPm). An application comprises tasks and their

dependencies on each other. It can be represented as a directed

acyclic graph (DAG), (see Fig.2) G = (V, E, W), where the

vertices set V consists of v non-initiative tasks, and vi denotes

the ith task. The edge set E represents the precedence
Relationship among tasks. A directed edge eij in E indicated

that vj cannot begin its execution before receiving data from

vi. W is a matrix of vxm, and wij in W represents the estimated

execution time of vi on jth processor A directed edge eij in E

indicated that vj cannot begin its execution before receiving

data from vi. W is a matrix of vxm, and wij in W represents the

estimated execution time of vi on jth processor.

.

Fig 1. Classification scheduling algorithm

R1

R2

R4

R6

R3

R5

Guided Random Search Algorithm

Static Task Scheduling Algorithm Dynamic Task Scheduling Algorithm

Task Scheduling Algorithm

Heuristic based Algorithms

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

37

5. GENETIC ALGORITHM

STRUCTURE
Genetic algorithm structure for scheduling problem depends

on five things which are as follows:

 Representation of chromosomes.

 Construction of genetic operators.

 Selection of Fitness Function.

 Probabilities that can control genetic operators.

 Generation count.

The output obtained and the performance of genetic

 algorithm is greatly influenced by the above

 objectives A Genetic Algorithm Structure consists

 of the following steps:

 Initialization – Defining the population.

 Evaluation – estimate the chromosome using fitness

function.

 Genetic operations –Selection of parent

chromosomes, perform genetic operators on them to

generate new children chromosome.

5.1 Population Initialization
In Genetic Algorithm initializing the chromosome is an

important task. The chromosome structure is defined as a
combination of two strings SQ and SP of length same as the

number of tasks. SQ (scheduling queue) maintains superiority

constraints between tasks, and an item in TS denotes a task to

be scheduled. An entry in SP (scheduling processor)

represents the processor the corresponding task is scheduled

onto. The generation of chromosome is explained in the below

steps:

 1: A task is selected randomly from the entire entry tasks.

This task is scheduled as the first task in SQ.

2: Repeat step 3 for (v-1) times.

3: Select a task randomly that is not in SQ with its

predecessors all have been in SQ, this task is added to SQ.

Steps 2 and 3 are repeated until termination condition reached

 4: In SP, an integer number between 1 and m for each task in

SQ is randomly generated and add it to SP.

5.2 Estimation and Selection
In genetic algorithm the fitness function is a exclusive

objective function that should be enhanced to solve the

problem. The chromosomes are evaluated using the fitness

function. The fitness function is defined as:

F (i) = (maxCT-CT (i) +1/ (maxCT-minCT+1) (1)

where:

MaxCT and minCT is the maximum and minimum

completion time of chromosomes in current generation,

respectively. CT (i) is the completion time of the ith

chromosome. After evaluating the fitness values of all the

chromosomes the higher fitness value chromosome are

selected.

5.3 Crossover and Mutation

5.3.1 Crossover
Crossover mechanism reproduces new children chromosomes

which have some parts of both parent's chromosomes. The

common type of crossover is a single-point crossover.

Multipoint crossover uses m randomly chosen crossover

positions. Bits between successive crossover points are

exchanged producing two new offspring. As the chromosomes

comprises two separate parts SP and SQ having dissimilar

distinctiveness, for each part here employ different crossover

policies. In this randomly select one or the second part and

apply two different crossover operators for these two parts.

Details about crossover are given in following steps:

 C1: Input the Crossover probability Pc.

 C2: Randomly select pairs of chromosomes and

generate a float number (FLC) between 0 and 1 for

each pair.

 C3: If FLC <= Pc, then recur step CR4 to step CR5.

Else unswervingly reproduce those two

chromosomes to the next generation.

 C4: Arbitrarily produce two crossover points, p and

q, between 1 and v and crossover flag CF between 0

and 1.

 C5: If CF=0 then rearrange the order of tasks in SQ

between p and q of one chromosome according to

the order of tasks of another chromosome, the rest

of the two chromosomes are continued. Else

exchange the part in SP between p and q of two

chromosomes and the rest of the two chromosomes

are remained.

5.3.2 Mutation
Mutation is a genetic operator that alters one or more gene

values in a chromosome from its primary state. This can result

in completely new chromosomes being added to the

population. With these new chromosomes, the genetic

algorithm may be able to achieve a better solution than was

formerly possible. Mutation can be considered as a random

alternation of the individual. Then employ two policies to

mute the chromosome as given in following steps:

 M1: Input the Mutation probability Pm.

 M2: For each chromosome, generate a float number

(FLM) between 0 and 1.

 M3: If FLM <= Pm, then repeat step MT4 to step

MT5 Else directly reproduce this chromosome to

the next generation.

 M4: Randomly generate a mutation point p between

1 and v and mutation flag MF between 0 and 1.

 M5: If MF=0 then select randomly a location

between location of the nearest immediate

predecessor and that of successor of sqp. Then move

sqp to this location. Else change randomly the

processor of sqp between 1 and m as spp.

5.3.3 Performance Evaluations
The implemented system automatically generates the

scheduling problems of required sizes. These have been done

to avoid biasing in giving values of dissimilar parameters

necessary for the problems. The proposed system fits random

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

38

values to these parameters in suitable ranges. The produced

problems for our experiments with the subsequent uniqueness:

 Size of problem ranges from 25 to 65 with an

interval of 5.

 There is no limit on the number of successors of

each task except the exit task which does not have

any successor.

 The execution time for each task is a random

number between 5 and 25.

 Number of processors varies from 4 to 8 according

to the size of problems.

As here not put any restriction over the number of successor a

task may have, task graph may be much problematical. So, the

problems have chosen may be judged complex in comparison

to the kind of problems that was normally seen in literature,

where a constraint on maximum number of successor tasks

has been put.

6. EFFECT OF MUTATION

PROBABILITY ON THE

PERFORMANCE OF GA
As mutation is the solution to modify the section of search

space, mutation probability may have leading role in finding

solutions of good quality. Thus, experiments are repeated by

fixing crossover probability and changing mutation

probabilities from 0.05 to .40 and noted average schedule

lengths. Experiments had been done on the problem having

size 65. Here observation shows similar trend in the problems

of all sizes. The below graph shows the further average of

results, mixing the effect of all crossover probabilities which

clearly shows that up till mutation probability is .20, increase

in mutation probability leading to better results. After .20

results are fluctuating in a small range but normally are not

better than that obtained for .20. So, here it was found best

mutation probability for our set of problems as .20.

 Fig. 3. Effect of mutation probability on avg. schedule length

Fig4. Comparison on Speedup with 3 processors

The efficiency, schedule length, speedup and utilization can

be computed for three processors with GA approach is shown

as below:

i). 𝑆𝑐𝑕𝑒𝑑𝑢𝑙𝑒 𝐿𝑒𝑛𝑔𝑡𝑕 = 𝑚𝑎𝑥 {𝐸_𝑇𝑖𝑚𝑒 (𝑡𝑖)} = 33.0

(Because the three processors have the execution time as 33,

32 and 31 respectively)

ii). 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =
𝑆𝐿

𝐴𝑣𝑔(𝑃𝑇)
 = 33.0/52.0 = 0.6346

(SL is the schedule length and it is 33.0. Average processor

time for three processors is 52.0 (33.0+10+9), which was

computed through the simulator.)

iii). 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
 = 0.6346/3 =

0.2115

0

0.5

1

1.5

2

10 Tasks 20 Tasks 30 Tasks

No. of Tasks

Sp
ee

d

R
at

e

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

39

Table 1: Parameters Analyzed with three processors

Parameters

Analyzed with Four

Processors

GA

3 4 5

F
o

r
1
0

 T
a

sk
s

Efficiency 0.1136 0.1052 0.1136

Schedule

Length

20.0 16.0 30.0

Speed Up 0.4545 0.4210 0.4545

Utilization 1.0 0.9531 0.9166

Fig.5. Comparison of Efficiency with 4

processors

Where,

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑝𝑗 =

 𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑁𝑜.𝑜𝑓 .𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠 𝑁𝑜 . 𝑜𝑓 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

𝑗=1

𝑁𝑜.𝑜𝑓 .𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟𝑠

Average Execution time of three processors =

32.333

Load Balance = 33.0/32.333 = 1.0206

iv). Utilization =
 𝐹𝐸𝑃𝑃𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

FEP for processor LB1 = 33/33 =1

FEP for processor LB2 = 30/33 = 0.9090

FEP for processor LB3 = 1.0301

Total FEP for three processors is = 2.9391

Utilization = 2.9391/3 = 0.9797

The above Table shows the efficiency, schedule length,

speedup, and utilization. The table is made throughout with

four processors with a dynamic number of tasks and

duplicated tasks. The efficiency of the parallel processor is

calculated as follows:

𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =
𝑆𝑝𝑒𝑒𝑑𝑢𝑝

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

Table 2: Parameters analyzed with four processors

Parameters

Analyzed with

Three Processors

GA

3 4 5

F
o

r
1
0

 T
a

sk
s

Efficiency 0.2115 0.1842 0.30952

Schedule

Length

33.0 21.0 39.0

Speed Up 0.6346 0.5526 0.9285

Utilization 0.9797 0.9682 0.8888

The formula of efficiency derives the speedup of the

processor with the all parallel processors which is taken into

account.

The efficiency of the parallel processors is high using the

proposed GA. Finally, the utilization of the parallel processors

can be defined as follows:

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 =
 𝐹𝐸𝑃𝑃𝑖

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟

 Where 𝐹𝐸𝑃𝑃𝑖

denotes each processors scheduling time and 𝐹𝐸𝑃𝑃𝑖
 is

calculated as follows:

𝐹𝐸𝑃𝑃𝑖
=

𝑃𝑖
𝑡𝑕𝑆𝐿

𝑆𝐿

 Where 𝑃𝑖
𝑡𝑕𝑆𝐿

denotes the 𝑖𝑡𝑕 processors schedule length and 𝑆𝐿 denotes the

processors maximum schedule length among all the parallel

processors.

7. CONCLUSIONS
In this paper, genetic algorithm for task scheduling in parallel

systems is implemented. The genetic operations like crossover

and mutation take place as usual to maintain the diversity

among the chromosomes. The parameters taken are schedule

length, efficiency, and utilization. And also have assembled a

system which automatically generates the problems of

required sizes and also fits values to the parameters. The

performance of our algorithm for robustness is analyzed. It

has been seen that in GA, Average Schedule Length

continuously decreases as the number of generation increases.

This shows that genetic algorithm is robust and gives a

guarantee for good results. Lastly, the effect of mutation

probability on the performance of GA is analyzed. It was

found that mutation is a mechanism to avoid premature

convergence. Mutation can be considered as an occasional

random alternation of the value of a string.

8. REFERENCES
[1] J Weinberg, "Job Scheduling on Parallel Systems", Job

Scheduling Strategies for Parallel Processing, 2002.

[2] CH Xia, G Michailidis, N Bambos, "Dynamic on-line

task scheduling on parallel processors", Performance

Evaluation, Elseiver 2001.

[3] Esquivel S.C., Gatica C. R., Gallard R.H, "Solving the

parallel task scheduling problem by means of genetic

algorithm", National Agency to Promote Science and

Technology.

0

0.05

0.1

0.15

0.2

0.25

0.3

10 Tasks 20 Tasks 30 Tasks

Ef
fi

ci
en

n
cy

No. of
Tasks

International Journal of Computer Applications (0975 – 8887)

Volume 108 – No 16, December 2014

40

[4] Rachhpal Singh, "Genetic Algorithm for Parallel Process

Scheduling", International Journal of Computer

Applications & Information Technology Vol. 1, 2012.

[5] U.Karthick Kumar, “A Dynamic Load Balancing

Algorithm in Computational Grid Using Fair

Scheduling”, IJCSI International Journal of Computer

Science Issues, Vol. 8, Issue 5, No 1, 2011.

[6] Lei Zhang, Yuehui Chen, Runyuan Sun, Shan Jing and

Bo Yang, "A Task Scheduling Algorithm Based on PSO

for Grid Computing", IEEE, vol 2, 2006.

[7] Abraham, R. Buyya and B. Nath, Nature's Heuristics for

Scheduling Jobs on Computational Grids, The 8th IEEE

International Conference on Advanced Computing and

Communications (ADCOM 2000), pp. 45-52, 2000.

[8] S. Song, Y. Kwok, and K. Hwang, "Security-Driven

Heuristics and A Fast Genetic Algorithm for Trusted

Grid Job Scheduling", IEEE International Parallel and

Distributed Processing, pp.65-74, 2005.

[9] J.E. Orosz and S.H. Jacobson, Analysis of static

simulated annealing algorithm, Journal of Optimization

theory and Applications, pp. 165-182, 2002.

[10] R. Braun, H. Siegel, N. Beck, L. Boloni, M.

Maheswaran, A. Reuther, J. Robertson, M. Theys, B.

Yao, D. Hensgen and R. Freund, “A Comparison of

Eleven Static Heuristics for Mapping a Class of

Independent Tasks onto Heterogeneous Distributed

Computing Systems”, pp. 810-837, J. of Parallel and

Distributed Computing, vol.61, 2001.

[11] A. Moraglio, H.M.M. Teneikelder, R. Tadei, "Genetic

Local Search for Job Shop Scheduling Problem",

Technical Report CSM, 2005.

[12] Ratan Mishra1 and Anant Jaiswal, "Ant colony

Optimization: A Solution of Load balancing in Cloud",

International Journal of Web & Semantic Technology,

Vol.3, 2012.

[13] Z. Pooranian, A. Harounabadi, M. Shojafar and N.

Hedayat"New Hybrid Algorithm for Task Scheduling in

Grid Computing to Decrease missed Task", World

Academy of Science, Engineering and Technology, Vol-

5, 2011.

[14] Dervis Karaboga and Bahriye Basturk, "Artificial Bee

Colony (ABC) Optimization Algorithm for Solving

Constrained Optimization Problems", IFSA, pp. 789–

798, 2007.

[15] Zahra Pooranian, Mohammad Shojafar, Reza Tavoli,

Mukesh Singhal, Ajith Abraham, "A Hybrid

Metaheuristic Algorithm for Job Scheduling on

Computational Grids", Informatica, pp 157–164, 2013.

[16] Rizos Sakellariou and Viktor Yarmolenko, "Job

Scheduling on the Grid: Towards SLA-Based

Scheduling".

[17] Vishnu Kant Soni, Raksha Sharma, Manoj Kumar

Mishra, "Grouping-Based Job Scheduling Model In Grid

Computing", World Academy of Science, Engineering

and Technology, Vol: 4, 2010.

[18] U.Karthick Kumar, "A Dynamic Load Balancing

Algorithm in Computational Grid Using Fair

Scheduling", International Journal of Computer Science

Issues, Vol. 8, 2011.

[19] S.Selvi, Dr. D.Manimegalai and Dr.A.Suruliandi,

"Efficient Job Scheduling on Computational Grid with

Differential Evolution Algorithm", International Journal

of Computer Theory and Engineering, Vol. 3, 2011.

[20] Jim Blythe, Sonal Jain, Ewa Deelman, Anirban Mandal,

and Ken Kennedy "Task Scheduling Strategies for

Workflow-based Applications in Grids".

[21] Angelos Michalas, and Malamati Louta, "Adaptive Task

Scheduling in Grid Computing Environments".

IJCATM : www.ijcaonline.org

