
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 17, December 2014

12

Comparison of Efficient Parallel Index Algorithms used for

RDF Data Store

Rajani Sharma
Graphic Era University (Dehradun, India)

Rajender Kumar Trivedi, Ph.D.

Graphic Era University (Dehradun, India)

ABSTRACT
GPU acceleration of compute-intensive applications has emerged

as a new research frontier with phenomenal success- rates. Such

applications are characterized by large data-sets being processed

by singular functional units (FUs) often described as SIMD (Single

Instruction Multiple Data) computing.

Moreover, with the proliferation of internet and its easy access on

myriad devices, has resulted in huge amount of data generation.

Initially, such data was considered disconnected and not related.

But with the advent of semantic web, data has been found to be

highly co- related and relevant. Organizing such huge amount of

data and subsequently processing requires parallel processing

framework that is both distributed and scalable. Graphical

processing units (GPUs) are being actively probed in the

domain of Big Data analysis, machine learning, and augmented

reality since such applications are characterized by massive data

spanned and generated over distributed network. GPUs provide a

parallel programming framework using CUDA (Compute Unified

Device Architecture) that can be utilized to efficiently collate and

make inferences on these massive data-sets. Further, GPU

multicores are available at commodity rates thus providing an

option for cheap and low-power alternatives.

The exponential growth of semantic web and the resultant

generation of large-scale RDF (Resource Description

Framework) triples pose new challenges in the domain of RDF-

storage and retrieval. RDF data consist of triples <Subject,

Predicate, and Object> which need to be efficiently indexed.

Following are some of the many challenges related to efficient

indexing of RDF triples:

 As RDF-triples extensively contain recursive

redundancies, self-joins so formed are inefficient.

 Self-joins also lead to large scale null values.

This paper presents the research initiatives of conducting

literature survey of contemporary indices including those

under active research, which matches the goals as outlined in

above sections. Comparing the efficiency of different variety of

indices that have been suggested for large data-sets (Map reduce,

B+ tree Hashed Index, 3-level-cascade hash index, braided B+ tree

index, etc.)

Keywords
RDF, Semantic Web, Graphical Processing Unit (GPU), Compute

Unified Device Architecture (CUDA), Hashed B+ tree indexing.

1. INTRODUCTION
The presence of semantic web with RDF as one of the major

component of same has increased tremendously to represent

data over the web. Resource Description Framework presents

several challenges to competent storage, indexing mechanisms

and querying software. RDF being a graphical database does not

bound to any specific structure poses big challenges for efficient

indexing mechanisms. This makes storing and querying RDF and

RDF schema a big challenge for applications on semantic Web.

Many indexing algorithms are being proposed for organizing

RDF with major stress upon their efficiency to handle large scale

data which is due to exponential growth of semantic web over

internet. The idea of increasing performance of systems for data

analysis with help of GPUs itself isn't new. Various researches

have been done with combination of distributed databases like

(Hadoop or Map-Reduce) and capacities of a GPU. First Map-

Reduce framework (Mars) for graphics processors achieved a 1.5

to 16 times increase in performance when analysing web data and

processing web documents. Later based on Mars many more

tools came into picture. With this paper the first step of

comparison of already proposed methodologies and their

efficiencies in indexing and querying RDF data is attempted.

2. COMPARISONS OF DIFFERENT

PROPOSED METHODOLOGIES FOR

RDF INDEXING AND QUERYING.
A. Querying RDF Data from a Graph Database Perspective

This paper presents the RDF model from a database perspective;

contrast it with other conceptual database models, focusing on

query languages and graph databases. This paper proposes that

primitives of query language of graph database needs to be

included in RDF query language.

The following process is used in the mentioned paper:

1 Compare the RDF representation with

conventional conceptual database representations

considering particular stress in graph database

representations.

2 Learn recent RDF query languages with

respect to their competencies to support graph-like

queries and to evaluate theirshortcoming in

performance and efficiencies.

3 Review the concept, procedures and

structures developed in the field of graph

database query languages, and their performance

and efficiency when applied to the RDF model.

4 Recommend rules/procedures for RDF query

languages based on the graph database

understanding.

There are some results which are gathered from comparisons

done on different perspective.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 17, December 2014

13

Table 1: Summary of comparison among different database models. .The parameters are: abstraction level, complexity of data

items modeled, degree of connectivity among the data and support to get this information, and finally, flexibility to store

different

PROPERTY RQL SeRQL RDQL TRIPLE N3 VWRSA RxPath

Adjacent nodes Partial
support

Partial
support

Partial
support

Partial
support

Partial
support

Partial
support

No
support

Adjacent edeges Partial
support

Partial
support

Partial
support

Partial
support

No
support

No
support

No
support

Degree

of a node

Partial
support

No
support

No
support

No
support

No
support

No
support

No
support

Path No
support

No
support

No
support

No
support

No
support

No
support

Partial
support

Fixed- Length-

Path

Partial
support

Partial
support

Partial
support

Partial
support

Partial
support

No
support

Partial
support

Distance between
two nodes

No
support

No
support

No
support

No
support

No
support

No
support

No
support

Diameter No
support

No
support

No
support

No
support

No
support

No
support

No
support

Table 2: Support of some current RDF query languages for some example graph property

MODEL LEVEL DATA
COMPLEX

CONNECTIVITY TYPES of DATA

Network Physical Simple High Homogeneous

Relational Logical Simple Low Homogeneous

Semantic User Simple/

Medium

High Homogeneous

Object-O Logical/

physical

Complex Medium Homogeneous

XML Logical Medium Medium Homogeneous

RDF Logical Medium High Homogeneous

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 17, December 2014

14

B. Exchange and Consumption of Huge RDF Data

This paper shows how to improve the exchanged HDT (Header,

Dictionary, Triples) with supplementary structures to hold some

basic forms of SPARQL query decision without the need of

"unpacking" the data.

Using an step to lightweight data exchange is a compressed

(binary) RDF serialization format called HDT.(HDT (Header-

Dictionary-Triples) is a binary serialization format which

organizes RDF data in three logical components. The

Header includes logical and physical metadata describing the

RDF dataset and serves as an entry point to its

information. The Dictionary provides a catalog of the terms used

in the dataset and maps them to unique integer IDs. It enables

terms to be replaced by their corresponding IDs and allows high

levels of compression to be achieved. The Triples

component represents the pure structure of theunderlying

graph after the ID replacement.)

As the advantage the experiment shows that the exchanged

RDF data become direct and easily query able:

1 with an switching competence that performs better

than common compression,

2 Post-processing now becomes a fast process which

3 Provides competitive query performance at

consumption.

C. Storing and Indexing Massive RDF Data Sets
A general survey of the current state of the art in RDF storage

and indexing. Identify three different perspectives on RDF:

(1) A relational erspective

(2) An entity erspective

(3) A graph-based erspective.

D. Effective and Efficient Entity Search in RDF Data
The paper proposed a method for useful and competent entity

search over RDF data. It also described an variation of the

BM25F grading function for RDF data, and shows that it

performs better than other up to date procedures in ranking RDF

resources. It also projected a set of new indexing data

structures for competent recovery and grading of outcome

which were implemented using the open-source MG4J

framework.

The paper tried to evaluate the effective and efficiency of the

index structures (vertical and horizontal).

This paper showed that each of these features contributes to

effectiveness on its own and in combination with other features. In

cross-validation, the combination of these features outperforms in

effectiveness the baseline BM25 method that ignores RDF

structure and semantics by 50% in MAP score. It also improves on

other State-of-the-art methods on the ad-hoc object retrieval task

by 42% in MAP and 52% in NDCG scores.

E. Cost Analysis of Joins in RDF Query Processing Using the

TripleT Index

This work can be viewed as a continuation of the work on an RDF

indexing technique called TripleT, developed in 2008 by Fletcher

and Beck [2]. Using TripleT as the framework, the goal is to better

understand the requirements for building an effective SPARQL

query optimizer. Specifically, it studied the information necessary

to facilitate good join ordering. This research develop a model for

predicting the number of I/Os required for a join based on TripleT

using statistics that are easily collected during the creation of the

index. Experiments are conducted to validate the model.

Advantages

1 Synthetic benchmarks found that the nested-loop join

predictably performed much worse than the other two in

terms of CPU performance

2 Hash join was about an order of magnitude faster than

the sort-merge join when the latter had to sort the lists.

3 Benchmarks performed on real datasets showed much

smaller differences in CPU performance as there were

much fewer triples considered for the joins.

4 In terms of I/O performance, the nested-loop join was

about 10% worse than the hash join and sort-merge

join, which performed equally.

F. Suffix Arrays based Indexing Scheme for RDF and

RDF Schema
The paper proposed a scheme that first take out four types of

DAGs (Directed Acyclic Graphs) from an RDF data, and also take

out all path expressions from the directed acyclic graphs. Then, it

produced four types of suffix arrays based on the path expressions.

Using the indices, we can get resourceful processing of query

retrievals on RDF data as well as graphic information defined by

RDF Schema (for example, classes and/or properties).

G. An Efficient SQL-based RDF Querying Scheme
This paper explains the working of the RDF_MATCH

table function for querying RDF data, which can optionally

include user-defined rule bases, and discusses its

implementation in Oracle RDBMS is introduced with the

ability to perform pattern-based match against RDF data

(graph) that can optionally include triples inferred by

applying RDFS or user-defined rules. Users can do further

processing (iterate over, constrain using filter conditions, limit

the results, etc.) using standard SQL constructs.

The experiments are conducted using Oracle10g Release 1

(10.1.0.2.0) on a Red Hat Enterprise Linux AS 3 system with one

3.06GHz Pentium 4 CPU and 2048 MB of main memory. A

database buffer cache of 256 MB, shared pool of 256 MB, and

database block size of 8 KB is used.

The RDF_MATCH table function itself is implemented by

generating a SQL query against tables holding RDF data. For

resourceful query processing, generic and subject- property

matrix materialized join views, and indexes (on RDF data

and rulebases) are used. Furthermore, a kernel enhancement is

implemented that eliminates RDF_MATCH table function run-

time processing overheads.

Further work can be done with partial normalization, where only

the namespaces are normalized. That is, URIs are represented by

the (namespace identifier, URI suffix). Also, we plan to

enhance RDBMS optimizer to improve its capabilities in

optimizing the class of self-join queries that typically occur

while querying RDF data.

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 17, December 2014

15

H. Structure Index for RDF Data
To elaborate on a novel data partitioning strategy, this leverages

the structure of the underlying data. This structure is represented

inform of a parameterized structure index we propose for (RDF)

data graphs called PIG. It is not only used for data partitioning

but also has been designed to accelerate the matching of graph-

structured queries against RDF data.

We have proposed techniques for RDF data partitioning and

query processing that can exploit the underlying structure to

improve the management of RDF data, based on a novel

structure index call PIG. In an principled manner, we showed

that this approach is faster than the state-of-the-art, especially for

complex structured queries.

Methodology:

This approach gives an advantage by making process 7-8

times faster for a PIG that is parameterized according to the

query workload. According to author future work can be done to

elaborate on how existing work on RDF query optimization can

be used for the proposed structure-based query processing

technique. Further, strategies proposed for optimizing updates of

XML structure indexes will be studied and adopted.

2.1 Efficient parallel Index for RDF Data

Store using Graphical Processing Unit–

Literature Review
Nguyen et al (2012) have proposed a novel type of index

structure called a B+HASH TREE, which combines the strengths

of traditional B+ Trees with the fast constant-time lookup of

hash-based structures. This structure compares the two indexing

data structures (RDF-3X, B+ Hash) for index lookups. This

system enhances the B+ Tree with a Hash Map enabling constant

lookup and retrieval time instead of the common logarithmic

one. Although the proposed structure has certain advantages and

disadvantages but the results of this technique / structure are

scalable, updatable and lookup-

Table 3 Summary of support of some current RDF query languages for some example graph property

PROPERTY G G+ GraphLog Gram GraphDB Lorel F-G

Adjacent
nodes

partial
support

support Support support partial support partial support support

Adjacent
edeges

partial
support

support Support support partial support partial support support

Degree of a
node

No support support Support No support No support No info No support

Path support support Support support support support support

Fixed-
Length-Path

support support Support support support support support

Distance
between two
nodes

No support support Support No support No support No info No support

Diameter No support support Support No support No support No info No support

Optimized, on-disk index structure that is especially suitable for

the large key-spaces of RDF datasets.

RDF data management schemes are constrained in terms of

effectiveness and scalability; which means an competent RDF

storage format should propose both scalability in its data

management performance and simplification in its data

storage, processing and illustration. Weiss et al. (2008), in order

to achieve this double goal, proposed a novel approach to RDF

data management framework which is based on the scheme of

indexing the Resource Description Framework data in a multiple

index structure. This study compared the performance of

Hexastore approach with the representation of the column

oriented vertical-partitioning (COVP) and experimentally

documented the advantages of this approach on real-world and

copied data sets with realistic queries.

Neumann and Weikum (2008) presented the RDF-3X engine, an

execution of SPARQL that realizes outstanding performance

by following RISC-style design with a streamlined design

and carefully designed puristic data structures and procedures.

The performances of RDF-3X, in contrast to the earlier best

up to date structures has been

calculated on a number of comprehensive datasets with more

than 50 million Resource Description Framework triples and

standardize queries that consist of pattern matching and

extensive join paths in the original data graphs. This technique

presents a complete system, coined RDF-3X (for RDF Triple

eXpress), designed and implemented from scratch specifically

for the management and querying of RDF data.

Matono (2009) proposed two approaches for RDF query

processing such as paragraph table as an RDF storing scheme

that is based on the structure of RDF documents and the bloom

filter merge join is a merge join algorithm that is suitable when

the join selectivity is low. The RDF storing scheme concept is

based on that the structure of input data resembles that of queries

and the paragraph table stores RDF paragraphs into their

corresponding relational tables as they are without decomposing

or connection. Further, the study evaluated the approaches

through some experiments. In thesummation of the processing

times of all queries compared between the bloom filter merge

join (BFMJ) and sort merge join (SMJ).

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No 17, December 2014

16

3. CONCLUSION
We have presented the RDF model from a database perspective;

contrast it with other conceptual database models, focusing on

query languages and graph databases and described

variation of the BM25F grading function for RDF data, and

shows that it performs better than other up to date procedures in

ranking RDF resources. Also we have shown that how to we get

better performance using Storing and Indexing Massive RDF

Data Sets and exchanged HDT (Header, Dictionary, Triples)

with supplementary structures to hold some basic forms of

SPARQL query decision without the need of "unpacking" the

data. Proposes that primitives of query language of graph

database needs to be included in RDF query language. Therefore

in this paper we have presented comparison of different proposed

methodologies for RDF querying and indexing.

4. REFERENCES
[1] M.K. Nguyen, C. Basca and A. Bernstein, Speeding up on-

disk RDF index lookups using B+Hash Trees, 2012,

IOS Press, Zurich, Switzerland

[2] C. Weiss, P. Karras and A. Bernstein Hexastore:Sextuple

Indexing for Semantic Web Data Management, 2008, VLDB

Endowment, Auckland, New Zealand

[3] T. Neumann and G. Weikum, RDF3X: a RISCstyle Engine

for RDF, 2008, VLDB Endowment, Auckland, New Zealand

[4] A. Matono, A Storing Scheme and A Merge Join Algorithm

for RDF Query Processing, Jaban

[5] H. Stuckenschmidt, R. Vdovjak, J. Broekstra, Index

Structures and Algorithms for Querying Distributed RDF

Repositories. 2004, New York, USA

[6] Daniel J. Abadi · Adam Marcus · Samuel R. Madden · Kate

Hollenbach, SW-Store: a vertically partitioned DBMS for

Semantic Web data management. 2009, Springer-Verlag.

[7] P. Bakkum and K. Skadron, Accelerating SQL Database

Operations on a GPU with CUDA. 2010, Pittsburg, PA, USA

[8] M. A. Bornea, J. Dolby, A. Kementsietsidis, K.

Srinivas, P. Dantressangle, O.Udrea, B.Bhattacharjee,

Building an Efficient RDF Store Over a Relational

Database. 2013, New York, USA.

[9] R. Angles and C. Gutierrez, Querying RDF Data from a

Graph Database Perspective.

[10] M. A. Martínez-Prieto, Mario Arias, and Javier D.

Fernández. Exchange and Consumption of Huge RDF Data

[11] Y. Luo, F. Picalausa, G. H.L. Fletcher, J. Hidders,

and S.Vansummeren, Storing and Indexing Massive RDF

Data Sets

[12] R. Blanco, P. Mika, and S. Vigna, Effective and Efficient

Entity Search in RDF data

[13] K. Li. Cost Analysis of Joins in RDF Query Processing

Using the TripleT Index. 2008. Master Thesis. Faculty of the

Graduate School of Emory University.

[14] A. MATONO, T. AMAGASA, M. YOSHIKAWA, and S.

UEMURA, An Indexing Scheme for RDF and RDF Schema

based on Suffix Arrays

[15] E. I. Chong , S. Das, G.Eadon and J. Srinivasan, An Efficient

SQL-based RDF Querying SchemeProceedings of the 31st

VLDB Conference, Trondheim, Norway, 2005

[16] T. Tran and G.Ladwig, Structure Index for RDF Data.

Workshop on Semantic Data Management

(SemData@VLDB) 2010,September 17,2010, Singapore.

[17] YounHee Kim; ByungGon Kim; HaeChull Lim, "The

index organizations for RDF and RDF schema," Advanced

Communication Technology, 2006. ICACT 2006. The 8th

International Conference , vol.3, no., pp.4 pp.,1874, 20-22

Feb. 2006 doi: 10.1109/ICACT.2006.206357 keywords:

{database indexing; metadata;query processing;semantic

Web;RDFschema;graph models;index

organizations;indexing techniques;keyword index;keyword-

based query;metadata;ontology;path-based query;semantic

Web;Data models;Educational institutions;Image

databases;Indexing;Information resources;Information

retrieval;Ontologies;Resource description

framework;Semantic Web;Web pages;Index

schemes;Keyword-based query}, URL:

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1

625962 & isnumber=34122

IJCATM : www.ijcaonline.org

mailto:SemData@VLDB
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1625962&isnumber=34122
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1625962&isnumber=34122
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1625962&isnumber=34122
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1625962&isnumber=34122

