
International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 16, December 2014

28

An Efficient Algorithm for Mining Maximal Sparse

Interval from Interval Dataset

Naba Jyoti Sarmah
Dept of Computer Science

Gauhati University

Anjana Kakoti Mahanta
Dept of Computer Science

Gauhati University

ABSTRACT

Many real world data are closely associated with intervals.

Mining frequent intervals from such data allows us to group

those data depending on some similarity. A few numbers of

data mining approaches have been developed to discover

frequent intervals from interval datasets. Here we present a

complementary approach in which we search for sparse

intervals in data. We present an efficient algorithm with a

worst case time complexity of O(n log n) for mining maximal

sparse intervals.

General Terms

Data Mining, Algorithm.

Keywords

Interval Data, Sparse Interval, Maximal Sparse Interval.

1. INTRODUCTION
Most of the works in data mining focus on characterizing the

similarity of data values in large datasets. This includes

pattern mining [1], rule mining [2], classification, clustering

etc. The data patterns discovered by these techniques are

defined by some measure of similarity or by degree of

frequency or occurrence. Few works [3][4] have also been

carried out for mining rare item-sets, where the methods try to

find out those item-sets which are not frequent in general

frequency counting methods but have an importance in the

datasets. For example in a market basket datasets items like

rice cooker and cooking pan are not as frequent as butter and

bread since they are brought less frequently then other items

but this type of items may reveal some interesting buying

patterns. In our proposed work the less frequent intervals are

mined from the interval datasets.

Many real world data are associated with time, describing the

occurrence time of the event. For such datasets different

methods are developed such as temporal pattern mining [5]

[6], temporal rule mining etc. Most of the works done in this

field assume that the events are associated with a single

timestamp. Whereas in real life, there are events which cannot

be described by a single timestamp, for example call records

of different customers recorded by a telephone company

cannot be represented by single timestamps. This is because

each record is associated with two timestamps, starting and

ending time of the call. Another example can be the records of

the user‟s login and logout time in an online portal. If DBA

wants to record these data then DBA must record both starting

and ending time of the event. These types of data where two

timestamps are associated are referred as interval data.

Only few works have been carried out for interval datasets,

mostly for frequency counting of the intervals [10][12] and

for mining temporal relational rules of interval-based data. In

this paper, we propose a complementary method for

characterizing interval datasets; we focus on mining maximal

sparse intervals in the datasets.

Sparse intervals refer to those infrequent intervals all of

whose sub intervals are infrequent. Maximal sparse intervals

refer to those sparse intervals none of whose super intervals is

sparse. Here we propose a method for mining maximal sparse

intervals from interval datasets.

Clearly, knowledge about sparse intervals valuable, as it may

reveal some unknown correlation between data values which

can be exploited in applications. As an example, phone call

record of a cellular phone company can be considered, where

the company records the starting time and ending time of each

phone call. Mining sparse intervals from such data will

discover those intervals which are not frequent and by using

these intervals company can either prepare some plan or some

scheme to attract customers to these intervals or company can

take decision to use the channel for some other purpose.

Another example of such dataset is, web based learning

system where the students login and logout the system.

Mining sparse intervals from such datasets will allow the

system administrator to ask the faculty and research scholars

to use those intervals for uploading the study materials and

students to download the study material since less number of

users are available at those intervals. In the above systems

mining sparse intervals can play an important role in

improving the performance of the overall system.

In section 2.1 we discuss different related works available in

literature. In section 2.2 we introduce the different definitions

related to maximal sparse intervals. In section 2.3 we formally

introduce the problem of mining maximal sparse intervals. In

section 3.1 we discuss the different properties related to

maximal sparse intervals and prove them mathematically and

in section 3.2 we propose an algorithm for mining maximal

sparse intervals. Correctness of the algorithm has been proved

in section 3.3. Complexity analysis of the proposed algorithm

is given in section 3.4. We had tested the algorithm for real

life datasets and for synthetic datasets and results are given in

section 4. We also compare the performance of our proposed

algorithm with the existing algorithms. Conclusion and future

works are given in section 5.

2. RELATED WORKS AND PROBLEM

DEFINITION

2.1 Related Works
To our best knowledge Allen [7] first proposed a method for

maintaining knowledge about temporal intervals. In the paper

the author had proposed 13 possible relationships between

two intervals. A method for mining relationships among the

intervals also has been proposed in [7]. Kam and Fu [8]

proposed an Apriori based algorithm for mining temporal

patterns from interval based events based on the Allen‟s

temporal logic. Further Shin-Yi Wu and Yen-Liang Chen [9]

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 16, December 2014

29

shows that there are some ambiguity issues in Allen‟s method

and proposed a new representation of interval data and

proposed a prefix traversal algorithm for mining temporal

patterns from interval data.

Lin [10] has proposed a method for mining maximal frequent

intervals from interval datasets. He design a data structure

called I-Tree, first all the intervals are inserted into the I-Tree

and then finds out the maximal frequent intervals from that

I-Tree. Our work is basically a complementary work carried

out by Lin [10], here we focus on mining maximal sparse

intervals; i.e. we are mining those intervals which are not

covered by maximal frequent intervals. Further improvement

has been made for construction of the I-Tree in [11] where

authors proposed a faster method for construction of I-Tree. A

new approach for Mining Maximal Frequent interval has been

proposed by M. Dutta in [12], where authors proposed a

method for Mining Maximal Frequent intervals without

constructing the I-Tree.

Elbassioni [13] proposed an algorithm for mining minimal

infrequent multidimensional intervals. In this work author

uses the concept of lattice theory and proposed a method for

mining multidimensional infrequent intervals. In [14] authors

have proposed an algorithm for mining minimal infrequent

intervals. The authors use the algorithm for mining maximal

frequent interval proposed in [10] and [11] and proposed an

algorithm for mining minimal infrequent intervals. In this

process a lot of unit size intervals are generated, whereas it is

not the case for maximal sparse intervals.

In [15] author has proposed a method for mining maximal

sparse intervals. In that work authors use the maximal

frequent intervals mined by M. Dutta [12] to mine maximal

sparse intervals. For this the list of maximal frequent intervals

has to be known beforehand and for mining maximal frequent

intervals it takes O(n2) time and mining maximal sparse

intervals from the set of maximal frequent intervals takes O(n)

time. But our proposed algorithm takes only O(n log n) time

for mining maximal sparse intervals. So the proposed

algorithm is clearly an improvement over the existing

algorithm.

2.2 Preliminary Definitions
In the following section few definitions related to interval data

and maximal sparse intervals is given. These definition have

been taken from [15], only for shake of completeness it is

given here.

Interval: Given a totally ordered discrete domain D and

l, r ∈ D, a subset [l, r] of D defined by {z | l ≤ z ≤ r} is called

an interval. Here „l‟ is called the left endpoint and „r‟ is the

called the right endpoint of that interval. In our study we

consider only intervals which are closed. That is if [a, b] is an

interval and „x‟ is a point in the interval then a ≤ x ≤ b.

Transaction: A transaction „t‟ consists of a transaction id

and an interval [l, r]. The interval [l, r] is said to be the interval

associated with the transaction t and is denoted by I(t).

Dataset: A dataset ID is a dataset of n transactions, where

each transaction „t‟ contains a non-empty interval which is

represented by a pair of left end point and right end point.

Ordering of endpoints: Let us consider C ={a1, a2, … an} be

the collection of all end points corresponding to the intervals

in the dataset ID. Let lmin denote the smallest left end point and

rmax denote the largest right endpoint. Since the domain D is

totally ordered, the end points can be ordered in the ascending

order.

Containment of Interval (I1⊆I2): An interval I1 said to be

contained in another interval I2 if and only if l2 ≤ l1 ≤ r1 ≤ r2,

where I1 = [l1, r1] and I2= [l2, r2].

Proper Containment of Interval (I1⊂I2): An interval I1 said

to be properly contained in another interval I2 if and only if

l2 < l1 ≤ r1 ≤ r2 or l2 ≤ l1 ≤ r1 < r2 or l2 < l1 ≤ r1 < r2, where

I1 = [l1, r1] and I2= [l2, r2].

Support of an Interval: A transaction „t‟ supports an

interval [a, b], if [a, b] ⊆ I(t) i.e. lt ≤ a ≤ b ≤ rt if I(t)= [lt, rt].

For a given interval [a, b], sup([a, b]) will denote the number

of transactions in ID that supports [a, b].

Support of a point: Support of any point „x‟, where

lmin ≤ x ≤ rmax is the support of the interval [x, x] in the dataset

and the point is called frequent if the support of the interval

[x, x] is greater than equal to min_sup.

Frequent Interval: For a given support threshold min_sup

with 0 < min_sup ≤ n (where n = |ID|), an interval is called

frequent if its support is greater than equal to min_sup.

Obviously if [l, r] is frequent, then lmin ≤ l ≤ r ≤ rmax.

Infrequent Interval: An interval [l, r] will be called

infrequent if lmin ≤ l ≤ r ≤ rmax and it is not frequent.

Sparse Interval: A sparse interval is an infrequent interval

which does not properly contain any frequent interval except

the empty intervals which is always considered as frequent,

i.e. if an interval [l, r] is a sparse interval and [l’, rˊ] ⊂ [l, r]

where l’ ≤ rˊ, then [l’, rˊ] is infrequent.

Maximal Sparse interval: A maximal sparse interval is a

sparse interval which is not contained in any sparse interval,

i.e. if an interval [l, r] is a maximal sparse interval and

[l, r] ⊂ [l’, rˊ] then [l’, rˊ] is not a sparse interval.

2.3 Problem Definition
Let ID be the dataset of records or transactions, where each

record contains an interval I = [a,b] and if „x‟ is a point in the

interval [a,b] then a ≤ x ≤ b. Here we assume that the domain

of end points is discrete. The problem is to mine the maximal

sparse intervals from the dataset for a given minimum support

threshold value.

Let us consider the following example

Table 1: Interval Dataset

TID 1 2 3 4 5

Intervals [6, 9] [2,5] [8,12] [0,4] [15,19]

TID 6 7 8 9 10

Intervals [6,9] [8,11] [16,18] [12,16] [15,20]

Here the domain of endpoints is the set I (set of integers)

which is discrete. So each endpoint has a unique next

endpoint (except rmax) and a unique previous end point (except

lmin). Here lmin is 0 and rmax is 20.

If we consider the minimum support threshold as 2, we have

following maximal sparse intervals-

[0, 1], [5, 5], [13,14], [20, 20]

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 16, December 2014

30

And if minimum support threshold is 3, we have following

maximal sparse intervals-

 [0, 7], [10, 14], [19, 20]

3. ALGORITHM FOR MINING

MAXIMAL SPARSE INTERVALS

3.1 Theoretical Background
In the following section we prove certain theorems related to

maximal sparse intervals.

Theorem 1: For any l where lmin ≤ l ≤ rmax, l cannot belong to

both a sparse interval and a frequent interval.

Proof: This is because if l is in a frequent interval then [l, l] is

a frequent interval and this implies that l cannot be in a sparse

interval as all subintervals of a sparse interval are infrequent.

Theorem 2: If „a‟ and „b‟ are two consecutive endpoints in

the dataset then for any two points „x‟ and „y‟ such that

a < x < y < b, sup(x) = sup(y).

Proof: If there are no such two distinct points x and y then the

result is trivial. If there are, then let sup(x) > sup(y). Then

there must be some interval which contain „x‟ but not „y‟. If

such an interval exist then there must be an endpoint „e‟ such

that x ≤ e < y.

Which contradict that „a‟ and „b‟ are two consecutive

endpoints in the dataset.

Similarly we can show that sup(x)<sup(y) is also false.

Theorem 3: If [a,b] is a sparse interval and prev(a) (if

a ≠ lmin) and next(b) (if b ≠ rmax) are frequent then [a,b] is a

maximal sparse interval.

Proof: By the definition, a sparse interval is said to be a

maximal sparse interval if none of the super intervals of the

interval is sparse.

Here [a,b] is a sparse interval.

Now any super interval of [a,b] must contain either prev(a) or

next(b) or both.

It is given that prev(a) (if a ≠ l min) and next(b) (if b ≠ rmax) are

frequent.

None of the super intervals of [a, b] is sparse (since a sparse

interval cannot have frequent subintervals).

 [a, b] is a maximal sparse interval.

Theorem 4: If [a, b] is a maximal sparse interval and then the

immediate previous point of „a‟ (if a ≠ lmin) and the immediate

next point of b (if b ≠ rmax) in the underlying domain D (D is

discrete) belong to frequent intervals.

Proof: Let „a'‟ be the immediate previous endpoint of „a‟ and

a ≠ lmin. Then [a, b] ⊂ [a', b] and by the definition of maximal

sparse interval [a', b] can not a sparse interval. i.e. there is a

sub-interval of [a', b] which is frequent.

But this subinterval cannot be contained in [a, b] and so [a', a']

is the only possible candidate.

Similarly we can show that [b', b'] is a frequent interval if „b'‟

is a immediate next end point of „b‟ and b ≠ rmax.

Theorem 5: The maximal sparse intervals are mutually

disjoint.

Proof: Let [l’, r'] and [l’’, r''] be any two maximal sparse

intervals having non-empty intersection. Since both the

intervals are maximal, none is contained within the other.

Without loss of generality we can assume that l’’ ≤ r'. Now let

us consider the interval [l’, r'']. This interval is infrequent

since [l’, r'] is an infrequent subinterval of it. Also all its

subintervals are infrequent since any such sub interval is

contained in [l’, r'] or in [l’’, r''] or in both. Therefore [l’, r'']

is a sparse interval. This contradicts our assumption that [l’, r']

and [l’’, r''] are maximal sparse intervals.

Theorem 6: If [l, r] is a maximal sparse interval then „l ‟ is the

immediate next point of a right endpoint if l ≠ lmin and „r‟ is

the immediate previous of a left endpoint in the dataset if

r ≠ rmax.

Proof: Let [l, r] be a maximal sparse interval and l’ be the

immediate previous point of „l‟ in the domain D.

Then from theorem 3 it follows that „l’‟ is in a frequent

interval. This implies that there is at least one interval which

contain „l’‟ but not l. Now since there are no end points

between „l’‟ and l, „l’‟ has to be the right end point of that

interval.

Therefore „l‟ is the immediate next endpoint of a right

endpoint in the dataset if l ≠ lmin.

Similarly we can prove the result for the right end point „r‟.

3.2 Algorithm
Based on the theorems cited above, we have designed the

following algorithm. The correctness of the algorithm is

discussed in section 3.3. The algorithm for mining maximal

sparse interval has two parts. In the first part, endpoints are

sorted. In the process of sorting we follow the following rules-

If P & Q are two endpoints in the dataset then we say P < Q if

1. P < Q (i.e value of P is less than the value of Q) or

2. if P = Q and P is a left endpoint and Q is a right

endpoint

In the process of sorting we also keep the information about

whether the endpoint is a left endpoint or right endpoint.

Input: Endpoints of the intervals in sorted order and the

threshold k. The ordered list of end points is stored in an

array of structure named „ep‟. The structure contains an

endpoint and information regarding whether the endpoint is

left or right endpoint.

Output: Maximal sparse Intervals

Step 1 rc= ρ=0, MI=empty

Step 2 l = ep[1].e

Step 3 Repeat forever

Step 4 while(ρ<k)

Step 5 rc++

Step 6 if(rc>2N) GO TO Step26

Step 7 if(ep[rc].e is right)

Step 8 ρ = ρ - 1

Step 9 else

Step 10 ρ = ρ + 1

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 16, December 2014

31

Step 11 endif

Step 12 end while

Step 13 r = ep[rc].e

Step 14 if(l<r) append <l,prev(r)>

to MI

Step 15 while(ρ ≥ k)

Step 16 rc++

Step 17 if(rc>2N) GO TO Step26

Step 18 if(ep[rc].e is right)

Step 19 ρ = ρ - 1

Step 20 else

Step 21 ρ = ρ + 1

Step 22 endif

Step 23 end while

Step 24 l = next(ep[rc].e)

Step 25 end repeat

Step 26 r = ep[2N].e

Step 27 if(l<r) Append <l,r> to MI

In the algorithm, maximal sparse intervals are mined by

making a single pass over the sorted endpoints in the datasets.

Whenever the algorithm encounters a left endpoint it increases

the frequency count and whenever it gets a right endpoint it

decreases the frequency count. Let us take the example given

in table 1. After pre-processing of the dataset we have the

sorted array as given bellow-

Table 2: Array after sorting

Array Index 1 2 3 4 5 6 7

Endpoint 0 2 4 5 6 6 8

L/R L L R R L L L

Array Index 8 9 10 11 12 13 14

Endpoint 8 9 9 11 12 12 15

L/R L R R R L R L

Array Index 15 16 17 18 19 20

Endpoint 15 16 16 18 19 20

L/R L L R R R R

Let us take minimum support threshold (k) as 3

Initially l = ep[1].e=0, frequency count (ρ) is 0and ρ<k is true.

ep[1].e is a left endpoint so frequency count(ρ) is incremented

(ρ = 1)

ep[2].e is also a left endpoint so ρ is incremented (ρ = 2)

ep[3].e is a right endpoint so ρ is decremented (ρ = 1)and it

continues

at ep[7] ρ becomes 3, it violates ρ < k and a maximal sparse

interval [0, prev(8)] ([0,7]) is generated

ep[8] is a left endpoint so frequency count(ρ) is incremented

(ρ = 4) and it continues

at ep[10] ρ becomes 2, it violates ρ >= k is false, set

l = next(ep[10]) = 10

Similarly all the endpoints in the dataset are scanned and the

maximal sparse intervals in the dataset are generated.

3.3 Correctness Claim
To prove that the proposed algorithm is correct, we have the

following theorem.

Theorem 7: The intervals generated by the proposed

algorithm are the only maximal sparse intervals.

Proof: To prove the correctness of the algorithm we have to

show that the output produced by the algorithm is correct and

the maximal sparse intervals generated by the algorithm are

the only maximal sparse intervals in the dataset.

When the execution of the algorithm starts, it sets the value of

l as l = lmin. The execution of the first while loop repeats until

ρ ≥ k where „ρ‟ is the support of the endpoint ep[rc].e and „k‟

is the threshold value i.e. this loop executes until the first

frequent endpoint after l min is obtained.

After coming out of the while loop the algorithm adds

<l, prev(ep[rc].e)> to the list of maximal sparse intervals.

<l, prev(ep[rc].e)> is sparse since all the points x where

l ≤ x ≤prev(ep[rc].e) are infrequent (since ρ < k). Correctness

follows from theorem 3 since l = lmin (and hence has no

previous end point) and ep[rc].e is frequent.

Execution enters the second while loop with ρ ≥ k and

executes until ρ < k, i.e. it executes until we find an endpoint

ep[rc].e for which ρ < k is satisfied. The algorithm sets

l = next (ep[rc].e) which is an infrequent end point and repeats

by entering the first while loop and searches for the next

frequent end point and the whole process repeats until we

reach the last endpoint in the dataset.

After each execution of the first while loop, the algorithm

adds < l, prev(ep[rc].e)> to the list of maximal sparse intervals

where l is infrequent and is the immediate next point of a

frequent end point (step 24 in the algorithm), ep[rc].e is the

first frequent end point after l and so correctness follows from

theorem 3.

When we reach the last endpoint in the dataset it exits from

the master loop and < l, r> is added to the list of maximal

sparse intervals where prev(l) is frequent, r = rmax and there is

no frequent end point in [l, r].

The algorithm inspects only the endpoints in the dataset, since

according to theorem 2 the supports of all points between two

consecutive endpoints are equal.

Since the algorithm systematically searches for intervals

satisfying the criteria of theorem 4, the algorithm is able to

extract all the maximal sparse intervals.

3.4 Complexity Analysis
The method proposed here is composed of two parts. The first

part is pre-processing, where we sort the input endpoints. In

the process of sorting, information about whether the endpoint

is a left endpoint or right endpoint is kept. In pre-processing

of data we use merge sort for sorting data, which takes

O(n log n) time. After pre-processing, we run the proposed

algorithm for mining maximal sparse intervals in the dataset.

The algorithm scans each of the endpoints in the dataset only

once and produces the output. So the complexity of the

algorithm is O(n). Total time Complexity of this algorithm is

International Journal of Computer Applications (0975 – 8887)

Volume 107 – No. 16, December 2014

32

O(n log n) + O(n) + O(n) = O(n log n). Which is much more

efficient than the algorithm proposed in[15] for mining

maximal sparse intervals. The time complexity of the

algorithm proposed in [15] is O(n2).

4. RESULT AND DISCUSSION
To test the proposed algorithm we have developed a C++

program. For comparing the proposed algorithm with the

existing algorithms we have used two different datasets. First

one is a real life dataset obtained from “Bodhidroom”, the

online e-learning portal of IDOL, Gauhati University. The

dataset contains 10031 records; each record contains an

interval describing login and logout time of the users.

The method proposed in [15] is the only method available for

mining maximal sparse interval. To compare we run both the

methods for different size of data, taking minimum support

threshold as 3. Time requirement of both the algorithms for

different sizes of datasets are as in the figure below-

Fig 1: Complexity analysis for real life datasets

Second dataset used is a synthetic dataset. We have developed

a syntactic data generator, inputs to the generator are size of

the dataset, lmax and max_span. We use random number

generator function to generate left and right endpoints. For

testing we generate dataset of different size by setting lmax as

1000000 and mean as 1000. We run these datasets on both

maximal sparse intervals from maximal frequent intervals

[15] and on our proposed maximal sparse interval taking

minimum support threshold as 500. In the following graph

time requirement of both the algorithms are given.

Fig 2: complexity analysis of Synthetic Dataset

From the above results we can clearly say that our proposed

algorithm is an improvement over the previously proposed

algorithm for mining maximal sparse interval.

5. CONCLUSION AND FUTURE

WORKS
Here we proposed an O(n log n) algorithm for mining

maximal sparse intervals which is an improvement over the

method proposed in [15]. The correctness of the algorithm is

also been established mathematically. The algorithm is also

tested with real life and synthetic datasets. The future work

can be generalizing the method for mining maximal sparse

intervals in multidimensional datasets, mining rare intervals in

the interval datasets etc.

6. ACKNOWLEDGMENTS
The first author is an INSPIRE fellow, fellowship is granted

by Department of Science and Technology for pursuing his

Ph. D.

7. REFERENCES
[1] Rakesh Agrawal, Ramakrishnan Srikant, “Mining

Sequential Patterns”, Proceedings of the Eleventh

International Conference on Data Engineering, p.3-14
March 06-10, 1995.

[2] Rakesh Agrawal, Ramakrishnan Srikant, “Fast

Algorithm for Mining Association Rules”, Proceedings
of the 20th VLDB conference, Santiago, Chile, 1994.

[3] L. Troiano, G. Scibelli, C. Birtolo, “A Fast Algorithm for

Mining Rare Itemsets” Ninth International Conference
onIntelligent Systems Design and Applications, 2009.

[4] L. Szathmary, A. Napoli, P. Valtchev, “Towards Rare

Itemset Mining”, 19th IEEE International Conference on

Tools with Artificial Intelligence, 2007.

[5] A. K. Mahanta, N. H. Son, “Mining Interesting

Periodicities of Temporal Patterns” Proceedings of
IPMU‟08, p.1757- 1764, June 22-27, 2008.

[6] A. K. Mahanta, F. A. Mazarbhuya, H. K. Baruah,

“Finding calendar-based periodic patterns” Pattern

Recognition Letters, p.1274-1284, Vol 29 Issue 9, July

2008.

[7] J. F. Alen, “Maintaining Knowledge about Temporal

Intervals” Communications of the ACM, Vol 26, Nov
1983.

[8] Po-shan Kam, Ada Wai-chee Fu, “Discovering Temporal

Patterns for Interval-based Events” Proceedings of the

Second International Conference on Data Warehousing

and Knowledge Discovery, p.317- 326, 2000.

[9] Shin-Yi Wu, Yen-Liang Chen, “Mining Nonambiguous

Temporal Patterns for Interval-Based Events” IEEE

Transactions on Knowledge and Data Engineering, Vol
19 No 6, June 2007.

[10] J. Lin, “Mining Maximal Frequent Intervals”,

Proceedings of 2003 ACM symposium on Applied

Computing, p.426-431, ACM, New York, 2003.

[11] M. Dutta, A. K. Mahanta, “ An Efficient Method for

Construction of I-tree”, Proceedings of National

Workshop on Design and Analysis of
Algorithm(NWDA)2010.

[12] M Dutta, “Development of Efficient Algorithms for

Some Problems in Interval Data Mining” Ph D

Dissertation, Gauhati University, 2012

[13] Khaled M. Elbassioni, “Finding All Minimal Infrequent

Multi-dimensional Intervals”, Proceedings of the 7th

Latin American conference on Theoretical Informatics,
p. 423- 434, 2006.

[14] D. I. Mazumdar, D. K. Bhattacharyya, M. Dutta,

“Mining Minimal Infrequent Intervals”, Journal of
Computer Science and Engineering, communicated.

[15] N. J. Sarmah and A. K. Mahanta. Article: Mining

Maximal Sparse Interval. International Journal of

Computer Applications 58(5):31-34, November 2012.

Published by Foundation of Computer Science, New

York, USA

IJCATM : www.ijcaonline.org

