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ABSTRACT 

Many real world data are closely associated with intervals. 

Mining frequent intervals from such data allows us to group 

those data depending on some similarity. A few numbers of 

data mining approaches have been developed to discover 

frequent intervals from interval datasets. Here we present a 

complementary approach in which we search for sparse 

intervals in data. We present an efficient algorithm with a 

worst case time complexity of O(n log n) for mining maximal 

sparse intervals.   
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1. INTRODUCTION 
Most of the works in data mining focus on characterizing the 

similarity of data values in large datasets. This includes 

pattern mining [1], rule mining [2], classification, clustering 

etc. The data patterns discovered by these techniques are 

defined by some measure of similarity or by degree of 

frequency or occurrence. Few works [3][4] have also been 

carried out for mining rare item-sets, where the methods try to 

find out those item-sets which are not frequent in general 

frequency counting methods but have an importance in the 

datasets. For example in a market basket datasets items like 

rice cooker and cooking pan are not as frequent as butter and 

bread since they are brought less frequently then other items 

but this type of items may reveal some interesting buying 

patterns. In our proposed work the less frequent intervals are 

mined from the interval datasets. 

Many real world data are associated with time, describing the 

occurrence time of the event. For such datasets different 

methods are developed such as temporal pattern mining [5] 

[6], temporal rule mining etc. Most of the works done in this 

field assume that the events are associated with a single 

timestamp. Whereas in real life, there are events which cannot 

be described by a single timestamp, for example call records 

of different customers recorded by a telephone company 

cannot be represented by single timestamps. This is because 

each record is associated with two timestamps, starting and 

ending time of the call. Another example can be the records of 

the user‟s login and logout time in an online portal. If DBA 

wants to record these data then DBA must record both starting 

and ending time of the event. These types of data where two 

timestamps are associated are referred as interval data.  

Only few works have been carried out for interval datasets, 

mostly for frequency counting of the intervals [10][12] and 

for mining temporal relational rules of interval-based data. In 

this paper, we propose a complementary method for 

characterizing interval datasets; we focus on mining maximal 

sparse intervals in the datasets.  

Sparse intervals refer to those infrequent intervals all of 

whose sub intervals are infrequent. Maximal sparse intervals 

refer to those sparse intervals none of whose super intervals is 

sparse. Here we propose a method for mining maximal sparse 

intervals from interval datasets.  

Clearly, knowledge about sparse intervals valuable, as it may 

reveal some unknown correlation between data values which 

can be exploited in applications. As an example, phone call 

record of a cellular phone company can be considered, where 

the company records the starting time and ending time of each 

phone call. Mining sparse intervals from such data will 

discover those intervals which are not frequent and by using 

these intervals company can either prepare some plan or some 

scheme to attract customers to these intervals or company can 

take decision to use the channel for some other purpose. 

Another example of such dataset is, web based learning 

system where the students login and logout the system. 

Mining sparse intervals from such datasets will allow the 

system administrator to ask the faculty and research scholars 

to use those intervals for uploading the study materials and 

students to download the study material since less number of 

users are available at those intervals. In the above systems 

mining sparse intervals can play an important role in 

improving the performance of the overall system. 

In section 2.1 we discuss different related works available in 

literature. In section 2.2 we introduce the different definitions 

related to maximal sparse intervals. In section 2.3 we formally 

introduce the problem of mining maximal sparse intervals. In 

section 3.1 we discuss the different properties related to 

maximal sparse intervals and prove them mathematically and 

in section 3.2 we propose an algorithm for mining maximal 

sparse intervals. Correctness of the algorithm has been proved 

in section 3.3. Complexity analysis of the proposed algorithm 

is given in section 3.4. We had tested the algorithm for real 

life datasets and for synthetic datasets and results are given in 

section 4. We also compare the performance of our proposed 

algorithm with the existing algorithms. Conclusion and future 

works are given in section 5.  

2. RELATED WORKS AND PROBLEM 

DEFINITION 

2.1 Related Works 
To our best knowledge Allen [7] first proposed a method for 

maintaining knowledge about temporal intervals. In the paper 

the author had proposed 13 possible relationships between 

two intervals. A method for mining relationships among the 

intervals also has been proposed in [7]. Kam and Fu [8] 

proposed an Apriori based algorithm for mining temporal 

patterns from interval based events based on the Allen‟s 

temporal logic. Further Shin-Yi Wu and Yen-Liang Chen [9] 
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shows that there are some ambiguity issues in Allen‟s method 

and proposed a new representation of interval data and 

proposed a prefix traversal algorithm for mining temporal 

patterns from interval data.   

Lin [10] has proposed a method for mining maximal frequent 

intervals from interval datasets. He design a data structure 

called I-Tree, first all the intervals are inserted into the I-Tree 

and then finds out the maximal frequent intervals from that    

I-Tree. Our work is basically a complementary work carried 

out by Lin [10], here we focus on mining maximal sparse 

intervals; i.e. we are mining those intervals which are not 

covered by maximal frequent intervals. Further improvement 

has been made for construction of the I-Tree in [11] where 

authors proposed a faster method for construction of I-Tree. A 

new approach for Mining Maximal Frequent interval has been 

proposed by M. Dutta in [12], where authors proposed a 

method for Mining Maximal Frequent intervals without 

constructing the I-Tree. 

Elbassioni [13] proposed an algorithm for mining minimal 

infrequent multidimensional intervals. In this work author 

uses the concept of lattice theory and proposed a method for 

mining multidimensional infrequent intervals. In [14] authors 

have proposed an algorithm for mining minimal infrequent 

intervals. The authors use the algorithm for mining maximal 

frequent interval proposed in [10] and [11] and proposed an 

algorithm for mining minimal infrequent intervals. In this 

process a lot of unit size intervals are generated, whereas it is 

not the case for maximal sparse intervals. 

In [15] author has proposed a method for mining maximal 

sparse intervals. In that work authors use the maximal 

frequent intervals mined by M. Dutta [12] to mine maximal 

sparse intervals. For this the list of maximal frequent intervals 

has to be known beforehand and for mining maximal frequent 

intervals it takes O(n2) time and mining maximal sparse 

intervals from the set of maximal frequent intervals takes O(n) 

time.  But our proposed algorithm takes only O(n log n) time 

for mining maximal sparse intervals. So the proposed 

algorithm is clearly an improvement over the existing 

algorithm.  

2.2 Preliminary Definitions 
In the following section few definitions related to interval data 

and maximal sparse intervals is given. These definition have 

been taken from [15], only for shake of completeness it is 

given here.  

Interval: Given a totally ordered discrete domain D and         

l, r ∈ D, a subset [l, r] of D defined by {z | l ≤ z ≤ r} is called 

an interval. Here „l‟ is called the left endpoint and „r‟ is the 

called the right endpoint of that interval. In our study we 

consider only intervals which are closed. That is if [a, b] is an 

interval and „x‟ is a point in the interval then a ≤ x ≤ b. 

Transaction: A transaction „t‟ consists of a transaction id 

and an interval [l, r]. The interval [l, r] is said to be the interval 

associated with the transaction t and is denoted by I(t). 

Dataset: A dataset ID is a dataset of n transactions, where 

each transaction „t‟ contains a non-empty interval which is 

represented by a pair of left end point and right end point. 

Ordering of endpoints: Let us consider C ={a1, a2, … an} be 

the collection of all end points corresponding to the intervals 

in the dataset ID. Let lmin denote the smallest left end point and 

rmax denote the largest right endpoint. Since the domain D is 

totally ordered, the end points can be ordered in the ascending 

order.  

Containment of Interval (I1⊆I2): An interval I1 said to be 

contained in another interval I2 if and only   if l2 ≤ l1 ≤ r1 ≤ r2, 

where I1 = [l1, r1] and I2= [l2, r2].  

Proper Containment of Interval (I1⊂I2): An interval I1 said 

to be properly contained in another interval I2 if and only if     

l2 < l1 ≤ r1 ≤ r2 or l2 ≤ l1 ≤ r1 < r2 or l2 < l1 ≤ r1 < r2, where          

I1 = [l1, r1] and I2= [l2, r2]. 

Support of an Interval: A transaction „t‟ supports an 

interval [a, b], if [a, b] ⊆ I(t) i.e. lt ≤ a ≤ b ≤ rt  if I(t)= [lt, rt]. 

For a given interval [a, b], sup([a, b]) will denote the number 

of transactions in ID that supports [a, b].  

Support of a point: Support of any point „x‟, where               

lmin ≤ x ≤ rmax is the support of the interval [x, x] in the dataset 

and the point is called frequent if the support of the interval 

[x, x] is greater than equal to min_sup. 

Frequent Interval: For a given support threshold min_sup 

with 0 < min_sup ≤ n (where n = |ID|), an interval is called 

frequent if its support is greater than equal to min_sup. 

Obviously if [l, r] is frequent, then lmin ≤ l ≤ r ≤ rmax. 

Infrequent Interval: An interval [l, r] will be called 

infrequent if lmin ≤ l ≤ r ≤ rmax and it is not frequent. 

Sparse Interval: A sparse interval is an infrequent interval 

which does not properly contain any frequent interval except 

the empty intervals which is always considered as frequent, 

i.e. if an interval [l, r] is a sparse interval and [l’, rˊ] ⊂ [l, r] 

where l’ ≤ rˊ, then [l’, rˊ] is infrequent. 

Maximal Sparse interval: A maximal sparse interval is a 

sparse interval which is not contained in any sparse interval, 

i.e. if an interval [l, r] is a maximal sparse interval and            

[l, r] ⊂ [l’, rˊ] then [l’, rˊ] is not a sparse interval. 

2.3 Problem Definition 
Let ID be the dataset of records or transactions, where each 

record contains an interval I = [a,b] and if „x‟ is a point in the 

interval [a,b] then a ≤ x ≤ b. Here we assume that the domain 

of end points is discrete. The problem is to mine the maximal 

sparse intervals from the dataset for a given minimum support 

threshold value. 

Let us consider the following example 

Table 1: Interval Dataset 

TID 1 2 3 4 5 

Intervals [6, 9] [2,5] [8,12] [0,4] [15,19] 

TID 6 7 8 9 10 

Intervals [6,9] [8,11] [16,18] [12,16] [15,20] 

Here the domain of endpoints is the set I (set of integers) 

which is discrete. So each endpoint has a unique next 

endpoint (except rmax) and a unique previous end point (except 

lmin). Here lmin is 0 and rmax is 20. 

If we consider the minimum support threshold as 2, we have 

following maximal sparse intervals- 

[0, 1], [5, 5], [13,14], [20, 20] 
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And if minimum support threshold is 3, we have following 

maximal sparse intervals- 

 [0, 7], [10, 14], [19, 20] 

3. ALGORITHM FOR MINING 

MAXIMAL SPARSE INTERVALS 

3.1 Theoretical Background 
In the following section we prove certain theorems related to 

maximal sparse intervals. 

Theorem 1: For any l where lmin ≤ l ≤ rmax, l cannot belong to 

both a sparse interval and a frequent interval. 

Proof: This is because if l is in a frequent interval then [l, l] is 

a frequent interval and this implies that l cannot be in a sparse 

interval as all subintervals of a sparse interval are infrequent. 

Theorem 2: If „a‟ and „b‟ are two consecutive endpoints in 

the dataset then for any two points „x‟ and „y‟ such that          

a < x < y < b, sup(x) = sup(y). 

Proof: If there are no such two distinct points x and y then the 

result is trivial. If there are, then let sup(x) > sup(y). Then 

there must be some interval which contain „x‟ but not „y‟. If 

such an interval exist then there must be an endpoint „e‟ such 

that x ≤ e < y. 

Which contradict that „a‟ and „b‟ are two consecutive 

endpoints in the dataset. 

Similarly we can show that sup(x)<sup(y) is also false. 

Theorem 3: If [a,b] is a sparse interval and prev(a) (if            

a ≠ lmin) and next(b) (if b ≠ rmax) are frequent then [a,b] is a 

maximal sparse interval. 

Proof: By the definition, a sparse interval is said to be a 

maximal sparse interval if none of the super intervals of the 

interval is sparse.  

Here [a,b] is a sparse interval. 

Now any super interval of [a,b] must contain either prev(a) or 

next(b) or both.  

It is given that prev(a) (if a ≠ l min ) and next(b) (if b ≠ rmax) are 

frequent. 

None of the super intervals of [a, b] is sparse (since a sparse 

interval cannot have frequent subintervals). 

 [a, b] is a maximal sparse interval.  

Theorem 4: If [a, b] is a maximal sparse interval and then the 

immediate previous point of „a‟ (if a ≠ lmin) and the immediate 

next point of b (if b ≠ rmax) in the underlying domain D (D is 

discrete) belong to frequent intervals. 

Proof: Let „a'‟ be the immediate previous endpoint of „a‟ and 

a ≠ lmin. Then [a, b] ⊂ [a', b] and by the definition of maximal 

sparse interval [a', b] can not a sparse interval. i.e. there is a 

sub-interval of [a', b] which is frequent.  

But this subinterval cannot be contained in [a, b] and so [a', a'] 

is the only possible candidate. 

Similarly we can show that [b', b'] is a frequent interval if „b'‟ 

is a immediate next end point of „b‟ and b ≠ rmax. 

Theorem 5: The maximal sparse intervals are mutually 

disjoint. 

Proof: Let [l’, r' ] and [l’’, r'' ] be any two maximal sparse 

intervals having non-empty intersection. Since both the 

intervals are maximal, none is contained within the other. 

Without loss of generality we can assume that l’’ ≤ r'. Now let 

us consider the interval [l’, r'' ]. This interval is infrequent 

since [l’, r' ] is an infrequent subinterval of it. Also all its 

subintervals are infrequent since any such sub interval is 

contained in [l’, r' ] or in [l’’, r'' ] or in both. Therefore [l’, r'' ] 

is a sparse interval. This contradicts our assumption that [l’, r'] 

and [l’’, r''] are maximal sparse intervals. 

Theorem 6: If [l, r] is a maximal sparse interval then „l ‟ is the 

immediate next point of a right endpoint if l ≠ lmin and „r‟ is 

the immediate previous of a left endpoint in the dataset if          

r ≠ rmax. 

Proof: Let [l, r] be a maximal sparse interval and l’ be the 

immediate previous point of „l‟ in the domain D. 

Then from theorem 3 it follows that „l’‟ is in a frequent 

interval.  This implies that there is at least one interval which 

contain „l’‟ but not l. Now since there are no end points 

between „l’‟ and l, „l’‟ has to be the right end point of that 

interval. 

Therefore „l‟ is the immediate next endpoint of a right 

endpoint in the dataset if l ≠ lmin. 

Similarly we can prove the result for the right end point „r‟. 

3.2 Algorithm 
Based on the theorems cited above, we have designed the 

following algorithm. The correctness of the algorithm is 

discussed in section 3.3. The algorithm for mining maximal 

sparse interval has two parts. In the first part, endpoints are 

sorted. In the process of sorting we follow the following rules- 

If P & Q are two endpoints in the dataset then we say P < Q if 

1. P < Q (i.e value of P is less than the value of Q) or 

2. if P = Q and P is a left endpoint and Q is a right 

endpoint 

In the process of sorting we also keep the information about 

whether the endpoint is a left endpoint or right endpoint.  

Input: Endpoints of the intervals in sorted order and the 

threshold k.  The ordered list of end points is stored in an 

array of structure named „ep‟. The structure contains an 

endpoint and information regarding whether the endpoint is 

left or right endpoint. 

Output: Maximal sparse Intervals 

Step 1   rc= ρ=0, MI=empty 

Step 2   l = ep[1].e 

Step 3   Repeat forever 

Step 4     while(ρ<k) 

Step 5  rc++ 

Step 6  if(rc>2N) GO TO Step26 

Step 7  if(ep[rc].e is right) 

Step 8    ρ = ρ - 1 

Step 9  else 

Step 10   ρ = ρ + 1 
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Step 11 endif 

Step 12    end while 

Step 13 r = ep[rc].e 

Step 14 if(l<r) append <l,prev(r)> 

to MI 

Step 15 while( ρ ≥ k) 

Step 16   rc++ 

Step 17   if( rc>2N ) GO TO Step26 

Step 18   if( ep[rc].e is right ) 

Step 19     ρ = ρ - 1 

Step 20   else 

Step 21     ρ = ρ + 1 

Step 22   endif 

Step 23 end while 

Step 24 l = next(ep[rc].e) 

Step 25  end repeat 

Step 26  r = ep[2N].e 

Step 27  if(l<r) Append <l,r> to MI 

In the algorithm, maximal sparse intervals are mined by 

making a single pass over the sorted endpoints in the datasets. 

Whenever the algorithm encounters a left endpoint it increases 

the frequency count and whenever it gets a right endpoint it 

decreases the frequency count. Let us take the example given 

in table 1. After pre-processing of the dataset we have the 

sorted array as given bellow- 

Table 2: Array after sorting 

Array Index 1 2 3 4 5 6 7 

Endpoint 0 2 4 5 6 6 8 

L/R L L R R L L L 

Array Index 8 9 10 11 12 13 14 

Endpoint 8 9 9 11 12 12 15 

L/R L R R R L R L 

Array Index 15 16 17 18 19 20 

Endpoint 15 16 16 18 19 20 

L/R L L R R R R 

Let us take minimum support threshold (k) as 3 

Initially l = ep[1].e=0, frequency count (ρ) is 0and ρ<k is true. 

ep[1].e is a left endpoint so frequency count(ρ) is incremented 

(ρ = 1) 

ep[2].e is also a left endpoint so ρ is incremented (ρ = 2) 

ep[3].e is a right endpoint so ρ is decremented (ρ = 1)and it 

continues  

at ep[7] ρ becomes 3, it violates ρ < k and a maximal sparse 

interval [0, prev(8)] ([0,7]) is generated 

ep[8] is a left endpoint so frequency count(ρ) is incremented 

(ρ = 4) and it continues 

at ep[10] ρ becomes 2, it violates ρ >= k is false, set                 

l = next(ep[10]) = 10 

Similarly all the endpoints in the dataset are scanned and the 

maximal sparse intervals in the dataset are generated. 

3.3 Correctness Claim 
To prove that the proposed algorithm is correct, we have the 

following theorem. 

Theorem 7: The intervals generated by the proposed 

algorithm are the only maximal sparse intervals. 

Proof: To prove the correctness of the algorithm we have to 

show that the output produced by the algorithm is correct and 

the maximal sparse intervals generated by the algorithm are 

the only maximal sparse intervals in the dataset. 

When the execution of the algorithm starts, it sets the value of 

l as l = lmin. The execution of the first while loop repeats until 

ρ ≥ k where „ρ‟ is the support of the endpoint ep[rc].e and „k‟ 

is the threshold value i.e. this loop executes until the first 

frequent endpoint after l min is obtained.  

After coming out of the while loop the algorithm adds            

<l, prev(ep[rc].e)> to the list of maximal sparse intervals.         

<l, prev(ep[rc].e)> is sparse since all the points x where           

l ≤ x ≤prev(ep[rc].e) are infrequent (since ρ < k). Correctness 

follows from theorem 3 since l = lmin (and hence has no 

previous end point) and ep[rc].e is frequent. 

Execution enters the second while loop with ρ ≥ k and 

executes until ρ < k, i.e. it executes until we find an endpoint 

ep[rc].e for which ρ < k is satisfied. The algorithm sets            

l = next (ep[rc].e) which is an infrequent end point and repeats 

by entering  the first while loop and searches for the next 

frequent end point and the whole process repeats until we 

reach the last endpoint in the dataset. 

After each execution of the first while loop, the algorithm 

adds < l, prev(ep[rc].e)> to the list of maximal sparse intervals 

where l is infrequent and is the immediate next point  of a 

frequent end point (step 24 in the algorithm),  ep[rc].e is the 

first frequent end point after l and so correctness follows from 

theorem 3. 

When we reach the last endpoint in the dataset it exits from 

the master loop and < l, r> is added to the list of maximal 

sparse intervals where prev(l) is frequent, r = rmax and there is 

no frequent end point in [l, r].  

The algorithm inspects only the endpoints in the dataset, since 

according to theorem 2 the supports of all points between two 

consecutive endpoints are equal.  

Since the algorithm systematically searches for intervals 

satisfying the criteria of theorem 4, the algorithm is able to 

extract all the maximal sparse intervals. 

3.4 Complexity Analysis 
The method proposed here is composed of two parts. The first 

part is pre-processing, where we sort the input endpoints. In 

the process of sorting, information about whether the endpoint 

is a left endpoint or right endpoint is kept. In pre-processing 

of data we use merge sort for sorting data, which takes        

O(n log n) time. After pre-processing, we run the proposed 

algorithm for mining maximal sparse intervals in the dataset. 

The algorithm scans each of the endpoints in the dataset only 

once and produces the output. So the complexity of the 

algorithm is O(n). Total time Complexity of this algorithm is 
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O(n log n) + O(n) + O(n) = O(n log n). Which is much more 

efficient than the algorithm proposed in[15] for mining 

maximal sparse intervals. The time complexity of the 

algorithm proposed in [15] is O(n2). 

4. RESULT AND DISCUSSION 
To test the proposed algorithm we have developed a C++ 

program. For comparing the proposed algorithm with the 

existing algorithms we have used two different datasets. First 

one is a real life dataset obtained from “Bodhidroom”, the 

online e-learning portal of IDOL, Gauhati University. The 

dataset contains 10031 records; each record contains an 

interval describing login and logout time of the users. 

The method proposed in [15] is the only method available for 

mining maximal sparse interval. To compare we run both the 

methods for different size of data, taking minimum support 

threshold as 3. Time requirement of both the algorithms for 

different sizes of datasets are as in the figure below-  

 

Fig 1: Complexity analysis for real life datasets 

Second dataset used is a synthetic dataset. We have developed 

a syntactic data generator, inputs to the generator are size of 

the dataset, lmax and max_span. We use random number 

generator function to generate left and right endpoints. For 

testing we generate dataset of different size by setting lmax as 

1000000 and mean as 1000. We run these datasets on both 

maximal sparse intervals from maximal frequent intervals 

[15] and on our proposed maximal sparse interval taking 

minimum support threshold as 500. In the following graph 

time requirement of both the algorithms are given. 

 

Fig 2: complexity analysis of Synthetic Dataset 

From the above results we can clearly say that our proposed 

algorithm is an improvement over the previously proposed 

algorithm for mining maximal sparse interval. 

5. CONCLUSION AND FUTURE 

WORKS 
Here we proposed an O(n log n) algorithm for mining 

maximal sparse intervals which is an improvement over the 

method proposed in [15]. The correctness of the algorithm is 

also been established mathematically. The algorithm is also 

tested with real life and synthetic datasets. The future work 

can be generalizing the method for mining maximal sparse 

intervals in multidimensional datasets, mining rare intervals in 

the interval datasets etc. 
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