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ABSTRACT 

Poor cache memory management can have adverse impact on 

the overall system performance. In a Chip Multi-Core (CMP) 

scenario, this effect can be enhanced as every core has a 

private cache apart from a larger shared cache. Replacement 

policy plays a key role in managing cache data. So it needs to 

be extremely efficient in order to extract the maximum 

potential of the cache memory. Over the years versatile set of 

replacement policies have been proposed and implemented 

and few of them (LRU, MRU etc) have proven to work well 

compared to others. However recent works have shown that 

few counter based replacement strategies have marginally 

outperformed LRU for certain workloads as LRU does not 

dynamically adapt to changing workload patterns. This work 

explores three counter based replacement techniques namely 

Context-Based Data Pattern Exploitation (CB-DPET), Logical 

Cache Partitioning Technique (LCP) and Sharing and Hit-

Based Prioritizing Technique (SHP). Evaluation is carried out 

on 4 core and 8 core platforms (apart from 2 core platform 

which was already done as part of previous works) using 

PARSEC benchmarks and various performance metrics like 

throughput speedup, hit rate etc are captured and compared 

with that of LRU. All the three methods have produced better 

results on the performance metrics when compared to LRU. 

General Terms 

Cache Memory, Last Level Cache, Multi-Core Architecture 

Keywords 
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1. INTRODUCTION 
Cache memory helps in expediting the speed of data retrieval 

time in processors. As the number of cores increase, the 

importance of cache memory also increases. Every core has an 

inbuilt on-chip cache which is often referred to as the L1 cache 

or the level 1 cache. This cache lies closest to the processor and 

has the minimum data retrieval and storage time. All the 

available cores share a relatively larger L2 or level 2 cache or 

more traditionally called as the Last Level Cache (LLC). The 

general search hierarchy begins from the innermost L1 cache. 

If an element is not found there, the processor looks in the L2 

cache and then finally search ends in secondary memory which 

is often time consuming.  

This explains why it is extremely important to manage the 

available cache memory efficiently. Managing LLCs becomes 

even more important and challenging as data present in them 

are accessed by multiple cores which might result in coherency 

problems.  Apart from that there are many factors that impact 

cache management. One of the most crucial factors is the 

replacement algorithm running on the cache. A good 

replacement algorithm implies faster data retrieval time and 

judicious cache space utilization. Both in turn can improve the 

overall system performance. One of the widely used 

replacement algorithms in modern time is the Least Recently 

Used (LRU) approach. It makes decisions based on the spatial 

and temporal localities. 

While it works well with most applications, there are a few 

issues that need to be addressed. It is static in nature and does 

not change the way it makes replacement decisions when there 

is a change in the workload pattern. Certain workloads which 

do not obey the spatial and temporal locality principles, may 

not work well with LRU. This stresses the need for novel 

techniques that can provide the benefit of LRU and be more 

dynamic as well. This work proposes  three novel counter 

based cache replacement strategies which have proven to have 

outperformed LRU in terms of the hit rate, IPC throughput etc. 

These techniques have been evaluated by applying over the 

LLC. 

Rest of the paper is organized as follows: section 2 looks into the 

related work that was done in this field, section 3 provides an 

overview on all the three methods, sections 4 and 5 describes the 

experimental setup and analyses the obtained results 

respectively, Section 6 describes the hardware overhead 

involved in all the methods and finally section 7 summarizes the 

paper followed by the list of references.  

2. RELATED WORK 
Many works [6,7,812,14,15,17,19] have been proposed  to 

improve the performance at the shared Last Level Caches 

(LLC). Multiple cores tend to compete for the data present in 

this cache level and hence care should be taken to ensure that 

the cache is managed effectively.  

The temporal based multi-level correlating inclusive cache 

replacement [6] proposes a method to improve the 

performance of inclusive caches. This method chooses the 

victim for replacement in LLC based on the information 

from all levels of cache hierarchy which in turn reduces the 

overhead of invalidation of highly referenced blocks in 

higher level caches. SHiP [7] proposed by Carole-Jean Wu et 

al, discusses about a technique to improve the performance 

of cache for multi-programmed workloads in CMPs. It 

correlates the re-reference behavior of every cache block 

with a unique signature based on memory region, program 

counter and instruction sequence history and makes 

intelligent replacement decisions. The adaptive LLC-memory 

traffic management (ARI) [8] focuses on the traffic from 

LLC to main memory due to writebacks, energy 

consumption etc. It suggests an adaptive technique to 

improve the performance by reducing writebacks and 

optimizing miss rate relative to LRU replacement policy. 
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While [6] involves active message passing between various 

cache levels, [7] requires an unique signature to be generated 

for every cache block, both capable of increasing the 

hardware overhead over a period of time. 

Data shared by multiple threads needs to be treated with 

more importance when compared to other data. This is 

because any miss on them can stall many threads at the same 

time thereby affecting the performance. A dynamic cache 

management scheme [18] proposed by Fazal Hameed et al is 

another work that was targeted towards LLCs. But it does not 

attach any importance to shared data.  

Mainak Chaudhuri et al have come up with a work [17] that 

discusses on making replacement decisions at the LLC based 

on the activity history that occurs in the inner levels of the 

cache. Depending on the hits/misses encountered here for a 

data item, replacement decisions are made at the LLC. But 

communicating such access history information across 

various levels of cache frequently can cause significant 

overhead. Counter based replacement techniques are gaining 

popularity in recent times [9, 13]. RRIP technique [9] 

suggested by Aameer Jaleel et al is  a counter based 

replacement policy that predicts the re-reference interval of a 

cache block for efficient cache utilization with lesser 

hardware overhead. But in a multi-threaded scenario the 

sharing degree of cache blocks are not considered in this 

method while making replacement decisions. Mazen 

Kharbutli and Yan Solihin have proposed the counter based 

dynamic replacement approach [13] to enhance cache 

performance. Thrashing condition has not been taken into 

account here though. 

Moinuddin K. Qureshi et al have come up with a set dueling 

algorithm [10] which modifies the insertion policy of a 

replacement algorithm for improving cache performance of 

memory intensive workloads. Cache partitioning helps in 

reducing the search space for a replacement candidate when 

a replacement needs to be made. Adaptive Bloom Filter 

Cache Partitioning Scheme for Multi-Core Architectures [16] 

dynamically partitions the available cache space using bloom 

filters and counters. Since every core is allocated an array of 

bloom filters and counters, the hardware overhead tend to 

increase as the number of cores increases. Phase Change 

Memory (PCM) was suggested as an alternative to the 

traditional DRAM and techniques have been proposed to 

improve the performance of the LLC in PCM [19] but the 

drawback of PCM is that the writes are much slower 

compared to DRAM. 

  Almost all the techniques discussed above either do not 

attach importance to data that is shared by multiple threads or 

possess significant hardware overhead. To address the 

shortcomings of these methods, this work focuses on three 

novel counter based replacement algorithms for shared LLC 

in a CMP environment namely – CB-DPET, LCP and SHP. 

Overview of each of the method is provided in the next 

section. 

3. OVERVIEW OF THE COUNTER 

BASED REPLACEMENT TECHNIQUES 

3.1 CB-DPET 
Context-based data pattern exploitation technique [1] tries to 

maximize the overall hit percentage by making replacement 

decisions in accordance with the changing workload pattern. 

This is achieved with the help of a counter called PET counter 

that is associated with every cache block in the cache. It is a 

3-bit long counter which can take values starting from 0 till 4. 

Based on the number of hits received by a particular cache 

block, this value is modified such that while performing 

replacement, it yields better results compared to the LRU 

approach.  

Initially every block‟s counter value is set to the maximum 

value (4). When a new data item arrives CB-DPET searches 

for the cache block which holds the maximum possible value 

which is 4. This block is chosen as the replacement victim. 

Now when an element receives a hit, its counter value is 

brought down to 0 irrespective of whatever value it had 

previously. For every miss, counter value of every other block 

in the cache is decremented by one. This will ensure that the 

counter does not hold stale data at any point in time. Cache 

thrashing condition has been taken care with a slight 

modification in the insertion policy. With additional register 

support CB-DPET can be extended to suit multi-threaded 

applications as well. In a multi-threaded scenario, CB-DPET 

gives more importance to data that is shared by multiple 

threads, allowing it to stay in the cache for longer period of 

time compared to other data items. 

3.2 LCP 
As the name implies, logical cache partitioning approach [2] 

divides the cache data into logical zones based on the 

likeliness to be referenced by the processor in the future. This 

prediction information is collected by associating every cache 

block with a 3-bit counter called LCP counter. It can take all 

possible values from 0 to 7. This information is then used to 

make judicious replacement decisions. The zone information 

is shown in table. 

Table.1 LCP Counter Value Range and Corresponding 

Zones 

    Counter Value 

Range 
Zone 

6-7 MLR 

3-5 LR 

1-2 LLR 

0 NLR 

 MLR, LR, LLR and NLR refer to Most Likely to be 

referenced, Likely to be Referenced, Less Likely to be 

referenced and Not Likely to be Referenced respectively. For 

every hit received by an element, its LCP counter value is set 

to the next higher zone‟s starting value. For every miss, the 

counter values of all the other blocks are decremented by one. 

Care needs to be taken to ensure that the counter value does 

not overshoot its specified range while decrementing or 

incrementing.  

While making replacement decisions the candidate is chosen 

from the bottom most zone (see table 1). If no element is 

found to exist in that range, the next higher zone is chosen as 

the search space till the MLR zone is reached. During 

insertion, the new element is always inserted in the LLR zone. 

3.3 SHP 
Studies have shown that in multi-threaded applications 

sharing nature of data items plays a vital role in deciding the 

performance of the system. CB-DPET attaches importance to 

shared data but it does not capture the degree of sharing of 

every cache block (i.e.) the extent to which every block is 

shared. This information can help determine the importance of 

the data item which in turn will aid in making replacement 
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decisions. Sharing and hit based prioritizing algorithm [3] 

collects this information with the help of a counter called SHP 

counter, which is 2-bits in length, and few other registers.SHP 

counter iterates through its entire range of 0 to 3. Table 2 

shows the sharing degree values and their descriptions.  

Nature of sharing is determined from the number of threads 

that try to access the data item. To keep track of all the threads 

that try to access a cache block, a dynamic Thread Tracker 

(TT) filter is associated with every cache block. 

Sometimes sharing degree alone may not be enough while 

making replacement decisions. An additional hit counter is 

augmented with every cache block to keep track of the 

number of hits received. This information is combined with 

the sharing degree of the block to arrive at a priority for that 

block. This priority is later used by the algorithm to make 

efficient replacement decisions. 

Table.2 Sharing degree values and their descriptions 

Number of 

Accessing Threads 

Sharing Degree 

Counter Value 

Nature of 

Sharing 

1 0 
Private/Not 

Shared 

2-3 1 Lightly Shared 

4-7 2 Heavily Shared 

8-10 3 
Very Heavily 

Shared 

4. EXPERIMENTAL SETUP 

For experimental purposes, a full-fledged, open-source, 

modular, object-oriented computer system architecture 

simulator platform called Gem5 [20] has been chosen. One of 

its key features includes the support for multiple Instruction 

Set Architectures (ISAs) and multiple processor cores. Alpha 

ISA has been chosen to evaluate our method. Simulation has 

been carried out on 4-core and 8-core processor architectures. 

The basic cache hierarchy in both the cases goes as follows: 

Every core has private L1 cache which is further sub-divided 

into instruction and data caches. At the next level there is a 

relatively larger L2 cache which is shared by all the available 

cores.  

Table.3 Cache Configuration Parameters 

Attributes L1 Cache L2 Cache 

Total Size 64kB 2MB 

Line size 64B 64B 

Associativity 2 8 

Replacement 

Algorithm 
LRU 

CB-

DPET/LCP/SHP 

From table 3 it can be seen that the L2 cache is selected to run 

the proposed replacement techniques one at a time. As far as 

the workloads are concerned, a benchmark suite called 

PARSEC (Princeton Application Repository for Shared-

mEmory Computers) [21, 22] has been chosen, which 

comprises of versatile, large-scale commercial multi-threaded 

workloads. Eight of them have been selected from the list to 

evaluate all the three techniques. 

 

5. RESULTS AND DISCUSSIONS 
Results show the average Instructions Per Cycle (IPC) 

speedup and percentage increase in overall number of hits 

obtained when compared to LRU for different number cores 

(2,4 and 8 core architectures). 

 

Figure 1: Average IPC Speedup Over LRU – 8 Core 

Throughput can be measured from the total number of 

instructions that get executed in a single clock cycle 

(Instruction Per Cycle or IPC). In multi-threaded applications, 

throughput is the sum of individual thread IPCs as shown 

below.                      

Throughput =   𝐼𝑃𝐶𝑖

𝑛

𝑖=1

 

Throughput Speedup of Algorithm k over LRU is IPCk  

IPCLRU  where „k‟ can refer to either one of CB-DPET, LCP 

or SHP. 

 

Figure 2: Average IPC Speedup over LRU – 4 Cores 
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Figure 3: Average IPC Speedup Over LRU – 2 Core Figure 4: CB-DPET - Percentage Increase in Hits Compared 

to LRU for Different Number of Cores 

 

 

Figure 5: LCP - Percentage Increase in Hits Compared to LRU for Different Number of Core 

 

Figure 6: SHP - Percentage Increase in Hits Compared to LRU for Different Number of Cores 
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Figures 1, 2 and 3 shows the throughput speedup obtained for 

all the three methods in 8-core, 4-core and 2-core scenarios 

respectively. It can be seen that majority of the benchmarks 

have reported an average speedup of more than 1. 

Figure 4 shows the percentage increase in overall number of 

hits obtained by applying CB-DPET in a 2-core, 4-core and 8-

core scenario. Except for ferret all the other benchmarks have 

reported increase in hits compared to LRU. Similarly Figures 

5 and 6 show the hit percentage increase observed across LCP 

and SHP respectively in all the three scenarios. Majority of 

benchmarks have outperformed LRU when it comes to cache 

hits. Table 4 highlights the approximate percentage increase 

in overall hits for all the three methods when compared to 

LRU. 

Table.4 Average Percentage Increase in Overall Hits 

Compared to LRU 

Method 2-Core 4-Core 8-Core 

CB-DPET 8% 4% 3% 

LCP 6% 9% 5% 

SHP 7% 9% 5% 

6. HARDWARE OVERHEAD 

6.1 CB-DPET 
PET counter requires frequent lookup so it can be kept it as a 

part of the cache hardware to expedite the access time. 

Considering a 8-way associative, 2MB cache which has 4096 

sets and the cache block size is 64 Bytes. Additional Storage 

Required for PET counter = 4096 [number of sets] * 8 

[number of cache blocks per set] * 3/8 [3-bits required per 

PET counter converted to bytes] 

         = approximately 12124.16 Bytes (OR) 12.12KB    

DM Register is allocated on a per thread basis and it depends 

on the application during its run time so it is kept more like 

software based register rather than a hardware one. The 

decision to have block status register either as a part of 

hardware or software depends during implementation time 

because the value it can hold is not fixed right now. Assuming 

that it can take only a „0‟ (say shared) and „1‟ (not shared) and 

assuming that the thread id range do not start from „0‟: If 

implemented in hardware. Additional Storage Required for 

blockstatus register = approx 4KB. The total additional 

storage required is approximately: 16KB (i.e.) 0.78% overall 

increase in area of a 2MB L2 Cache. 

6.2 LCP 
Similar to PET, LCP counter also requires frequent lookup so 

keeping it as a part of the cache hardware to expedite the 

access time. Storage overhead is similar to that of PET 

counter which is approximately 12.12KB since LCP is also a 

3-bit counter.  As no other registers/counters are required LCP 

results in 0.59% overall increase in area of a 2MB L2 

Cache. 

6.3 SHP 
SHP requires a 2-bit Sharing Degree counter which requires 

frequent look up and hence keeping it as a part of the 

hardware. Additional Storage Required for Sharing Degree 

counter: 4096 [number of sets] * 8 [number of cache blocks 

per set] * 2/8 [2-bits required per counter converted to bytes] 

= 8192 bytes (or) 8.19KB. Thread Tracker filter which is used 

to keep track of the threads that accesses the blocks can be 

implemented as a part of software which gives the flexibility 

of dynamically allocating and freeing the memory as and 

when required. Hence SHP results in 0.39% overall increase 

in area of a 2MB L2 Cache. 

7. CONCLUSION 
Cache management is imperative to achieve high performance 

levels in any system architecture. In a multi-processor 

environment LLC play vital role. So it is essential to have an 

efficient and dynamic replacement algorithm in place. This 

work discusses about three novel counter based replacement 

techniques 

 CB-DPET associates a 3-bit counter with every cache block 

which aids in making replacement decision in accordance 

with the changing workload patterns. Additional registers 

are added to support multi-threaded applications. 

 LCP associates a 3-bit counter with every cache block to 

classify it into any one of the logical zones based on the 

number of hits it received. This information is then used in 

making judicious replacement decisions. 

 SHP is another counter based approach where the sharing 

degree of every cache block is computed with the help of a 

2-bit counter. This information is combined with the 

number of hits received by the element to arrive at a 

priority for every block which is then used in making 

efficient replacement decisions. 

Experimental results have shown improvement in throughput 

speedup of up to 1.4 and percentage increase in overall 

number of hits of up to 9% compared to LRU. 
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