
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 8, November 2014

12

 Cache Replacement Policies for Improving LLC

Performance in Multi-Core Processors

 Muthukumar S

 Professor, Department of CSE,
 Sri Venkateshwara College of Engineering,
 Tamil Nadu, India.

 Jawahar P.K
 Professor, Department of ECE,
 BS Abdur Rahman University,
 Tamil Nadu, India

ABSTRACT

Poor cache memory management can have adverse impact on

the overall system performance. In a Chip Multi-Core (CMP)

scenario, this effect can be enhanced as every core has a

private cache apart from a larger shared cache. Replacement

policy plays a key role in managing cache data. So it needs to

be extremely efficient in order to extract the maximum

potential of the cache memory. Over the years versatile set of

replacement policies have been proposed and implemented

and few of them (LRU, MRU etc) have proven to work well

compared to others. However recent works have shown that

few counter based replacement strategies have marginally

outperformed LRU for certain workloads as LRU does not

dynamically adapt to changing workload patterns. This work

explores three counter based replacement techniques namely

Context-Based Data Pattern Exploitation (CB-DPET), Logical

Cache Partitioning Technique (LCP) and Sharing and Hit-

Based Prioritizing Technique (SHP). Evaluation is carried out

on 4 core and 8 core platforms (apart from 2 core platform

which was already done as part of previous works) using

PARSEC benchmarks and various performance metrics like

throughput speedup, hit rate etc are captured and compared

with that of LRU. All the three methods have produced better

results on the performance metrics when compared to LRU.

General Terms

Cache Memory, Last Level Cache, Multi-Core Architecture

Keywords
Cache, Counter, Throughput, Hit Rate, Replacement.

1. INTRODUCTION
Cache memory helps in expediting the speed of data retrieval

time in processors. As the number of cores increase, the

importance of cache memory also increases. Every core has an

inbuilt on-chip cache which is often referred to as the L1 cache

or the level 1 cache. This cache lies closest to the processor and

has the minimum data retrieval and storage time. All the

available cores share a relatively larger L2 or level 2 cache or

more traditionally called as the Last Level Cache (LLC). The

general search hierarchy begins from the innermost L1 cache.

If an element is not found there, the processor looks in the L2

cache and then finally search ends in secondary memory which

is often time consuming.

This explains why it is extremely important to manage the

available cache memory efficiently. Managing LLCs becomes

even more important and challenging as data present in them

are accessed by multiple cores which might result in coherency

problems. Apart from that there are many factors that impact

cache management. One of the most crucial factors is the

replacement algorithm running on the cache. A good

replacement algorithm implies faster data retrieval time and

judicious cache space utilization. Both in turn can improve the

overall system performance. One of the widely used

replacement algorithms in modern time is the Least Recently

Used (LRU) approach. It makes decisions based on the spatial

and temporal localities.

While it works well with most applications, there are a few

issues that need to be addressed. It is static in nature and does

not change the way it makes replacement decisions when there

is a change in the workload pattern. Certain workloads which

do not obey the spatial and temporal locality principles, may

not work well with LRU. This stresses the need for novel

techniques that can provide the benefit of LRU and be more

dynamic as well. This work proposes three novel counter

based cache replacement strategies which have proven to have

outperformed LRU in terms of the hit rate, IPC throughput etc.

These techniques have been evaluated by applying over the

LLC.

Rest of the paper is organized as follows: section 2 looks into the

related work that was done in this field, section 3 provides an

overview on all the three methods, sections 4 and 5 describes the

experimental setup and analyses the obtained results

respectively, Section 6 describes the hardware overhead

involved in all the methods and finally section 7 summarizes the

paper followed by the list of references.

2. RELATED WORK
Many works [6,7,812,14,15,17,19] have been proposed to

improve the performance at the shared Last Level Caches

(LLC). Multiple cores tend to compete for the data present in

this cache level and hence care should be taken to ensure that

the cache is managed effectively.

The temporal based multi-level correlating inclusive cache

replacement [6] proposes a method to improve the

performance of inclusive caches. This method chooses the

victim for replacement in LLC based on the information

from all levels of cache hierarchy which in turn reduces the

overhead of invalidation of highly referenced blocks in

higher level caches. SHiP [7] proposed by Carole-Jean Wu et

al, discusses about a technique to improve the performance

of cache for multi-programmed workloads in CMPs. It

correlates the re-reference behavior of every cache block

with a unique signature based on memory region, program

counter and instruction sequence history and makes

intelligent replacement decisions. The adaptive LLC-memory

traffic management (ARI) [8] focuses on the traffic from

LLC to main memory due to writebacks, energy

consumption etc. It suggests an adaptive technique to

improve the performance by reducing writebacks and

optimizing miss rate relative to LRU replacement policy.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 8, November 2014

13

While [6] involves active message passing between various

cache levels, [7] requires an unique signature to be generated

for every cache block, both capable of increasing the

hardware overhead over a period of time.

Data shared by multiple threads needs to be treated with

more importance when compared to other data. This is

because any miss on them can stall many threads at the same

time thereby affecting the performance. A dynamic cache

management scheme [18] proposed by Fazal Hameed et al is

another work that was targeted towards LLCs. But it does not

attach any importance to shared data.

Mainak Chaudhuri et al have come up with a work [17] that

discusses on making replacement decisions at the LLC based

on the activity history that occurs in the inner levels of the

cache. Depending on the hits/misses encountered here for a

data item, replacement decisions are made at the LLC. But

communicating such access history information across

various levels of cache frequently can cause significant

overhead. Counter based replacement techniques are gaining

popularity in recent times [9, 13]. RRIP technique [9]

suggested by Aameer Jaleel et al is a counter based

replacement policy that predicts the re-reference interval of a

cache block for efficient cache utilization with lesser

hardware overhead. But in a multi-threaded scenario the

sharing degree of cache blocks are not considered in this

method while making replacement decisions. Mazen

Kharbutli and Yan Solihin have proposed the counter based

dynamic replacement approach [13] to enhance cache

performance. Thrashing condition has not been taken into

account here though.

Moinuddin K. Qureshi et al have come up with a set dueling

algorithm [10] which modifies the insertion policy of a

replacement algorithm for improving cache performance of

memory intensive workloads. Cache partitioning helps in

reducing the search space for a replacement candidate when

a replacement needs to be made. Adaptive Bloom Filter

Cache Partitioning Scheme for Multi-Core Architectures [16]

dynamically partitions the available cache space using bloom

filters and counters. Since every core is allocated an array of

bloom filters and counters, the hardware overhead tend to

increase as the number of cores increases. Phase Change

Memory (PCM) was suggested as an alternative to the

traditional DRAM and techniques have been proposed to

improve the performance of the LLC in PCM [19] but the

drawback of PCM is that the writes are much slower

compared to DRAM.

 Almost all the techniques discussed above either do not

attach importance to data that is shared by multiple threads or

possess significant hardware overhead. To address the

shortcomings of these methods, this work focuses on three

novel counter based replacement algorithms for shared LLC

in a CMP environment namely – CB-DPET, LCP and SHP.

Overview of each of the method is provided in the next

section.

3. OVERVIEW OF THE COUNTER

BASED REPLACEMENT TECHNIQUES

3.1 CB-DPET
Context-based data pattern exploitation technique [1] tries to

maximize the overall hit percentage by making replacement

decisions in accordance with the changing workload pattern.

This is achieved with the help of a counter called PET counter

that is associated with every cache block in the cache. It is a

3-bit long counter which can take values starting from 0 till 4.

Based on the number of hits received by a particular cache

block, this value is modified such that while performing

replacement, it yields better results compared to the LRU

approach.

Initially every block‟s counter value is set to the maximum

value (4). When a new data item arrives CB-DPET searches

for the cache block which holds the maximum possible value

which is 4. This block is chosen as the replacement victim.

Now when an element receives a hit, its counter value is

brought down to 0 irrespective of whatever value it had

previously. For every miss, counter value of every other block

in the cache is decremented by one. This will ensure that the

counter does not hold stale data at any point in time. Cache

thrashing condition has been taken care with a slight

modification in the insertion policy. With additional register

support CB-DPET can be extended to suit multi-threaded

applications as well. In a multi-threaded scenario, CB-DPET

gives more importance to data that is shared by multiple

threads, allowing it to stay in the cache for longer period of

time compared to other data items.

3.2 LCP
As the name implies, logical cache partitioning approach [2]

divides the cache data into logical zones based on the

likeliness to be referenced by the processor in the future. This

prediction information is collected by associating every cache

block with a 3-bit counter called LCP counter. It can take all

possible values from 0 to 7. This information is then used to

make judicious replacement decisions. The zone information

is shown in table.

Table.1 LCP Counter Value Range and Corresponding

Zones

 Counter Value

Range
Zone

6-7 MLR

3-5 LR

1-2 LLR

0 NLR

 MLR, LR, LLR and NLR refer to Most Likely to be

referenced, Likely to be Referenced, Less Likely to be

referenced and Not Likely to be Referenced respectively. For

every hit received by an element, its LCP counter value is set

to the next higher zone‟s starting value. For every miss, the

counter values of all the other blocks are decremented by one.

Care needs to be taken to ensure that the counter value does

not overshoot its specified range while decrementing or

incrementing.

While making replacement decisions the candidate is chosen

from the bottom most zone (see table 1). If no element is

found to exist in that range, the next higher zone is chosen as

the search space till the MLR zone is reached. During

insertion, the new element is always inserted in the LLR zone.

3.3 SHP
Studies have shown that in multi-threaded applications

sharing nature of data items plays a vital role in deciding the

performance of the system. CB-DPET attaches importance to

shared data but it does not capture the degree of sharing of

every cache block (i.e.) the extent to which every block is

shared. This information can help determine the importance of

the data item which in turn will aid in making replacement

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 8, November 2014

14

decisions. Sharing and hit based prioritizing algorithm [3]

collects this information with the help of a counter called SHP

counter, which is 2-bits in length, and few other registers.SHP

counter iterates through its entire range of 0 to 3. Table 2

shows the sharing degree values and their descriptions.

Nature of sharing is determined from the number of threads

that try to access the data item. To keep track of all the threads

that try to access a cache block, a dynamic Thread Tracker

(TT) filter is associated with every cache block.

Sometimes sharing degree alone may not be enough while

making replacement decisions. An additional hit counter is

augmented with every cache block to keep track of the

number of hits received. This information is combined with

the sharing degree of the block to arrive at a priority for that

block. This priority is later used by the algorithm to make

efficient replacement decisions.

Table.2 Sharing degree values and their descriptions

Number of

Accessing Threads

Sharing Degree

Counter Value

Nature of

Sharing

1 0
Private/Not

Shared

2-3 1 Lightly Shared

4-7 2 Heavily Shared

8-10 3
Very Heavily

Shared

4. EXPERIMENTAL SETUP

For experimental purposes, a full-fledged, open-source,

modular, object-oriented computer system architecture

simulator platform called Gem5 [20] has been chosen. One of

its key features includes the support for multiple Instruction

Set Architectures (ISAs) and multiple processor cores. Alpha

ISA has been chosen to evaluate our method. Simulation has

been carried out on 4-core and 8-core processor architectures.

The basic cache hierarchy in both the cases goes as follows:

Every core has private L1 cache which is further sub-divided

into instruction and data caches. At the next level there is a

relatively larger L2 cache which is shared by all the available

cores.

Table.3 Cache Configuration Parameters

Attributes L1 Cache L2 Cache

Total Size 64kB 2MB

Line size 64B 64B

Associativity 2 8

Replacement

Algorithm
LRU

CB-

DPET/LCP/SHP

From table 3 it can be seen that the L2 cache is selected to run

the proposed replacement techniques one at a time. As far as

the workloads are concerned, a benchmark suite called

PARSEC (Princeton Application Repository for Shared-

mEmory Computers) [21, 22] has been chosen, which

comprises of versatile, large-scale commercial multi-threaded

workloads. Eight of them have been selected from the list to

evaluate all the three techniques.

5. RESULTS AND DISCUSSIONS
Results show the average Instructions Per Cycle (IPC)

speedup and percentage increase in overall number of hits

obtained when compared to LRU for different number cores

(2,4 and 8 core architectures).

Figure 1: Average IPC Speedup Over LRU – 8 Core

Throughput can be measured from the total number of

instructions that get executed in a single clock cycle

(Instruction Per Cycle or IPC). In multi-threaded applications,

throughput is the sum of individual thread IPCs as shown

below.

Throughput = 𝐼𝑃𝐶𝑖

𝑛

𝑖=1

Throughput Speedup of Algorithm k over LRU is IPCk

IPCLRU where „k‟ can refer to either one of CB-DPET, LCP

or SHP.

Figure 2: Average IPC Speedup over LRU – 4 Cores

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Sp
e

e
d

u
p

Benchmarks

Average IPC Speedup over LRU - 8
Core

CB-DPET

LCP

SHP

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Sp
e

e
d

u
p

Benchmarks

Average IPC Speedup over LRU - 4
Core

CB-DPET

LCP

SHP

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 8, November 2014

15

Figure 3: Average IPC Speedup Over LRU – 2 Core Figure 4: CB-DPET - Percentage Increase in Hits Compared

to LRU for Different Number of Cores

Figure 5: LCP - Percentage Increase in Hits Compared to LRU for Different Number of Core

Figure 6: SHP - Percentage Increase in Hits Compared to LRU for Different Number of Cores

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Sp
e

e
d

u
p

Benchmarks

Average IPC Speedup over LRU - 2
Core

CB-DPET

LCP

SHP

-20

-15

-10

-5

0

5

10

15

C
an

n
ea

l

D
e

d
u

p

Fe
rr

e
t

Fl
u

id
an

im
at

e

Sw
ap

ti
o

n
s

V
ip

s

x2
6

4

B
la

ck
sc

h
o

le
s

P
e

rc
e

n
ta

ge

Benchmarks

CBDPET - Percentage Increase in
Hits Compared to LRU for

Different Number of Cores

2-Core

4-Core

8-Core

-20

-10

0

10

20

P
e

rc
e

n
ta

ge

Benchmarks

LCP - Percentage Increase in Hits Compared to LRU for Different Number of
Cores

2-Core

4-Core

8-Core

-30

-20

-10

0

10

20

30

P
e

rc
e

n
ta

ge

Benchmarks

SHP - Percentage Increas in Hits Compared to LRU for Different Number of Cores

2-Core

4-Core

8-Core

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 8, November 2014

16

Figures 1, 2 and 3 shows the throughput speedup obtained for

all the three methods in 8-core, 4-core and 2-core scenarios

respectively. It can be seen that majority of the benchmarks

have reported an average speedup of more than 1.

Figure 4 shows the percentage increase in overall number of

hits obtained by applying CB-DPET in a 2-core, 4-core and 8-

core scenario. Except for ferret all the other benchmarks have

reported increase in hits compared to LRU. Similarly Figures

5 and 6 show the hit percentage increase observed across LCP

and SHP respectively in all the three scenarios. Majority of

benchmarks have outperformed LRU when it comes to cache

hits. Table 4 highlights the approximate percentage increase

in overall hits for all the three methods when compared to

LRU.

Table.4 Average Percentage Increase in Overall Hits

Compared to LRU

Method 2-Core 4-Core 8-Core

CB-DPET 8% 4% 3%

LCP 6% 9% 5%

SHP 7% 9% 5%

6. HARDWARE OVERHEAD

6.1 CB-DPET
PET counter requires frequent lookup so it can be kept it as a

part of the cache hardware to expedite the access time.

Considering a 8-way associative, 2MB cache which has 4096

sets and the cache block size is 64 Bytes. Additional Storage

Required for PET counter = 4096 [number of sets] * 8

[number of cache blocks per set] * 3/8 [3-bits required per

PET counter converted to bytes]

 = approximately 12124.16 Bytes (OR) 12.12KB

DM Register is allocated on a per thread basis and it depends

on the application during its run time so it is kept more like

software based register rather than a hardware one. The

decision to have block status register either as a part of

hardware or software depends during implementation time

because the value it can hold is not fixed right now. Assuming

that it can take only a „0‟ (say shared) and „1‟ (not shared) and

assuming that the thread id range do not start from „0‟: If

implemented in hardware. Additional Storage Required for

blockstatus register = approx 4KB. The total additional

storage required is approximately: 16KB (i.e.) 0.78% overall

increase in area of a 2MB L2 Cache.

6.2 LCP
Similar to PET, LCP counter also requires frequent lookup so

keeping it as a part of the cache hardware to expedite the

access time. Storage overhead is similar to that of PET

counter which is approximately 12.12KB since LCP is also a

3-bit counter. As no other registers/counters are required LCP

results in 0.59% overall increase in area of a 2MB L2

Cache.

6.3 SHP
SHP requires a 2-bit Sharing Degree counter which requires

frequent look up and hence keeping it as a part of the

hardware. Additional Storage Required for Sharing Degree

counter: 4096 [number of sets] * 8 [number of cache blocks

per set] * 2/8 [2-bits required per counter converted to bytes]

= 8192 bytes (or) 8.19KB. Thread Tracker filter which is used

to keep track of the threads that accesses the blocks can be

implemented as a part of software which gives the flexibility

of dynamically allocating and freeing the memory as and

when required. Hence SHP results in 0.39% overall increase

in area of a 2MB L2 Cache.

7. CONCLUSION
Cache management is imperative to achieve high performance

levels in any system architecture. In a multi-processor

environment LLC play vital role. So it is essential to have an

efficient and dynamic replacement algorithm in place. This

work discusses about three novel counter based replacement

techniques

 CB-DPET associates a 3-bit counter with every cache block

which aids in making replacement decision in accordance

with the changing workload patterns. Additional registers

are added to support multi-threaded applications.

 LCP associates a 3-bit counter with every cache block to

classify it into any one of the logical zones based on the

number of hits it received. This information is then used in

making judicious replacement decisions.

 SHP is another counter based approach where the sharing

degree of every cache block is computed with the help of a

2-bit counter. This information is combined with the

number of hits received by the element to arrive at a

priority for every block which is then used in making

efficient replacement decisions.

Experimental results have shown improvement in throughput

speedup of up to 1.4 and percentage increase in overall

number of hits of up to 9% compared to LRU.

8. REFERENCES
[1] Muthukumar S and P K Jawahar, “Cache Replacement

for Multi-Threaded Applications Using Context Based

Data Pattern Exploitation Technique”, Malaysian Journal

of Computer Science, Vol 26(4), 2013, p.277-293.

[2] Muthukumar S and P K Jawahar, “Hit Rate

Maximization by Logical Cache Partitioning in a Multi-

Core Environment”, Journal of Computer Science, 10(3),

2014, p.492-498.

[3] Muthukumar S and P K Jawahar, “Sharing and Hit Based

Prioritizing Replacement Algorithm for Multi-Threaded

Applications”, International Journal of Computer

Applications (IJCA), Vol 90, Issue 12, 2014, p.34-38.

[4] Muthukumar S and P K Jawahar, “Redundant Cache

Data Eviction in a Multi-Core Environment”,

International Journal of Advances in Engineering and

Technology (IJAET), Vol 5, Issue 2, 2013, p.168-175.

[5] Felipe L. Madruga, Henrique C. Freitas, Philippe O. A.

Navaux and P K Jawahar, “Parallel Shared-Memory

Workloads Performance on Asymmetric Multi-Core

Architectures”, 18th Euromicro Conference on Parallel,

Distributed and Network-Based Processing, 2010, p.163-

169.

[6] Yingying Tiyan, Samira M. Khan, Daniel A. Jimenez,

“Temporal-Based Multilevel Correlating Inclusive Cache

Replacement”, ACM Transactions on Architecture and

Code-Optimization, Vol 10, No 4, Article 33, 2013.

[7] Carole-Jean Wu, Aamer Jaleel, Will Hasenplaugh,

Margaret Martonosi, Simon C. Steely Jr. Joel Emer,

“SHiP: Signature-based Hit Predictor for High

Performance Caching”, Proceedings of the 44th Annual

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 8, November 2014

17

IEEE/ACM International Symposium on

Microarchitecture 2011, p.430-441.

[8] Viacheslav V. Fedorov, Sheng Qiu, A. L. Narasimha

Reddy, “ARI: Adaptive LLC-Memory Traffic

Management”, ACM Transactions on Architecture and

Code-Optimization, Vol 10, No 4, Article 46, 2013.

[9] Aamer Jaleel, Kevin B. Theobald, Simon C. Steely Jr.

Joel Emer, “High Performance Cache Replacement

Using Re-Reference Interval Prediction (RRIP)”,

Proceedings of the 37th annual International Symposium

on Computer Architecture (ISCA), Vol 38, Issue 3, 2010,

p.60-71.

[10] Moinuddin K. Qureshi, Aamer Jaleel, Yale N. Patt,

Simon C. Steely Jr. Joel Emer, “Set-Dueling-Controlled

Adaptive Insertion For High-Performance Caching”,

Proceedings of the 37th annual International Symposium

on Computer Architecture (ISCA), Vol 28, Issue 1, 2009,

p.91-98.

[11] Aamer Jaleel, William Hasenplaugh, Moinuddin

Qureshi, Julien Sebot, Simon Steely, Joel Emer,

“Adaptive Insertion Policies for Managing Shared

Caches”, ACM Parallel Architectures and Compilation

Techniques (PACT), Oct. 2013, p.208-219.

[12] Mazen Kharbutli, Yan Solihin, “Counter Based Cache

Replacement and Bypassing Algorithms”, IEEE

Transactions on Computers, Vol. 57, Issue. 4, April

2008, p.433-447.

[13] Carole-Jean Wu, Margaret Martonosi, “Adaptive

Timekeeping Replacement: Fine-Grained Capacity

Management for Shared CMP Caches”, ACM

Transactions on Architecture and Code Optimization,

Vol. 8, No. 1, Article 3, April 2011.

[14] Shekhar Srikantaiah, Mahmut Kandemir, Mary Jane

Irwin, “Adaptive Set Pinning: Managing Shared Caches

in Chip Multiprocessors”, ACM Architectural Support

for Programming Languages and Operating Systems

(ASPLOS), Vol. 36, Issue. 1, March 2008, p.135-144.

[15] Konstantinos Nikas. Matthew Horsnell. Jim Garside.

2008. An Adaptive Bloom Filter Cache Partitioning

Scheme for Multi-Core Architectures. In Proceedings of

the IEEE International Conference on Embedded

Computer Systems Architectures Modeling and

Simulation, p.25-32.

[16] Mainak Chaudhuri, Jayesh Gaur, Nithiyanandan

Bashyam, Srinivas Subramoney, Joseph Nuzman,

“Introducing Hierarchy-Awareness in Replacement and

Bypass Algorithms for Last-Level Caches”, ACM

Parallel Architectures and Compilation Techniques

(PACT), Sep. 2012, p.293-304.

[17] Fazal Hameed. Bauer L. and Henkel J. 2012. Dynamic

Cache Management in Multi-Core Architectures through

Runtime Adaptation. In Proceedings of Design

Automation & Test in Europe Conference & Exhibition

(DATE), p.485-490.

[18] Miao Zhou, Yu Du, Bruce Chilers, Rami Melham,

Daniel Mosse, “Writeback-Aware Partitioning and

Replacement for Last-Level Caches in Phase Change

Main Memory Systems”, ACM Transactions on

Architecture and Code Optimization, Vol. 8, No. 4,

Article 53, Jan. 2012.

[19] N. Binkert et al. “The gem5 simulator”, SIGARCH

Computer. Architecture New, Vol. 39, Issue. 2, May

2011, p.1-7.

[20] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh,

Kai Li, “The PARSEC Benchmark Suite:

Characterization and Architectural Implications”,

Princeton University Technical Report, TR-811-08, Jan.

2008.

[21] M. Gebhart et al., “Running PARSEC 2.1 on M5”,

University of Texas at Austin, Department of Computer

Science, Technical Report, TR-09-32, Oct. 2009.

IJCATM : www.ijcaonline.org

