
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 6, November 2014

27

Overview and Applications of Particle Swarm

Optimization on GPGPU

Sandeep U. Mane

Dept. of CSE, RIT
Rajaramnagar, Sangli

MS, India

Monica R. Pethkar
Dept. of CSE

Rajaramnagar, Sangli
MS, India

Pradnyarani K. Mahind
Dept. of CSE

Rajaramnagar, Sangli
MS, India

ABSTRACT

Particle Swarm Optimization is robust and effective method to

solve optimization problems. Particle Swarm Optimization

takes more time to find optimal solutions for complex real

world problems. Execution time required to find optimal

solutions depends on nature of problem as well as population

and dimension size of the application. Compute intensive

problems can be solved efficiently on General Purpose

Graphics Processing Unit using Particle Swarm Optimization

to diminish processing time. Graphics Processing Unit is used

to provide speedup and to find optimal solutions of compute

intensive problems earlier than central processing unit.

Particle Swarm Optimization has eased to parallelize on

Graphics Processing Unit using CUDA. This paper’s main

contribution is the review of parallelization techniques for

Particle Swarm Optimization, performance optimization

strategies and brief about different applications solved using

Particle Swarm Optimization on GPGPU.

General Terms

General Purpose Graphics Processing Unit (GPGPU), Swarm

Intelligence

Keywords

CUDA, Particle Swarm Optimization, Parallel Particle Swarm

Optimization

1. INTRODUCTION
Particle Swarm Optimization (PSO) is a branch of Swarm

intelligence used to solve many Engineering optimization

problems. Among the stochastic approaches to continuous

optimization, Swarm Intelligence algorithms offer a number

of attractive features: robust and reliable performance, global

search capability and easy implementation etc. PSO is a

heuristic population based global optimization method

developed by Kennedy and Eberhart in 1995[1]. It is based on

the research of bird flocking and fish schooling behavior.

Many times, PSO faces problems like premature convergence

and curse of dimensionality, PSO reveal tremendous search

performance with small population but performance can be

improved by increasing the population size. As we increase

the population size the search space explored for greater

extent and this very large size of population require long time

to perform massive calculations. It is called as population size

problem. PSO reveals tremendous performance with small

dimension, but PSO bear from the curse of dimensionality

problem when applied to large dimensionality problems. As

the dimension of search space increases it worsens

performance of algorithm called curse of dimensionality.

Multi-Core CPUs are enhanced for sequential codes execution

using only few number of cores; it never allows a CPU’s to

achieve its peak speed. On the other hand, GPU’s are created

with only one objective in mind i.e. fast parallel computation

on large volume of data. A GPU is inherently good at

processing a large amount of data in parallel. Another reason

why the GPU is so fast is because of its extremely high

memory bandwidth. E.g. DDR3 1333MHz system memory

has a bandwidth of 32GBps (Gigabytes per second), the

corresponding bandwidth of a GeForce 590GTX is 328 GBps.

During computation, the sequential part is optimally executed

on CPU and parallel part takes advantage of GPGPU

execution in parallel way. GPGPU also reduces time to certain

level so that different industrial and commercial people uses it

to solve different compute intensive problems, which have

scope for parallel operation [2]. [18].

GPGPU have many features like low cost, high performance

capability and high availability, due to these reasons many

researchers move towards it. In 2007, NVIDIA has developed

GPGPU based Compute Unified Device Architecture

(CUDA) as a platform designed to implement application

using parallel programming.

PSO algorithm solves problem by adjusting particle’s local

position and based on locally best, updates its global position

to obtain best results. PSO has a huge scope to perform

different operation in parallel on GPGPU and improve

performance while minimizing the data transfer between CPU

and GPU with near optimal results. During development of

PSO on CUDA, Fitness function, position and velocity update

of particles in the swarm can be computed on GPU while

initialization can be done on CPU [2].

This paper aims to present review and familiarize research

community about GPGPU & CUDA, PSO and problems

solved using PSO on GPGPU. The section 2 describes brief

about CUDA and GPGPU architecture. Section 3 delivers

issues and strategies to implement PSO on GPGPU. This

review clarifies various performance optimization strategies

for implementation of PSO on GPGPU. In section 4, recent

research work about PSO using CUDA, carried out by various

researchers is discussed. Finally, in section 5, conclusions

based on study are presented.

2. GPGPU AND CUDA

ARCHITECTURE
The General Purpose Graphic Processor Unit or simply GPU

has evolved into a highly parallel, multithreaded, many-core

processor with great computational power and very high

memory bandwidth [2]. GPU cores optimized for data

parallelism and throughput computation. Figure 1 and Figure

2 shows Floating-Point Operations per Second for the CPU -

GPU and memory bandwidth for CPU and GPU respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 6, November 2014

28

Fig 1: FOPS for CPU & NVidia’s GPU [2]

Fig 2: Memory bandwidth for CPU & NVidia’s GPU [2]

CUDA is an API that can support many languages and

programming environments, including C, C++, JAVA,

FORTRAN, OpenCL, Python and DirectX Compute by which

we can write application for GPU. CUDA consist of different

components like kernel, host, device, grid, block and thread

etc. CPU is act as a Host which executes sequential code and

it also has control of a program. GPU is act as a device which

executes parallel code. A Kernel Function is an implicitly

parallel subroutine that executes under the CUDA execution

and memory model for every Thread in a Grid.

Grid is a set of blocks that perform same kernel and data can

be shared by global memory. On the other hand, Block is a

collection of threads in which data can share by shared

memory. Thread is a basic entity of parallel execution. The

NVidia’s Fermi architecture GPU consists of grid of size 65

535 X 65 535 blocks and each block has up to 1024 threads.

CUDA is suitable for problems where by identical instruction

set is executed on multiple threads i.e. Single Instruction

Multiple Threads (SIMT). When a CUDA program on the

host CPU invokes a kernel grid, the blocks of the grid are

distributed on multiprocessors. The threads in the block

execute concurrently on multiprocessors, and multiple thread

blocks can execute concurrently on multiprocessors. The

GPGPU based CUDA architecture is shown in Figure 3.

Fig 3: GPGPU based CUDA Architecture

Presently, NVIDIA and AMD are top most GPU venders and

their recent top ten graphics cards are shown in Table I with

rating.

Table 1. TOP 10 GRAPHICS CARDS [3]

Graphics Card Vendor Rating

GeForce GTX 690 NVidia 9.98

Radeon HD 7970 AMD 9.63

GeForce GTX 680 NVidia 9.58

GeForce GTX 670 NVidia 9.40

Radeon HD 7870 AMD 9.13

GeForce GTX 660 Ti NVidia 8.73

Radeon HD 7850 AMD 8.25

GeForce GTX 580 NVidia 7.78

GeForce GTX 650 NVidia 7.53

Radeon HD 6670 AMD 7.15
10-9 (Excellent), 8-6 (Good), 5-4 (Average), 3-2 (Poor) and 1-0(Bad)

3. STRATEGIES FOR OPTIMIZATION

AND PARALLELIZATION OF PSO ON

GPGPU
The optimization of PSO implementation on GPGPU in terms

of memory usage, communication between CPU and GPU can

help to improve performance in terms of speedup, maximum

utilization of resources, etc. The probable performance

optimization strategies of PSO on GPGPU discussed in [2] [4]

are:

1) Maximize parallel execution to obtain maximum

utilization.

2) Minimize data transfers between host and device

with low bandwidth.

3) Maximizing usage of on-chip memory: shared

memory and caches.

4) Optimize memory usage to achieve maximum

memory throughput.

5) Optimize instruction usage to achieve maximum

instruction throughput.

6) Another strategy is to have threads arranged into

blocks; where each block runs on one

multiprocessor. It is also possible to have more

blocks than multiprocessors and more threads per

block than cores, to get optimal use of GPU.

7) Shared memory may be accessible only within the

block and thread synchronization is possible also

only within the block.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 6, November 2014

29

8) To achieve high bandwidth, shared memory is

divided into equally-sized memory modules, called

banks, it can be accessed concurrently.

9) Maximizing overall memory throughput for the

application is to minimize data transfers with low

bandwidth.

The way in which PSO is parallelized, is also important factor

to optimize implementation on GPGPU. The parallelization of

PSO depends upon different parameters like how to calculate

fitness of each particle, how velocity and position updated,

and which topology used. Researchers working in the area of

high performance computing have proposed different

strategies for implementing PSO on different parallel

platforms. Most popular parallelization strategies are shown in

Figure 4. There is also diffusion model and island model. In

diffusion model unique population is considered and is

suitable for shared memory architecture. In island model,

population is divided into subpopulations and is well suited

for implementation on cluster or grid computing [5]. Multi-

population and repulsive multi-population methods are found

in literature [6].

Fig 4: Parallelization strategies (Taken from [4])

The PSO algorithm on GPGPU can be designed using two

different strategies, namely heterogeneous approach and

homogeneous approach. In heterogeneous approach sequential

part is executed on CPU while compute intensive or parallel

part is executed on GPGPU. In homogeneous approach all

computations are carried out on GPGPU.

Each of these strategies has its own merits and demerits. If

optimization problem has huge search space then multi-

population method is applicable. Master-slave approach is

suitable for optimization problems with complex fitness

function. Hybrid parallelization strategy is suitable for

complex fitness function as well as huge search space of an

optimization problem [6].

Though, here different researcher’s implementation of PSO on

GPGPU is discussed; the PSO has scope of implementation

on distributed systems like HPC, cloud, cluster, grid, and even

on Hadoop to improve its performance in terms of time and

speedup.

4. APPLICATIONS OF PSO ON GPGPU:

AN OVERVIEW
The nature inspired techniques were developed to solve

different categories of NP problems in polynomial time.

Researchers are working to improve performance of such

techniques with respect to speedup, throughput, solution

quality, efficient utilization of available resources. In this

section, different applications or problems solved by PSO on

GPGPU are presented.

Miguel Cardenas-Montes et al. [7] observed Schwefel’s

Problem (full-non-separable function) which is solved using

PSO on GPU. This problem requires high CPU time

consumption for evaluation. The results show the excellent

performance improvement on GPU. They observed that

higher dimensionality show a better exert the parallelism

capacity of GPU.As the number of variables increases, the

GPU maps data to threads that make parallelism more

powerful.

Mussi et al. [8] proposed GPU based Road Sign Detection

using Particle Swarm Optimization. Running speed of GPU

version is 20 times as fast as that of CPU.

Wenna and Zhenyu [9] proposed A CUDA based Multi-

Channel Particle Swarm Algorithm. Parallelism performed on

benchmark functions like Sphere, Rastrigin, Griewangk and

Rosenbrock. Comparison of result on GeForce 480GTXGPU

with Intel Core i7 860 shows, as population gradually

increases, speedup also increases.

Zhou and Tan [10] presented parallel approach to run

Standard Particle Swarm optimization (SPSO) on Graphic

Processing Unit (GPU). Some experiments are conducted by

running SPSO both on GPU and CPU, respectively. The

running time of the SPSO based on GPU (GPU-SPSO) is

greatly shortened compared to that of the SPSO on CPU

(CPU-SPSO). Running speed of GPU-SPSO can be more than

11 times as fast as that of CPU-SPSO, with the same

performance. As compared to CPU-SPSO, GPU-SPSO shows

better speed advantages on large swarm population

applications and high dimensional problems that can be

widely used in real optimizing problems.

Zhu and Guo [11] suggested Euclidean Particle Swarm

Optimization (EPSO) with CUDA. As the dimensions of

optimization and local optima increases, EPSO require large

scale of computing and long time in calculation. In order to

overcome the drawback of EPSO require long time of massive

calculation, fine grained data parallelism employed to

calculate fitness with GPU to implement PEPSO based on

CUDA. Experimental results shown that compared with

EPSO the EPSO’s maximum speedup increased 16.27 times.

Calazan et al. [12] proposed GPU based Parallel Dimension

Particle Swarm Optimization. The optimization problems with

low computational complexity i.e. low dimensions, CPU

based PSO gives better performance than GPU based PDPSO.

GPU provides positive impact on large optimization

problems. Fine Grained model is used i.e. distribute one

dimension to one thread. GPU-PSPSO is 85 times faster than

CPU-PSO.

Papadakis and Bakrtzis [13] proposed Economic Dispatch

Problem using Comprehensive Learning Particle Swarm

Optimizer (CLPSO). Course grained and fine grained

parallelism performed and compared these two parallel

strategies with sequential implementation. From the

experimental reading author observed that fine grained

parallelism approach gives more speedup than course grained

approach. Veronese and Krohling [14] implemented parallel

PSO on NVIDIA GTX 280 using C-CUDA with different

standard test functions. The results show the excellent

performance improvement on GPU.

Hsieh and Chu [15] proposed GPU-Based Optimization of

Tool Path Planning in 5-Axis Flank milling using PSO.

Computation time of GPU is much shorter than CPU with

negligible difference between results on GPU and CPU

respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 6, November 2014

30

Platos et al. [16] implemented PSO based Document

Classification algorithm and compare the time complexity of

problem with CPU, one GPU and two GPU. After comparison

they observed that the speed of the 2 GPUs implementation is

almost two times more than the single GPU implementation.

Zhang et al. [17] implemented Frequency Selective Surface

using PSO algorithm. They observed that with GPU, FSS runs

100 times faster than CPU. GPU takes up 2 hours and 48

Minutes for entire optimization process, while CPU

simulation takes up more 7 days for the same optimization.

Bastos et al. [18] investigates impact of the Random Number

Generator Quality on PSO Algorithm Running on GPU. They

analyze the computational time sequential implementation and

parallel implementations of CUDA synchronous and CUDA

asynchronous. Both GPU versions are much faster than

sequential but asynchronous version is slightly faster than

synchronous version.

Jambhlekar et al. [19] implemented Multi Objective PSO

(MOPSO) crowding distance algorithm on GPU using CUDA

and OpenCL. The computation time is reduced by GPU

efficiently. As concern with different benchmark functions,

CUDA gives better performance than OpenCL.

Chang and Fang [20] proposed Band Selection for Hyper

spectral Images Based on Parallel Particle Swarm

Optimization Schemes and compare the result of PPSO with

PSA. They analyze that PPSO significantly improves the

computational loads and provide a more reliable quality of

solution than PSA.

Zhu and Curry [21] proposed Particle Swarm- Pattern Search

Optimization algorithm. They concentrate on performance

analysis and parallelization analysis. Performance is improved

by hybridizing PSO and Pattern search algorithm as PS2.

Speedup is increased by parallelizing algorithm using GPU.

Sharma et al. [22] introduced Normalized PSO (NPSO) to

solve Portfolio Management. The overall speedup is about 40

for Portfolio Management when compared with CPU based

method.

Salgado and Herrero [23] introduced Ground Control Point

(GCB) based nonlinear registration of airborne push broom

imagery, based on an implementation of PSO. It is observed

that, solving this problem on GPU using PSO is speedy.

Rabinovich et al. [24] introduced Gaming PSO (GPSO) for

radiofrequency resource allocation optimizer which

implemented on GPU. When serial version is compared with

proposed method, the speed up of 5X is observed.

Kromer et al. in [25] provided a brief survey about design,

implementation and applications of parallel PSO on GPGPU.

Applications developed using PSO and its variants are

summarized in Table 2.

Table 2. SUMMARY OF PROBLEMS SOLVED USING

PSO & ITS VARIANTS ON GPGPU

PSO Type Selected Problem /Objective of

Study

Year

PSO [19]

Band Selection for

Hyperspectral Images

2009

LSPSO [20] Bound Constrained Problems 2009

PSO [7] Road Sign Detection 2009

SPSO [9] Benchmark functions 2009

PSO [13] Benchmark functions 2009

SIMT PS2 [21] 12 benchmark optimization

functions

2009

PSO [14] Optimization of Tool Path

Planning in 5-Axis Flank

Milling

2010

PSO [17] Impact of the Random Number

Generator Quality on PSO

2010

PSO [6] Schwefel’s Problem 2011

PSO [8] Benchmark functions 2011

EPSO [10] Benchmark functions 2011

MOPSO [18] Benchmark functions 2011

CLPSO [12] Economic Dispatch Problem 2011

SyncPSO and ringPSO

[26]

Standard benchmark function 2011

Parallel Multi-

objective PSO [5]

Two objective Test functions 2011

PSO [15] Documentation Classification 2012

GBC based PSO [23] Orthorectification of Airborne

Push broom Imagery

2012

PSO[22] Portfolio Management 2012

BPSO [17] Frequency Selective Surface 2012

Parallel PSO [27] Real-Time Harmonic

Minimization in Multilevel

Inverters

2012

PDPSO [11] Benchmark functions 2013

PSO and DE [28] model-based object detection 2013

Parallel PSO [29] Impact of problem properties on

execution time

2013

Continuous Cellular

Automaton with PSO

[30]

Simulation of deep reactive ion

etching

2013

PSO [31] PSO as a hardware coprocessor

to the MicroBlaze processor

2014

Cooperative

coevolutionary PSO

[32]

Automatic calibration of urban

Cellular Automata (CA) models

2014

PSO [33] Real-time trajectory planning of

the under-actuated nonlinear

Acrobot

2014

Parallel PSO [34] Parameter Estimation for

Photovoltaic Models

2014

From the literature, after reviewing different applications to

achieve better optimal result for complex optimization

problems, the search space can be explored and that can be

implemented by increasing swarm size. If population size

increased then to get optimal solution, time required will be

more so such problems can be tackled by parallelizing PSO on

GPGPU. The real time problems, those have Single

Instruction Multiple Data (SIMD) nature, such problems

efficiently solved by PSO on GPGPU.

From this study few things can be drawn out:

 PSO is efficient and robust swarm intelligence

method whose performance can be improved with

latest high performance computing paradigm to

achieve high speed up.

 GPU is helpful to reduce the computational time

and improve the speedup of large compute intensive

applications.

 Problem of metaheuristic like population size and

course of dimensionality could be effectively solved

using GPGPU.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 6, November 2014

31

5. CONCLUSIONS
This article presents a general overview of GPGPU and

CUDA, parallelization strategies for PSO and brief review of

different applications of PSO on GPGPU.

CPUs are far behind than GPUs in terms of memory

bandwidth and floating point operations performed per

second. NVidia and AMD are topmost GPU vendors whose

memory bandwidth is more than 270GB/s and 4500GFLOP/s

floating point operations can be performed.

The PSO algorithm has various compute intensive

calculations like evaluation of fitness function of each particle

in the swarm, updating velocity and position of each particle

at every iterations, etc. these operations could be performed

on GPGPU effectively. This will minimize processing time of

PSO. From the study, it can be stated that, variation of PSO

are implemented on GPGPU to solve complex or compute

intensive optimization problems.

The PSO algorithm, other than GPGPU, it can be

implemented on cluster of GPGPUs, cloud, cluster of CPUs,

grid, and even on Hadoop to improve its performance in terms

of time and speedup. Parallel PSO implementation on latest

computing paradigms can solve large dimension compute

intensive problems.

6. REFERENCES
[1] Kennedy, J. and Russell, E.1995. Particle swarm

optimization. In Proceeding of IEEE International

Conference on Neural Networks.

[2] NVidia. CUDA-C Programming Guide version 5.1.

2013.

[3] Top Ten Review. Top ten graphics cards list, 25 August

2013. http://graphics-cards-review.toptenreviews.com.

[4] Umbarkar, A.J., Joshi, M.S., and Rothe, N.M. 2013.

Genetic algorithm on general purpose graphical

processing unit: Parallelism review. J. ICTACT Soft

Computing. 3. 492–497.

[5] Zhou, Y. and Tan, Y. 2011. GPU-based parallel

multiobjective particle swarm optimization. J. Artificial

Intelligence. 7(A11). 125–141.

[6] Majd, A., and Sahebi, G. 2014. A Survey on Parallel

Evolutionary Computing and Introduce Four General

Frameworks to Parallelize All EC Algorithms and Create

New Operation for Migration. J. Information and

Computing Science, 9(2), 097-105.

[7] Miguel, C. M., Miguel, A., Rodrguez-Vazquez, J. J., and

Antonio, G. I. 2011. Accelerating particle swarm

algorithm with GPGPU. In IEEE 19th International Euro

micro Conference on Parallel, Distributed and Network-

Based Processing.

[8] Mussi, L., Stefano, C., and Daolio, F. 2009. GPU-based

road sign detection using particle swarm optimization. In

9th IEEE International Conference on Intelligent Systems

Design and Applications.

[9] Wenna, L. and Zhenyu. Z. 2011. A CUDA-based multi-

channel particle swarm algorithm. In 4th International

Conference on Control, Automation and Systems

Engineering.

[10] Zhou, Y. and Tan, Y. 2009. GPU-based parallel particle

swarm optimization. In IEEE Congress on Evolutionary

Computation.

[11] Zhu, H. and Guo, Y. 2011. Paralleling Euclidean particle

swarm optimization in CUDA. In 4th International

Conference on Intelligent Networks and Intelligent

Systems.

[12] Calazan, R. D. M., Nedjah, N., and Mourelle, L. D. M.

2013. A Cooperative Parallel Particle Swarm

Optimization for High-Dimension Problems on GPUs. In

IEEE Computational Intelligence and 11th Brazilian

Congress on Computational Intelligence (BRICS-CCI &

CBIC).

[13] Papadakis, S. E., and Bakrtzis, A.G. 2011. A GPU

accelerated PSO with application to economic dispatch

problem. In 16th IEEE International Conference on

Intelligent System Application to Power Systems (ISAP).

[14] Veronese, L. P., and Krohling, R. A. 2009. Swarms

flight: Accelerating the particles using C-CUDA. In

IEEE Congress on Evolutionary Computation.

[15] Hsieh, H. T., and Chu, C. H. 2010. GPU-based

optimization of tool path planning in 5-axis flank

milling. In IEEE International Conference on

Manufacturing Automation.

[16] Platos, J., Snasel, V., Jezowicz, T., Kromerand, P., and

Abraham, A. 2012. A PSO-based document

classification algorithm accelerated by the CUDA

platform. In IEEE International Conference on Systems,

Man and Cybernetics.

[17] Zhang, B., Zheng, H.,Wei, M., Wu, R., and Sheng, X.

2012. Particle swarm optimization of frequency selective

surface. In IEEE International Conference on Cross Strait

Quad- Regional Radio Science and Wireless

Technology.

[18] Bastos-Filho, C. J., Oliveira, M. A., Nascimento, D. N.,

and Ramos, A. D. 2010. Impact of the random number

generator quality on particle swarm optimization

algorithm running on graphic processor units. In 10th

IEEE International Conference on Hybrid Intelligent

Systems (HIS).

[19] Jambhlekar, P. A., Mishra, M., and Subramaniam, S. V.

2011. Parallel implementation of MOPSO on GPU using

OpenCL and CUDA. In 18th IEEE International

Conference on High Performance Computing (HiPC).

[20] Chang, Y., L., and Fang, J. P. 2009. Band selection for

hyperspectral images based on parallel particle swarm

optimization schemes. In IEEE International Geoscience

and Remote Sensing Symposium.

[21] Zhu, W., and Curry, J. 2009. Particle swarm with

graphics hardware acceleration and local pattern search

on bound constrained problems. In IEEE Swarm

Intelligence Symposium.

[22] Sharma, B., Thulasiram, R. K., and Thulasiraman, P.

2012. Portfolio management using particle swarm

optimization on GPU. In 10th IEEE International

Symposium on Parallel and Distributed Processing with

Applications.

[23] Javier, R.S., and Julio, M. H. 2012. High performance

GBC based particle swarm optimization for

orthorectification of airborne push broom imagery. In

IEEE International Geoscience and Remote Sensing

Symposium.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 6, November 2014

32

[24] Rabinovich, M., Kainga, P., Johnson, D., Shafer, B., Lee,

J., J., and Eberhart, R. 2012. Particle swarm optimization

on a GPU. In IEEE International Conference on

Electro/Information Technology.

[25] Kromer, P., Platos, J., and Snasel, V. 2013. A brief

survey of advances in particle swarm optimization on

graphic processing units. In IEEE World Congress on

Nature and Biologically Inspired Computing (NaBIC).

[26] Mussi, L., Daolio, F., and Cagnoni, S. 2011. Evaluation

of parallel particle swarm optimization algorithms within

the CUDA architecture. J. Information Sciences.181.

4642–4657.

[27] Roberge, V., and Tarbouchi, M. 2012. Efficient parallel

particle swarm optimizers on GPU for real-time

harmonic minimization in multilevel inverters. In 38th

IEEE Annual Conference on Industrial Electronics

Society (IECON).

[28] Ugolotti, R., Nashed, Y. S., Mesejo, P., Ivekovic, S.,

Mussi, L., and Cagnoni, S. 2013. Particle Swarm

Optimization and Differential Evolution for model-based

object detection. J. Applied Soft Computing, 13(6).

3092-3105.

[29] Altinoz, O. T., Yilmaz, A. E., and Ciuprina, G. 2013.

Impact of problem dimension on the execution time of

parallel particle swarm optimization implementation. In

8th IEEE International Symposium on Advanced Topics

in Electrical Engineering (ATEE).

[30] Li, Y., Xing, Y., Gosalvez, M. A., Pal, P., and Zhou, Y.

2013. Particle swarm optimization of model parameters:

Simulation of deep reactive ion etching by the

continuous cellular automaton. In The 17th IEEE

International Conference on Solid-State Sensors,

Actuators and Microsystems (TRANSDUCERS &

EUROSENSORS XXVII).

[31] Calazan, R. M., Nedjah, N., and Mourelle, L. M. 2014. A

hardware accelerator for Particle Swarm Optimization. J.

Applied Soft Computing. 14. 347-356.

[32] Blecic, I., Cecchini, A., and Trunfio, G. A. 2014. Fast

and Accurate Optimization of a GPU-accelerated CA

Urban Model through Cooperative Coevolutionary

Particle Swarms. Procedia Computer Science. 29.

[33] Van Heerden, K., Fujimoto, Y., and Kawamura, A. 2014.

A combination of particle swarm optimization and model

predictive control on graphics hardware for real-time

trajectory planning of the under-actuated nonlinear

Acrobot. In 13th IEEE International Workshop on

Advanced Motion Control (AMC).

[34] Ma, J., Man, K. L., Ting, T. O., Zhang, N., Guan, S. U.,

and Wong, P. W. 2014. Accelerating Parameter

Estimation for Photovoltaic Models via Parallel Particle

Swarm Optimization. In IEEE International Symposium

on Computer, Consumer and Control (IS3C).

IJCATM : www.ijcaonline.org

