
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

14

Constraint Free Testing using Service Virtualization

Dharmalingam Subbiah

Principal Consultant
Center of Excellence Team
Syntel Ltd, Chennai, India

Balaji Arulmozhi
LISA Architect

Center of Excellence Team
Syntel Ltd, Chennai, India

Hariharasudhan
Maruthamuthu

LISA Engineer
Center of Excellence Team
Syntel Ltd, Chennai, India

ABSTRACT

Service Virtualization is the latest trend in the software

industry leveraged throughout the application development

lifecycle. It has thrived recently due to its ability to address

numerous constraints faced while developing and testing a

software product.

It can break through delays, costs and risks imposed by

dependent IT resources that are unavailable or inaccessible for

development and testing of any enterprise application

development or integration projects. Service Virtualization

eliminates system dependency constraints by ‘virtualizing’ or

capturing and modeling the target system’s dynamic behavior,

performance and data so that it reacts and responds in the

same way as the live system.

Service Virtualization ensures test and development teams

have concurrent, all time access to realistic test environments

to shorten their release cycles. Costs for test labs, responders,

and stubs are dramatically reduced, and quality is improved

by testing more scenarios faster and earlier in the lifecycle

Keywords
Service virtualization, Mocking, Continuous testing, Parallel

development, Unavailable and inaccessible software,

Software dependency systems, Dependency constraints,

Constrained software applications, Software application

downtime, Test data challenges, Infrastructure cost reduction,

Testing ,Third party system dependency, Stubbing

1. INTRODUCTION
Enterprise Application Integration projects deal with inter and

intra components/applications dependencies during

development and testing phases due to unavailable or

constrained components and out of scope test data which

cause delay in the delivery of the project. Some major

challenges that the development and testing teams face during

development lifecycle are:

Unavailable/Inaccessible systems become constrained due to

production schedules, security restrictions, contention

between teams, or because they are still under development.

Poor Performing Downstream systems and mockups may not

provide the functional behavior or performance response

needed. Dealing with out of scope test data scenarios across

distributed systems can be very time consuming and cost

prohibitive. These are application and services that are too

difficult to replicate through traditional hardware-based

virtualization approaches. Developing and/or testing against

cloud-based or other third party shared services can result in

costly usage fees In quintessence, Service Virtualization is the

product version of the practice of ‘mocking/stubbing’ in the

development and test environments. It has enough practicality

and framework to thrust forward development more swiftly,

while shifting testing left in the lifecycle, so integration and

release procedures can occur sooner, with higher quality and

fewer risks. In this white paper, we shall look into the

constraints faced during the development and testing phases

of SDLC and how Service Virtualization can help both

development and testing teams carry out their by leaving the

system/environment constraints behind.

2. CONSTRAINTS FACED DURING

THE DEVELOPMENT AND TESTING

PHASES
A system may not be accessible by the development and

testing teams, or the required data set may not be available in

a system to proceed with the development or testing. For

instance, a needed component A may be down, a component

B could have corrupt data, or a third-party component may

have high access cost. Efforts to replicate these environments

by manually coding stubs and handling test data are expensive

and unpredictable.

Service Virtualization resolves constraints by simulating the

dependent systems with a high grade of erudition. It provides

less expensive, 24/7 availability that respond just like the

actual entity for functional and performance testing purposes

at a lesser cost.

It can be very demanding to have a good test data set that

addresses all the scenarios within an application. That

intricacy increases as the application becomes more

composite as with complex applications. To make data

problems worse, testing team need to deal with the problems

around negative testing, aging and maintenance of data.

Service Virtualization is significant in resolving these data

issues.

In order to move to a valuable agile development process, the

team needs the connectivity between different systems to be

intact. These could be actual systems, but would need

innumerable hardware and application software to back up the

massive number of agile development teams.

Service Virtualization addresses this constraint by allowing

each development team, and possibly each developer, the

capability to have their own interpretation of the complete

application stack with all interfaces denoted.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

15

 Fig 1. Environment with constraint

3. SOLUTION AND BENEFITS

3.1 Accelerated development and testing
When development and test teams work in parallel, the overall

software lifecycle reaches a complete new level of efficiency

and effectiveness.

In parallel development and testing, virtual services act as the

intermediate assets between the system under development

and the system under test, in a cooperative fashion. For

instance, assume that team A is developing an account

balance service while team B is developing and testing the

banking smartphone application. A virtual service is captured

from the existing account balance service as an initial back-

end for the banking smartphone application’s testing activity.

Then, as the testing continues, the banking smartphone

application team can provide feedback about any unforeseen

or new response requirements as feedback. These feedbacks

are taken as input for virtual service requests that basically

turn out to be the next set of requirement for development.

Each simultaneous development and test cycle endures to

hasten the each iteration of the Virtual service model and,

feedback ensures that the updates happen with every new

build. In case the team could not access the services or the

service does not support the components, they can switch to

virtual services. When there is a fresh build breaks or to use

new data scenarios, they can switch back to live service mean

while feedback will be received for virtual service update.

3.1.1 Anticipated Benefits:
Test and development cycles can be completed at a fair speed.

Avoid deadlock situation and facilities continuous integration

and testing around business requirements. Improved degree of

issue acceptance and resolution prior to production.

Fig 2. Accelerated development and testing

3.2 Creation of environments that replicate

production systems
In the orthodox approach, teams try to advance with their own

component development by “stubbing” the next downstream

system only. For instance, when developing a mobile UI, the

team would build a stub for a few expected responses from

the immediate downstream component (E.g.: Security

Gateway). Then the Security Gateway developers might stub

out the next immediate downstream, component (E.g.: Oracle

Security Stack) or try to simulate some user requests from the

mobile UI Unfortunately, this is a manual process that is

never adequate to capture many types of connections and data

available within enterprise software architectures, and may be

totally unattainable if a UI is not yet coded. Virtual services

capture real time data scenarios and behaviors effectively

which eliminates dependencies on the actual components. It

also reduces the setup and infrastructure cost of setting a

testing environment. Virtual services can be deployed without

affecting the setup of the existing test or development

environment.

 Hence, there is no risk in deploying and managing virtual

services in testing environment.

3.2.1 Anticipated Benefits:
Even if a specific component is down in an environment,

development and testing can continue. The timelines of test

execution can be reduced. Test coverage ratio can be

increased as system dependencies are minimal. Coding quality

can be improved due to the increased test coverage

3.3 Handling out-of-scope test data
Often, in testing scenarios, business processes that require

access to third party services or interfaces that are out of

scope or out of reach of the testing effort. Consider that a

Point of Sale (POS) application is tested, that depends on a

credit card validation or processing service. While the focus is

on testing the developed application, there is no practical or

cost effective way to test the application with the credit card

validation service integrated. That service is not owned or

controlled by the testing team, however, there may be several

business processes in the application that might depend on it.

The common practice in these situations is to stub the required

functionality and often simply skip it, reducing the testing

scope, accuracy, value etc… While the goal is not to test the

interface or the third party service, the ideal situation is to

have it participate in the functional/performance test in

support of the business process that would be of interest in

testing. Simple stubs are often too static, require development

Fig 3. Environment replicates production

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

16

Fig 4. Handling Out-of-Scope Test Data

Virtualization
Journey

Planning and
Design

Create Virtual
Service

Test Data
Management

Enhance VS

Deploy and
Support

time and do not properly represent the service they are

designed to emulate.

Service virtualization has the ability not only to replicate the

functional behavior of the interface but also the performance

behavior. Out-of-scope downstream components related

scenarios are recorded as virtual services. Hence, Service

Virtualization eliminates the problem of missing or

unavailable data behind the in-scope components.

With virtual services the teams will always have access to

datasets that cover all the valid scenarios to ensure that

intensive regression testing and functional testing is carried

out.

3.3.1 Anticipated Benefits:
 No delay due to dependency on third party systems or data

which is not available for testing. There will be no test data

conflicts with the other testing teams as the data inputs would

be provided by the independent test team. Impact on live

systems is minimal. Test execution timeline is reduced as less

time is required to setup the data.

3.4 Technology support for various

platforms
Every project team spends a lot of money on building the

infrastructure in development, testing, pre-production and

production environments. Most applications in the bank are

hosted on multiple environments.

The biggest challenge all organizations face is that the pre-

production environments are never complete in most

situations.

Many systems are used in enterprise IT environments. Hence,

service virtualization should be implemented to virtualize all

the components that would impact on the system under test.

This includes web traffic (HTTP requests), databases,

mainframes, web services (SOAP/XML, REST/JSON) and

other third party components.

3.4.1 Anticipated Benefits:
Cost in setting up the pre-production environments can be

massively reduced significantly. System testing and unit

testing can be given preference to ensure that the quality is

good even before the SIT and UAT test begins.

4. VIRTUALIZATION APPROACH
Service virtualization involves the imaging of software

service behavior, and modeling of a virtual service to stand in

for the actual service during development and testing cycles.

Fig 5. Virtualization Approach

Before selecting a service for virtualization, benefits will be

studied. Checklist provided in ‘Best Practice’ section will

guide users to select appropriate target services.

Virtualization approach comprises of five phases starting with

‘Design’ phase followed by ‘Create Virtual Service’, ‘Test

Data Management’, ‘Enhance’ and ends with ‘support’ phase

4.1 Planning and Design:
Design involves understanding the scope and prioritization of

the services to be virtualized for each identified services.

4.1.1 Understanding requirements:
The Virtual Service developer will start virtualization by

understanding the proposed functional and non-functional

requirements. This will be followed by identifying desired

development and test environments, examining all the

processes that consume the planned services for virtualization,

listing challenges/concerns of the services/components, group

all the use cases and map with identified services.

4.1.2 Prioritize the services to be virtualized:
The services to be virtualized would be prioritized based on

the development needs. This information will help the team

align the virtual service development timeline with the

development timeline/schedule to ensure improved agility.

4.1.3 Preparing Design document:
A design document comprises of the following information:

Details of Transport and Data protocols to be used for the

various services to be virtualized. Port details reserved for

each service will avoid conflicts while deploying multiple

services in virtual service environment. Request response

details mapped. List of request and response fields identified

for parameterization and test data management. Test data

required for running virtual services for consumption.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 17, November 2014

17

Table 1: Tools available in market

4.2 Creation of Virtual Service:
This phase involves creation of virtual services and population

of data. There are different approaches to construct virtual

services depending upon the type of services and their

existence.

Several tools are available in the market for Service

Virtualization. Each tool has its own benefits and supports

various ways to create virtual services.

For instance, CA LISA tool allows users to create virtual

services by recording the transactions of the target service and

uploading the request/response pairs.

4.3 Test Data Management
Test data management is pivotal in reducing the time spent on

test data preparation and reducing risk of a compliance or

security breach through inappropriate use of test or production

data.

As best practices in test data management, call for the test

data to retain the proper data structure for testing while

parameterizing or masking the data for security purposes. MS

Excel is used for preparing the data sheets.

4.4 Enhance
Developers, testers or partners may consume and utilize the

Virtual Services which are available in an environment to

conduct testing when needed. Activities involved in this phase

include: Creation of new transactions depending on a new

requirement. Build custom extensions, programs if required.

Deploy the Virtual Service into the Virtual Service

Environment. Configure application and Test Virtual Service

for all identified scenarios.

4.5 Support
Provide training to the project front end team. Update or

enhance the virtual services, setup test data, based on the

change request. Support project team during regression

testing. Closely work with the project team in case of any

issues identified during regression and the identified issues

should be fixed.

4.6 Tools for Service Virtualization
List of tools which supports Service Virtualization are listed

below:

Sl

No

Tool

Name Vendor

Supported

Technologies

Supported

Protocols

1 LISA

SV

CA Web Services,

XML, IBM Web

Sphere, SAP

PI/XI, JBoss,

TIBCO, , MQ

Series, Progress

Sonic, Sun

JMS/JCAPS,

any J2EE

Container, etc.

HTTP(S),IBM

MQ, JMS,

TCP/IP,JAVA,

SOAP, etc.

2 Green

Hat/RT

VS

IBM TIBCO,

Software AG

web Methods,

SAP, IBM,

Oracle, JMS-

based

Middleware, etc.

HTTP, TCP/IP

JMS,IBM MQ,

Sonic MQ,

Healthcare -

HL7, HIPAA,

Financial

Services - FIX,

etc.

3 HP SV HP Web Services,

MQ, JMS,

TIBCO EMS,

IMS Connect,

CICS, SAP

(XI/PI, RFC,

and IDoc), etc.

HTTP(S),

JMS, JDBC,

SAP, MQ,

QRACLE,

SOAP, etc.

4 soapUI Open

Source

Web Services SOAP, JSON

5. CONCLUSION
Several project teams depend on other teams to complete

development and/or testing activities. There are lots of

dependencies on various teams when developing or testing a

software project.

Ultimately, a team cannot complete its job until the other

teams finish their jobs. Each team involved with a complex

application must be able to build its own virtual component

from the infrastructure. There will inevitably be intra-team

dependencies. This is why, service virtualization abilities are

very important. Each team can take the interface specification

document of the relevant downstream component and build

the expected responses of the downstream component, even

before the first build of the system under test is ready.

A well-versed approach to service virtualization will take into

consideration not just both the technical and operational fine

points but also the operational ones that can assure

widespread acceptance and accomplishment.

6. REFERENCES
[1] http://www.itko.com/solutions/constraints.jsp

[2] John Michelsen and Jason English “Service

Virtualization - Reality is Overrated “September 25,

2012

[3] SOA Magazine

http://www.servicetechmag.com/I10/0907-2

[4] Service virtualization”

http://en.wikipedia.org/wiki/Service_virtualization”

[5] Service Virtualization

https://www.mulesoft.com/resources/esb/service-

virtualization

[6] CA LISA Virtualization http://itroisolutions.com/wp-

content/uploads/2014/02/acs2717-ca-lisa-service-

virtualization-ds-08121.pdf

[7] Service virtualization is helping organizations realize

business value from testing

http://www.ovum.com/service-virtualization-is-helping-

organizations-realize-business-value-from-testing/

[8] Service Virtualization: The Road to Simplification

http://www.developer.com/tech/article.php/3678296/Serv

ice-Virtualization-The-Road-to-Simplification.htm

IJCATM : www.ijcaonline.org

