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ABSTRACT 

This article proposes a multistage framework for time series 

analysis of user activity on touch sensitive surfaces in noisy 

environments. Here multiple methods are put together in multi 

stage framework; including moving average, moving median, 

linear regression, kernel density estimation, partial differential 

equations and Kalman filter. The proposed three stage filter 

consisting of partial differential equation based denoising, 

Kalman filter and moving average method provides ~25% 

better noise reduction than other methods according to Mean 

Squared Error (MSE) criterion in highly noise susceptible 

environments. Apart from synthetic data, we also obtained real 

world data like hand writing, finger/stylus drags etc. on touch 

screens in the presence of high noise such as unauthorized 

charger noise or display noise and validated our algorithms. 

Furthermore, the proposed algorithm performs qualitatively 

better than the existing solutions for touch panels of the high 

end hand held devices available in the consumer electronics 

market qualitatively.   
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1. INTRODUCTION 
Touch sensors have become ubiquitous and their applications 

span from mobile phones, personal digital assistants (PDA) to 

home appliances and industrial automation. Touch sensors are 

signal transducers, which convert one form of energy to other, 

that are sensitive to touch. This can be realized using many 

techniques such as capacitive, resistive, infrared, optical, 

Surface Acoustic Waves (SAW) etc [1-4]. 

Resistive touch sensors consist two layers of electrodes which 

are not in touch with each other. When an external object 

touches the surface of sensor, it forces these two layers to come 

in to contact and triggers a flow of current which can be sensed 

easily. Though cheaper, as resistive touch sensors depend on the 

amount of pressure, their sensitivity is not so great [5]. 

Capacitive sensing is one of the most promising touch sensing 

technologies and is widely used in smart phones, tablets and 

surfaces due to its capability to detect multi touch, sensitivity to 

respond for human touch. Also, compared to resistive touch 

technology, capacitive touch screens can be designed to be 

much thinner [6-7]. Over the past decade with the advent of 

iPhone, Samsung Galaxy devices, capacitive touch sensing has 

emerged as the most prominent touch sensing technology. 

Infrared or optical sensors keep emitting light and when an 

object comes in to the vicinity of the touch surface these beams 

are obstructed and can be detected [8]. SAW sensors form grid 

ultrasonic waves across the touch surface and any activity near 

to the touch surface is identified very easily as the grid is 

disturbed [9]. Usually Infrared and SAW touch sensors are 

employed in larger displays whereas capacitive touch panels are 

being used widely in smaller displays such as smart phones. 

There are many variants of capacitive touch technology and the 

most popular and extensively used variant is called Projected 

Capacitive Touch (PCT) technology. PCT can be implemented 

in two different ways such as Self and mutual capacitance. Self 

capacitance model measures the capacitance of electrode with 

respect to ground where as mutual capacitance measures the 

capacitance between the two conductors overlaid on top of each 

other. In case of self capacitance when a conducting object 

(finger/stylus) is brought closer to the touch surface, it forms a 

capacitance with respect to the electrode and the self 

capacitance is changed. In mutual capacitance model, 

conducting object (finger/stylus) steals the charge flowing 

between the two electrodes and hence the change in capacitance 

[10-11].  

Typically these electrodes are arranged in two layers to form 

rows and columns and at each intersection mutual capacitance 

is measured. This enables the high resolution and multi touch 

capability. In case of self capacitance approach each electrode 

is treated independently and the self capacitance is measured for 

each row and column, due to which multi touch is impossible. 

Given ‘M’ electrodes in upper layer and ‘N’ electrodes in the 

bottom layer; in mutual capacitance setup ‘MxN’ values are 

measured and in self capacitance set up ‘M+N’ values are 

measured [10-13]. 

There are numerous advantages of PCT technology such as high 

longevity, transmittance, reliability, sharp response and multi 

touch capability (in case of mutual capacitance only). One of 

the major disadvantage of PCT technology is that its sensitivity 

to Electro Magnetic Interference (EMI) and there are many such 

sources which cause EMI such as Liquid Crystal Display 

(LCD), unauthorized chargers etc [10-11]. So there is an 

immense need to take care of disturbances caused due to such 

noise sources. These noise sources generate high amounts of 

noise affect user activity (finger/stylus drags) adversely. This 

can be handled either at hardware level or at firmware 

(software) level [14-15]. 

Typical software architecture for touch handling touch sensor 

data consists of pre emphasis, segment identification and 

rejection, coordinate extraction, object (finger/stylus) tracking, 

activity (gestures) recognition etc [1,16-20].  This paper 
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discusses one such software approach to reduce the effect of 

noise by applying smoothing filters on the output of coordinate 

extraction block based on time series analysis. 

Time series analysis has been pursued as active area of research 

spanning across multiple disciplines such as econometrics, 

signal processing, machine learning, computational finance, 

weather forecasting, seismology, statistics, geophysics etc. 

Several approaches were proposed in the area of time series 

analysis such as auto regressive models, wavelet based 

methods, linear and non linear regression, partial differential 

equations (PDE) etc [21-23]. 

Further we can categorize time series analysis problem in to 

different sub problems such as prediction or forecasting task, 

smoothing or noise removal task, signal estimation task based 

on particular area of interest [22-23]. Here we are addressing 

the problem of predicting signal using current and previous 

inputs in highly noise susceptible environments. A novel multi 

stage framework using feedback loops is proposed to combine 

multiple methods to solve the above mentioned problem. This 

frame work outperforms existing methods. Quantitative 

performance measures like Mean Squared Error (MSE), 

Maximum Error are used to evaluate the proposed algorithms. 

2. NOISE SMOOTHENING 

TECHNIQUES 
We experimented with multiple methods including moving 

average, moving median, kernel density estimators, linear 

regression, partial differential equations and Kalman filter for 

noise reduction and prediction tasks.  

2.1 Modified Moving Average/Median Filter 
In case of normal moving average/median filter, current value is 

replaced by average/median of previous ‘n’ values, current 

value and future ‘n’ values, which in turn causes a group delay 

of ‘n’ [22-23]. Here, in the modified version previous ‘n’ values 

from the output of the modified moving average filter are used 

instead of previous ‘n’ values. The idea behind this change is to 

feed best possible values available at time as input to modified 

moving average/median filter. It is obvious that the modified 

version also causes frame delay of ‘n’. 

Similarly, normal median filter and modified median also can 

be defined by replacing average operator with median operator 

in the above equations. In the context of finger/stylus drag 

smoothing, each input is a two dimensional vector consisting of 

X and Y coordinates on the touch surface. 

2.2 Odd One Removed Moving Average 

Filter and Variants 
A variant of moving average filter is also proposed, which uses 

only ‘2n’ values instead of ‘2n+1’ values by eliminating the 

most dissimilar one which can also be called as “odd one”. 

Hence the name “odd one removed out moving average filter”. 

This is done by calculating the distance from a reference point 

to all values and removing the one which is most distant from 

the reference point. Here, we propose four versions of such 

filters and these filters mainly differ based on calculation of the 

reference point. 

(A) In first variant, we use previous smoothed output of the 

filter as reference point 

(B) In second variant, we use average of; previous ‘n’ smoothed 

outputs of the filter, current and future ‘n’ values of noisy data 

as reference point 

(C) In third variant, we use previous smoothed output of the 

filter as reference point. But, distance from reference point to 

each coordinate is calculated independently for X, Y 

coordinates. 

(D) In fourth variant we use same reference point as second 

variant, but distance is calculated independently for X, Y 

coordinates. 

Third and fourth variants cannot be defined as independent 

smoothing filters, but they are used in conjunction with linear 

regression filter to eliminate odd dependant variable. Linear 

regression filters will be explained in detail further in the paper. 

2.3 Kernel Density Estimation (KDE) based 

Filter 
The KDE based approach used here is similar to the approach 

used for image smoothing technique [24]. This approach is 

motivated from the mean shift method [25]. This technique is 

similar to weighted averaging where weights are selected using 

Gaussian Kernel. These weights are inversely proportional to 

the distance of the data from the current data point.  

This weighted average is repeated iteratively until it converges 

based on stopping criteria. The old noisy data is replaced by 

new smoothed data points from iteration to iteration. The 

stopping criteria used here is based on the change in Standard 

Deviation (SD) of data or change in point to point distance. If 

there is no change in SD or updated data then it is assumed to 

be converged. 

The KDE filter takes ‘2n+1’ data points as input i.e. previous 

‘n’, future ‘n’ and the current noisy value. It is applied to x and 

y co-ordinates separately.  

Smoothed outputs are calculated for all data points in a given 

iteration. This iterative process is repeated until convergence as 

explained earlier. 

Smoothed outputs of Y coordinates also can be calculated using 

KDE filter in similar fashion. 

2.4 Linear Regression based Filter 
Linear regression is well known approach [22] used for 

modeling a dependant variable based on one or more 

independent variables. In the context of touch sensory signals, 

time (frames) is independent variable and X, Y coordinates are 

dependant variables. Here, we try to derive relationship 

between time and X coordinates, time and Y coordinates 

separately using linear regression methods to model variation of 

X, Y with respect to time.  

As we have only one independent variable, simple linear 

regression model can be used [26]. There, are many approaches 

to solve linear regression. Some of them are least squares 

approach [22], Theil-sen approach [27] etc. We experimented 

with all of these approaches and using least squares linear 

regression model is best suited for touch sensor signals. 

This filter performs linear regression on a set of values by 

optimizing sum of squares cost function. In other words it tries 

to fit a line through given set of points using least squares 

criteria. Here, we are using moving window based line fit with 

‘m’ previous inputs and ‘n’ future inputs. So, group delay of ‘n’ 

is added in by this filter.  

As time is independent variable and X, Y coordinates are 

dependant variables, regression line is fit for X, Y coordinates 

independently as a function of time. Here, we also use third or 

fourth variant of odd one removed out filter to eliminate one 
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such odd value before performing regression. This is done on 

both X, Y coordinates separately. 

2.5 Smoothing in Polar Coordinate System 
Each point on touch surface is consisting of X and Y 

coordinates. We convert it to polar coordinates by shifting 

origin to first coordinate of the drag, so each ),( YX is 

converted to ),( R . Once polar coordinates are derived, we use 

modified moving average filter to suppress noisy R. Theta (  ) 

is constant, given underlying signal is varying linearly with 

time. So, we use first order exponential smoothing [22, 28] on 

top of modified moving average filter for smoothening out 

Theta. 

2.6 Kalman Filter 
We used Kalman filter [22, 29-30] to suppress noise by 

assuming a pre-defined constant acceleration model of a 

system. It consists of two steps a) Prediction b) Correction. 

Using dynamic model, state is predicted in prediction state 

while the state is corrected based on observation model. 

Kalman does not cause in any group delay 

Basic components of Kalman filters are State vector, Dynamic 

model and Observation model. Each component is described in 

detail below. 

2.6.1 State Vector 

State vector describes the state of dynamic system. As Kalman 

filter consists of two steps, state vector has two values, one in 

predication state and other after correction state. Here, state 

consists of signal value at a time point, velocity of the signal as 

well as the acceleration of the signal.  

2.6.2 Dynamic Model 
Dynamic model denotes the transformation of the state vector 

over time. In the linear case this can be given as below. 

 Q)N(0,q     ; q+1]-X[k*A=X[k]   

Where A is the state transion matrix and is constant X[k]  is the 

state vector and q is the dynamic noise which is usually 

assumed as white noise. In our present model we have used 

 ;T)'','',',',,(=X yxyxyx where )','( yx represents velocity, 
)'',''( yx  represents acceleration. 

2.6.3 Observation Model 
The observation model defines the relationship between the 

state and the measurements. The measurements can be 

described by a system of linear equations in case of linear 

model, which depends on the state variables. The matrix form 

of this system is 

 R)N(0,r     ;r +X[k]*H=Y[k]   

Where Y[k] is the observation vector, H is the state transition 

matrix and is constant, r is the noise of the measurement 

process with the covariance matrix R. In our model state to 

observation transition matrix is given by, 











000010

000001
H  

2.6.4 Noise Modeling 
We calculate process noise matrix and measurement noise 

matrix as follows. First noise matrix Q is calculated. Standard 

Deviation (SD) of previous ‘n’ points is calculated for x and y 

coordinates seperately. Say SD of X, Y cordinates is sd_x and 

sd_y respectively. 

sd_y)/2(sd_x sd_const   

Define   constsdq _*01.0  

Process noise matrix Q is calculated as follows, 

cQ* Q q  

and Qc is given by discretization of the continous-time system. 

For state transition matrix A we have used MatLab function 

lti_disc. 

Measurement noise matrix R is given by, 











sd_y0

0sd_x
R  

Process error covariance matrix P is calculated as follows. 

Initialize P as given below.  

 Q;* SCALE_FACT = P  SCALE_FACT is a scalar.  

For each point, we use previous noisy points to calculate sd_x 

and sd_y and then update Q and R before passing it for Kalman 

filter. Kalman filter will update and correct P.  Predict and 

update stages are defined by system equations [29-30]. 

2.7 Partial Differential Equation (PDE) 

based Smoothing 
Partial differential equations (PDEs) are used to describe wide 

variety of phenomenon in the real world like heat flow, fluid 

flow etc. PDEs are equations that involve rates of change of a 

desired quantity with respect to the underlying independent 

variables in the system [31]. In recent times, it’s used for image 

enhancement also. Below mentioned heat equation is used in 

image noise reduction [32-33].  

),,()),,(.(/),,( tyxItyxcttyxI   

Where, ),,( tyxI is noisy image and ),,( tyxc  is influence 

coefficient. Here, we assume that noisy image is similar to a 2D 

surface heated up unevenly at particular locations. So, we use 

PDE, which describes the heat flow from high temperature 

regions to low temperature region over the time, to suppress 

noise in the image. Similarly, we can apply the same technique 

to reduce noise in any given time series [34]. Here we can 

assume that noisy finger drag is similar to a thin wire which is 

heated up unevenly at particular locations. Below mentioned 

equation can be used to get the smoothed output of the noisy 

finger drag. 

)(),(),( bbff cdcdttxSttxS   

),(),( txStxxSd f 
2)/(1

1

kd
c

f

f


  

),(),( txStxxSdb 
2)/(1

1

kd
c

b

b


  

Here, ),( txS  is one dimensional noisy signal, fd  and bd are 

gradients in forward and backward directions, fc and bc  are 

corresponding influence coefficients respectively. k  is a 

constant which influences contribution of the gradients to the 

noise reduction step. t is the step size of the noise reduction 

for each iteration. Higher t  values help to converge faster but, 
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noise reduction might not be effective. Whereas for lower t  

values reduce noise very effectively, but converge very slowly. 

So we need to select moderate step size in order to strike 

balance between convergence and noise reduction. x  is the 

sampling rate of the noisy signal. In case of finger drag, we 

treat each of the X-coordinates and Y-coordinates as 

independent one dimentional noisy signals. We use above 

mentioned smoothing technique to reduce the jitter in input 

signal. Here, we use 100k  and 25.0t . We repeat the 

same steps for 1000 iterations or till it converges.  

Let’s assume ),1( tx ),(tx and )1( tx are jittery data inputs to 

the filter, after applying PDE based smoothing we get smoothed 

estimate for )(tx as )(tOx . Now we continue smoothing using 

the refined input )2()1()(  txtxtOx  to get smoothed estimate 

for )1( tx and so on. Here, as we need only one future value as 

input to the filter, PDE based smoothing always introduces one 

frame delay only. 

3. MULTI STAGE FRAMEWORK 
Though the filters explained in Section 2 perform well in 

prediction and noise reduction tasks, combining them in a novel 

framework gives much better results than using them 

standalone. Here a multi stage frame work is proposed to 

combine some of these techniques in a novel way. Main 

strength of the multi stage frame work lies in the fact that it uses 

feed forward and feedback loops to pass smoothed signal from 

one filter to other filter.  

We devised such multiple filters using different combinations 

of predictive or noise reduction techniques mentioned in the 

previous section. Below are some of typical examples of the 

filters we explored. 

(a) Moving median filter output feed forwarded to odd 

one removed out moving average filter whose output 

is feed backed to moving median filter 

(b) Kernel density estimator output is feed forwarded to 

moving average filter whose output is feed backed to 

kernel density estimator  

(c) Odd one removed out moving average filter output 

feed forwarded to least squares linear regression filter 

whose output is feed forwarded to moving median 

filter whose output is feed backed to odd one removed 

out moving average filter 

(d) Partial differential smoothing output feed forwarded 

to Kalman filter whose output is feed forwarded to 

moving average filter and Kalman filter output is feed 

backed to PDE based smoothing filter 

We also experimented with replacing moving average filter by 

Savitzky-Golay filter. 

3.1 Savitzky-Golay (SG) Filter 
This filter performs polynomial regression on set of values. It is 

a weighted average filter and weights change as we change 

number of points and polynomial order [35]. Here, we typically 

use polynomial order of two and five points (taps). This method 

preserves some important features like relative maxima, 

minima, width of the peaks etc. So definitely, this is not a good 

choice for first stage. But it improves the performance of first 

stage filters when used in second stage. Because of these 

properties this method suppresses noise while preserving the 

genuine signal changes. 

It can be used on top of any filter output to get slight 

improvement. We applied it on top of modified moving averae, 

modified running median and first variant of odd one removed 

moving average filters. In case of second order polynomial with 

five tap SG filter, weights are given as, [-0.086 0.343 0.486 

0.343 -0.086]. A typical two stage filter using SG in second 

stage is given as below. 

4. RESULTS AND DISCUSSION 
We generated time series synthetically by adding high amounts 

of noise both along the direction of movement of the time series 

as well as perpendicular to the direction of the movement. We 

also generated both linear and non linear trajectories of time 

series. We also tested our data on time series with varying 

velocity and accelerations. Finally, we obtained real world data 

like hand writing, finger/stylus drags etc. in the presence of 

high amounts of charger/display noise from touch interfaces of 

hand held devices and validated our algorithms.  

We used both quantitative as well as qualitative measures to 

compare performance of different algorithms. Some of the 

Quantitative measures include Average Euclidean distance or 

Mean Squared Error (MSE) between actual time series and 

smoothed time series and SNR improvement etc. Among all the 

filters we experimented with, proposed three stage Filter ‘d’ 

mentioned in the earlier section (PDE + KF + Moving Average) 

gives best results. 

To compare performance of the proposed three stage filter we 

passed the same input (noisy time series) through different 

multi stage filters mentioned earlier. We made sure that group 

delay of all the filters is same. Below we can see perceptual 

performance difference between “Proposed Three Stage” filter 

and “Modified Moving Average” filter with five frame group 

delays.  

Though Modified Moving Average Filter performs decently it 

is definitely no match to the Proposed Three Stage filter’s 

performance. Even in case of non linear drags, Proposed Three 

Stage filter is superior to Modified Moving Average filter. 

Below we can see perceptual performance difference between 

proposed three stage filter and Modified Moving Average filter 

with five frame group delay. 

Also, quantitative results are tabulated for various types of 

drags shown above (Linear, Non Linear and Zigzag Drags) with 

different velocity and acceleration combinations. Each drag is 

generated synthetically 100 times and the quantitative measures 

are calculated across these 100 samples. Normal distributed 

random noise is added in both the same direction of the drag as 

well as the perpendicular direction of the drag. As the noise 

characteristics observed on various touch panels have more 

noise in the perpendicular direction of the drag compared with 

the noise same direction as the drag, noise simulations are 

modeled to reproduce such noise conditions as closely as 

possible. 

 

 

 

 

 

 

 

Figure 1: A Two Stage Filter with SG filter on top of 

Modified Moving Average Filter 

Savitzky-Golay as Stage-2 Filter  

Smoothed Time Series 

Noisy Time Series 

Modified Moving Average as Stage-1 Filter  
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A typical example of three stage filter is given as below. 

 

 

 

 

 

 

 

 

 

Figure 2: A typical three stage filter proposed for time 

series analysis 

 

Figure 3: Smoothed time series versus with Noisy time series 

of Linear Drag 

Let’s say original drag (signal/time series) is defined as 

),...,,( 21 MSSSS  and the noisy data generated on top of 

original time series S is given by ),...,,( 21 MnnnN  and 

corresponding filtered output is given by ),...,,( 21 MfffF   . As 

explained earlier 100 different noisy time series  
100321 ,...,,, NNNN are synthetically generated for each drag S 

and corresponding filtered outputs are defined by 

.,...,,, 100321 FFFF   

 

Figure 4: Smoothed time series versus with Noisy time series 

of Non Linear Drag 

 

Figure 5: Smoothed time series versus with Noisy time series 

of Zigzag Drag 

Here, two different quantitative measures were used as defined 

below to evaluate performance of the proposed filter. Modified 

Moving Average filter is used to compare the performance of 

the proposed filter. Here, as each time point consists of two 

coordinates, let’s define iS  as ) ,( yixii SSS  . So, similarly in  

and if can also be defined as ) ,( yixii nnn  and ) ,( yixii fff   

respectively. 

Measure1:
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Measure2: 






M

i
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1

22 )()(maxmax  

where 100,...,1;,...,1  jMi  

From the quantitative analysis tabulated below, it is evident that 

Proposed Three Stage filter performs better than Modified 

Moving Average filter for any given drag. 

Table 1 Quantitative measures (Means Squared Error – MSE and Maximum Error) of proposed noise suppression algorithms 

for synthetically generated linear drag. Each row indicates a different linear drag (shown in Figure 3) with particular velocity 

and acceleration combination 

Velocity 

(in mm 

per sec) 

Acceleration      

(in mm per 

sec squared) 

Noisy Time Series 

Modified Moving 

Average Filtered Time 

Series 

Proposed Three Stage 

Filtered Time Series 

Mean 

Squared 

Error (in 

mm) 

Max Error 

(in mm) 

Mean 

Squared 

Error (in 

mm) 

Max  

Error (in 

mm) 

Mean 

Squared 

Error (in 

mm) 

Max  

Error (in 

mm) 

10 0 1.34 5.1 0.41 1.96 0.29 1.71 

25 0 1.39 5.2 0.4 2.1 0.31 1.44 

Kalman Filter as Stage-2  

Modified Moving Average as Stage-3 

Noisy Time Series 

PDE Stage-1  

Smoothed Time Series 
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50 0 1.35 5.1 0.4 1.88 0.32 1.62 

100 0 1.36 5.2 0.41 2.2 0.31 1.73 

150 0 1.35 5.0 0.4 1.9 0.33 1.82 

200 0 1.34 5.1 0.42 2.1 0.35 1.94 

25 25 1.35 5.1 0.4 2.2 0.29 1.95 

25 50 1.34 5.2 0.39 2.1 0.32 1.82 

25 100 1.37 5.1 0.41 1.8 0.31 1.55 

100 25 1.35 5.0 0.41 1.9 0.32 1.94 

100 50 1.34 5.1 0.39 2.4 0.3 2.1 

100 100 1.36 5.2 0.4 2.1 0.31 1.89 

Table 2 Quantitative measures (Means Squared Error – MSE and Maximum Error) of proposed noise suppression algorithms 

for synthetically generated non linear drag. Each row indicates a different Non Linear drag (shown in Figure 4) with 

particular velocity and acceleration combination 

Velocity 

(in mm 

per sec) 

Acceleration      

(in mm per 

sec squared) 

Noisy Time Series 

Modified Moving 

Average Filtered Time 

Series 

Proposed Three Stage 

Filtered Time Series 

Mean 

Squared 

Error (in 

mm) 

Max Error 

(in mm) 

Mean 

Squared 

Error (in 

mm) 

Max  

Error (in 

mm) 

Mean 

Squared 

Error (in 

mm) 

Max  

Error (in 

mm) 

10 0 1.31 4.37 0.44 1.19 0.39 1.12 

25 0 1.19 4.4 0.3 0.85 0.27 0.72 

50 0 1.39 4.8 0.49 1.43 0.43 1.35 

100 0 1.38 4.2 0.39 1.4 0.37 1.34 

150 0 1.29 5.3 0.49 1.75 0.41 1.61 

200 0 1.3 3.53 0.79 1.71 0.68 1.65 

25 25 1.17 3.65 0.35 1.0 0.34 0.94 

25 50 1.24 5.7 0.4 1.24 0.38 1.17 

25 100 1.48 5.3 0.39 1.35 0.32 1.33 

100 25 1.24 4.2 0.44 1.65 0.42 1.57 

100 50 1.29 6.0 0.5 1.6 0.45 1.54 

100 100 1.38 4.2 0.64 1.48 0.61 1.32 

Table 3 Quantitative measures (Means Squared Error – MSE and Maximum Error) of proposed noise suppression algorithms 

for synthetically generated Zigzag drag. Each row indicates a different Zigzag drag (shown in Figure 5) with particular 

velocity and acceleration combination 

Velocity 

(in mm 

per sec) 

Acceleration      

(in mm per 

sec squared) 

Noisy Time Series 

Modified Moving 

Average Filtered Time 

Series 

Proposed Three Stage 

Filtered Time Series 

Mean 

Squared 

Error (in 

mm) 

Max  Error 

(in mm) 

Mean 

Squared 

Error (in 

mm) 

Max  

Error (in 

mm) 

Mean 

Squared 

Error (in 

mm) 

Max 

Error (in 

mm) 

10 0 1.29 3.95 0.36 1.2 0.34 1.15 

25 0 1.32 4.5 0.42 1.62 0.39 1.46 

50 0 1.37 4.3 0.45 1.24 0.41 1.1 

100 0 1.44 4.6 0.53 1.89 0.47 1.71 

150 0 1.33 4.9 0.52 2.72 0.47 2.15 

200 0 1.29 4.1 0.76 2.89 0.65 2.03 

25 25 1.34 4.9 0.35 1.12 0.28 1.03 

25 50 1.42 4.8 0.52 1.7 0.44 1.62 

25 100 1.17 4.3 0.38 1.45 0.28 1.32 

100 25 1.18 4.65 0.42 2.1 0.5 1.87 

100 50 1.24 4.0 0.53 2.26 0.47 2.11 

100 100 1.22 4.15 0.54 2.47 0.46 2.21 
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4.1 Error Variation with Velocity and 

Acceleration 
The figure below shows performance variation of the proposed 

algorithms at different velocities for synthetically generated line 

drags. Here, line drag is assumed to be of uniform velocity i.e. 

zero acceleration. Mean Squared Error (MSE) is used as 

performance measure. 

 

Figure 6: Performance (Average Maximum Error) of 

Proposed Noise Suppression Algorithms with respect to 

velocity. Blue and red curves indicate the performance of 

Modified Moving Average and Proposed Three Stage 

Filters respectively. 

 

As the velocity increases Modified Moving Average filter 

performs more or less similar where as Proposed Three Stage 

filter’s performance is degraded at higher velocities. This is due 

to the presence of Kalman filter in three stage filter. Kalman 

slowly tracks the signal when at high velocities. This indicates 

that three stage filter depends upon velocity. Thus velocity play 

important role in this case. But, notably the Proposed Three 

Stage filter outperforms Modified Moving Average filter at all 

the velocities. The figure 7 shows performance variation of the 

proposed algorithms for synthetically generated line drags at 

different accelerations. Here, we experimented with two 

different velocities i.e. 25mm/sec and 100mm/sec. 25mm/sec is 

considered to be slow drag and 100mm/sec is considered to be 

fast drag. Mean Squared Error (MSE) is used as performance 

measure. 

Performance of Modified Moving Average filter is more or less 

same regardless of velocity and acceleration changes. In case of 

Proposed Three Stage filter, it performs well for slow drag 

compared with fast drag at all accelerations and performance is 

more or less same at all accelerations for fast drag. This 

indicates that acceleration does not affect the performance of 

the proposed filters as much as velocity. 

4.2 Qualitative Performance of Proposed 

Algorithms on Galaxy Hand Set 
Finally, we evaluated performance of proposed algorithms for 

finger/stylus drag using Galaxy S4 hand set in the presence of 

high amounts of charger/display noise. Here, both the 

algorithms are integrated with touch controller software suite. 

Time complexity of Proposed Three Stage filter is about 100 

ms and Modified Moving Average is about 45 ms for a single 

drag at 30 MHz clock speed. This indicates that Proposed Three 

Stage filter is highly practical and works in real time. As shown 

in Figure 8 & 9, Proposed Three Stage filter’s performance is 

much better than Modified Moving Average filter. 

 

Figure 7: Performance (Average Maximum Error) variation of Proposed Noise Suppression Algorithms as acceleration 

changes. Figure 7A indicates velocity at 25 mm/sec and Figure 7B indicates velocity at 100 mm/sec. Blue and red curves 

indicate the performance of Modified Moving Average and Proposed Three Stage Filters respectively. 
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Figure 8: Qualitative performances of proposed algorithms on Galaxy S4 Handset for finger drag in the presence of high 

amount of display noise. Left side of the figure depicts output of Modified Moving Average Filter where as right side of the 

figure depicts output of Proposed Three Stage Filter 

 

Figure 9: Qualitative performances of proposed algorithms on Galaxy S4 Handset for finger drag in the presence of high 

amount of charger noise. Left side of the figure depicts output of Modified Moving Average Filter where as right side of the 

figure depicts output of Proposed Three Stage Filter 

5. CONCLUSIONS  
Definitely, performance of the Proposed Three Stage filter is 

much better qualitatively as well as quantitatively compared 

with Modified Moving Average filter with slight increase in 

time complexity. On an average Proposed Three Stage filter 

gives 25% better accuracy than Modified Moving Average 

filter for linear as well as non linear drags. In case of highly 

noise susceptible environments, we observed that proposed 

Three Stage filter outperforms all the single stage as well as 

other multi stage filters proposed in this paper. In case of low 

noisy environments we observed that bypassing PDE gives 

better results. So based on the noise levels, we can adaptively 

switch ON/OFF PDE filter in the proposed three stage 

framework. Even in case of real world data captured from touch 

interfaces, Proposed Three Stage filter outperforms existing 

solutions present in highly competent products available in the 

consumer electronics market. The proposed idea is tested for 

unauthorized charger connected case, which should be tested 

for other types of noise sources like in presence of different 

light sources. Presently PDE is the part of three stage filter. The 

future scope for this idea is testing the same method for 

different noise sources and dynamically selecting PDE based on 

noise level. 
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