
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 14, November 2014

4

DOS Attack Reduction by using Web Service Filter

Sonali Utsai

Student
MMCOE, Karve Nagar,

Pune - 57

 Ram B. Joshi
Guide

H.O.D. of Computer Science Dept.
MMCOE, Karve Nagar,

Pune - 57

ABSTRACT

As Application Denial of Service attacks have rapidly become

a commonplace threat for doing business on the Internet -

more proof that Web application security is more critical now

than ever. Denial of Service attacks can result in significant

loss of service, money and reputation for organizations. The

paper is proposed to build application layer filters to provide

real time detection and mitigation of Daniel of service attack.

Web Service filters helps protecting Web Service application

and service disruption by removing application level DoS

attacks. This can defend critical Web Service resource from

attack while relying sophisticated filtering technologies to

allow legitimate traffic to continue to flow. We compared the

couple of filter designs and how they address the specific Web

Service attack types. We briefly discuss the different common

DoS attacks, risk associated with them and detail of Web

Service filters benefits to the Web Service. Also, we carried

out design, implementation and deployment details on a one

of commonly used application server.

General Terms

DoS attack, REST, Security, Web Service, Filter etc.

1. INTRODUCTION
According to the W3C, a Web Services primarily supports

interoperable machine-to-machine interaction over

heterogeneous enterprise networks. Whereas traditional

distributed messaging does not provide the capability to

connect heterogeneous systems separated by firewalls across

organizational and enterprise boundaries seamlessly. Thus

Web Services have evolved as a practical, cost-effective

solution for uniting information distributed between critical

applications over operating system, platform, and language

barriers that were previously impossible.

As Web Services become more and more popular, inter-

enterprise communications and security is becoming crucial

for operating Web Services, while the basic Web Service

specifications themselves do not address any security topics.

For Web Services a large number of additional specifications

like WS-Security, WS-Security Policy, WS-Trust, WS-Secure

Conversation etc. are required. However these all standards

focus on the aspects of message integrity, confidentiality, user

authentication and authorization etc. Very few efforts have

been made so far to secure the Web Service server itself and

ensure a Web Service’s availability.

In this Paper we present target attack detection by maintaining

a little client's requests history and by using Web Service

filters. The design and implementation of such filters require

special use of filter functionality and placement in order to

provide an accurate attack detection solution. This system is

for protecting Web Services from Denial-of-Service (DoS)

attacks by processing client’s requests before forwarding them

to the Server. The paper represents couple of reusable WS

(Web Service) filters, designed for implementing known

attack detection techniques. Additionally, it provides results

from each implemented filter in chain and holds ability to

respond to clients request without hitting to actual Web

Service. Web Service filters are request message interceptors

that can be easily plugged in to the Web service runtime to do

additional processing of the inbound messages. The

reusability of these components across the services has

absolute benefit that the framework brings to service delivery

which also improves WS's performance. This mechanism also

allows the separation of the most fundamental concerns of

application software in Web Services development,

effectively abstracting the system service into handlers/filters

and leaving the clients and services to focus on business logic.

1.1 Types of Denial of Service
Availability is one of the three main objectives of computer

security, along with Confidentiality and integrity. Availability

can be defined as the ability to use the information or resource

desired. However, this definition of availability skips an

important aspect - timeliness. According to the Code of Laws

of the United States regarding the definition of information

security, availability means ensuring timely and reliable

access to and use of information."

Denial of Service is a threat that potentially violates the

availability of a resource in a system. A Denial of Service

Attack, on the other hand, is an action (or set of actions)

executed by a malicious entity to make a resource unavailable

to its intended users. Gligor defines denial of service as

follows [Virgil D. Gligor (1949)] group of otherwise-

authorized users of a specified service is said to deny service

to another group of otherwise-authorized users if the former

group makes the specified service unavailable to the latter

group for a period of time that exceeds the intended (and

advertised) waiting time." This definition of denial of service

takes into account the timeliness aspect of availability, and we

use it as the standard definition of denial of service. So

Examples include –

1. Attempts to "flood" a network, thereby preventing

legitimate network traffic

2. Attempts to disrupt connections between two

machines, thereby preventing access to a service

3. Attempts to prevent a particular individual from

accessing a service

4. Attempts to disrupt service to a specific system or

person

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 14, November 2014

5

1.2 Methods of attack
There are two general forms of DoS attacks: those that crash

services and those that flood services. A DoS attack can be

perpetrated in a number of ways. Attacks can fundamentally

be classified into five families-

1. Consumption of computational resources, such as

bandwidth, memory, disk space, or processor time etc.

2. Disruption of configuration information, such as

routing information

3. Disruption of state information, such as unsolicited

resetting of TCP sessions

4. Disruption of physical network components

5. Obstructing the communication media between the

intended users and the victim so that they can no

longer communicate adequately.

In this paper we are mainly concern with application layer

attack classified under classification named Consumption of

computational resources, such as bandwidth, memory, disk

space, or processor time.

1.3 Application-Level Floods
Some attacks are not designed to be located in the payload of

a single message. Instead, these types of attacks operate using

a series of SOAP messages. In addition to attacking an

individual Web Service, these attack types possess the

potential to harm the entire application server and any other

WSs located on the application server. Like the Oversized

Payload attack, the Flooding attack is a type of resource

exhaustion or DoS attack that can attack the WS and

application server. The attacker bombards the desired service

endpoint with a continuous series of request messages. Each

request sent to the attacked endpoint is a syntactically correct

request. Since the endpoint has no way of determining that

each individual request message is part of a larger attack, the

WS must process each request message. Eventually, the WS

consumes its resources and begins to exhibit a DoS effect on

the WS.

2. LITERATURE SURVEY
The DoS attack is restrict the access to legitimate user. This

attack is broadly classified in different types basically

software and hardware. This attack can be prevented by using

hardware like switch or router. In this paper we are mainly

focused on techniques to detect DoS attack at application

level and different ways to avoid it. Such DoS attack blocks

the Web Service resources and doesn’t allow legitimate user

to access it. These attacks are again classified in to different

types i.e. message level attack and application level attack.

The message level attack consists of Xml injection attack,

malicious body attack, Xml retrieving attack, ping of death

attack etc. The second type of attack, application level attack

consists of flood attack which sends the oversized SOAP

messages to the server in largest number. Our main focus of

paper is on application level attack. There are different tools

available in the market for the detection of application level

attack like CAPTCHA, this tool is used for allowing particular

request with time limit and different CAPTCHA model are

made available to the user. However, this technique is not

efficient because for every web page we have made different

CAPTCHA and its costly and time consuming. One of the

other ways is to use Puzzles system which is using different

types of puzzles for every web page. So at the time encryption

and decryption of SOAP message it requires different logic

and hackers can’t easily able to trap. In this tool also puzzles

required for every web page and there is required always

different logic for every puzzle so it is time consuming tool.

Intrusion and fault detection system and there different types

of IDS are available. These systems can work at node of the

network which can be used to detect the attack. This

technique required to build on server. However, server down

will bring all the application down. In the accounting model

for detection of DoS attack, client cookies are used to record

the request history. These cookies are used to fetch the all the

required information from the client message. The model uses

hash value of every incoming request. Hash value is a

combination of different cookies attributes from request,

which is used to identify duplicate request from client at the

server. The system will fail, if a user turns off browser

cookies while sending request to the Web Service. In this

Paper we present target attack detection by maintaining a

client's requests history and by using dynamic Web Service

filters.

3. PROPOSED SYSTEM
To help in detecting and preventing the flood type DoS

requests, we proposed the filter based Web Service model

which will consume less computational time and memory

space. The figure shows the detailed architecture of the

proposed model for filtering Web Service and detecting the

attack. According to this model, every client can send the

SOAP request message and get the response over the Internet

using the HTTP protocol. When the client request hits the

server, the client request will pass through Traffic Monitoring

system, then client request will be forwarded to either Request

Processor to serve client request (if the Web Service hosted

port network traffic is low) or to the Message attribute

manager where the input request will be analyzed and

attributes are copied to lightweight external database.

The Traffic Monitoring system is a module which will

monitor the current number of incoming requests coming over

the specified port (like command utility - netstat does on

windows OS.). This will act as a dynamic filter activator. If

the number of incoming requests hitting at specified service

port increases beyond set point, then Traffic Monitoring

system will detect it as high traffic over the network and

activate Filters in chain else it assume as normal traffic and

continues to serving client requests. If the request is

legitimate, and the traffic is low, then request of the client will

be forwarded to Client Request Processor. CRP connects to

the main database for fetching data required for execution of

the client request. This will generate a client response which

then forwarded to the requested client over the HTTP by

embedding more Information to response if required. This

way Traffic Monitoring System, helps in monitoring network

traffic, when there are chances of a Denial of Service attack,

by dynamically activating Web Service filters. Activating

Filter makes every request to pass through the Web Service

filter chain where an attempt to detection of DoS attack is

made.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 14, November 2014

6

Figure 1: System Architecture for Web service DoS attack mitigation

As Flooding attack can only be detected by analyzing inbound

messages, Attribute manager takes client request as input, pre-

process it to examine content/attribute of input message and

stores them into the lightweight speedy database system. The

attribute manager is constructed within a filter chain level.

Here our approach is implemented a detection mechanism that

could determine how often a Web Service was receiving

messages from a given client or endpoint. We designed and

implemented an Attribute Manager that makes use of a

database to store necessary information about all received

SOAP requests. This database contains a record of the sender

like sender, target and timestamp of the received message.

3.1 Request History Handling Algorithm
Step 1: Arrival of the request message and its consecutive

request with SOAP message.

Step 2: Check if Traffic on the predefined node has increased

beyond Maximum load threshold by using Dynamic traffic

monitoring system. If yes then activate filter. Otherwise do

not activate filter and forward request to Web Service.

Filter algorithm-

Step 3: Retrieve the Target from SOAP message and cache it.

Step 4: Retrieve the Sender from message header or

application context and cache it.

Step 5: Retrieve the timestamp of the message and store it in

cache.

Step 6: Get Current Threshold* value for respective target and

user from Cache.

Step 7: Compare Current threshold value with Max

Threshold* value set for application.

Step 8: If Max threshold value is greater, means no DoS

attack detected, hence request will be transferred to the Web

Service or next Filter in filter chain. Otherwise Filter will

detect it as a DoS attack and block the request sender by

adding senders IP into the Black list.

Step 9: Clear Cache objects which are no more required.

4. DATA SET

Inputs Details

IP address IP address of the client host machine.

URL Endpoint URL

Time Stamp The time when request arrived from

client.

Request Type Type of the input request.

Web Service

parameter

SOAP Message

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 14, November 2014

7

5. RESULTS
It is obvious that all DoS attack detection models require the

additional computational time and memory than the normal

scenario. The additional computational time required for

information retrieval, storage, detection of DoS attack, and

reading configuration files of application and so on. Similarly,

this model also needs additional computational time for

retrieving attributes from request message, insertion, updating

and retrieval of the attributes into and from the database. The

computational time complexity and the memory complexity

of model are analyzed with the simple website created by us.

It is developed with the HTML, JSP (Java Server Pages),

JavaScript (Client side language) and Apache (Web server)

with the server system configuration of 2.2 GHz processor

and 1 GB RAM. We have Product.HTML page which can be

accessed using two different URLs-

1. /DoSAttackMitigationWS/DoSAttackMitigation/get

ProductDetails/filter_on

2. /DoSAttackMitigationWS/DoSAttackMitigation/get

ProductDetails/filter_off

Filter ON scenario represents DoS protected Web Service.

Filters are ON means Web Service is protected. Whereas,

Filter OFF is a URL pattern which skip all the DOS attack

protecting filters and does not attempt to detect DoS attack

and give direct access to Web Service. The website consists of

many other pages like –

1. Index (Home) page,

2. Product details page (Same page with two different

URLs)

3. Contact us page,

4. Category-list of Product Page etc.

The user requests information is available in the java cache

for this model which include individual page request count

and the initial request timestamp. The light weight database

record consists of the Hash Table of the request history, initial

request time, host address and the Timestamps of number of

requests equal to Threshold value set for Application along

with list of blocked IP address. This the information available

at server side for processing and detection of DoS attack.

The database table format of the DoS attack mitigation using

WS filter model is shown in Table 1 and Table 2.

Table 1: Black Listed IP collection Table

Table 2: Light weight database client table to save client

history

The DoS attack experiment was conducted with approximate

6600 requests per minute. DoS attack is to prove the

efficiency of this model. Table. 1 shows the extracted

experimental information of the model with DoS attack

Protection (Filter ON) and without DoS attack Protection

(Filter OFF).As said earlier, Filter ON represents WS called

with DoS attack protection and Filter OFF scenario means

there is no mechanism adopted to filter the request to detect

the DoS attack. The main intention of the experiment is to

show how much processing time and memory required by

these two scenarios to prove their efficiency. Also, the normal

scenario is used for testing Traffic monitoring module.

Table 3: Experimental Results of the Project carried out

under DoS attack.

Testing

Parameter

Web service

with DoS

Attack

Protection.

i.e. Filter ON

scenario

Web service

without DoS

Attack

Protection.

i.e. Filter OFF

scenario

Request

Count/Time

1,55,078 / 30

min
1,53,692 / 30 min

Error Count

Overall Average

Processing Time
15,71,027 684,52,534

Request Error

Count with Error

Code

1,54,115

HTTP 403

68,129

HTTP 500

Approximate

Traffic volume
224 MB 5 GB

The experimental analysis is carried out with the memory

requirements, avarage response time, Number of rejected

requests of the sceanrios. Fig. 2 and Fig. 3 shows the deatils

observations of the following parameters, This experiemt is

carried out on both the scenarios by attacking on the Web

Service with the rate of 5300 requests/min for more than half

hour.

1. Number of Requests Each Interval

2. Processing Tile in each interval(in ms)

3. Traffic volume in each interval

Figure 2: Application Performance without DoS attack Protection

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 14, November 2014

8

Figure 3: Application Performance with DoS attack Protection (With WS Filter ON)

Fig 2 and Fig. 3 shows that the actual results taken from the

experiment attacking DoS attack on the Web Service. It shows

that this model with filters consumes less processing time

when compared to theFilter off scenario. Error Count is also

observed high in case of filter ON scenario, this is because

filters holds the capability to generate response without

processing client’s requests before forwarding them to the

Server. Once application finds concequences of DoS attack

from a particular host and then IP filter comes into the picture

and starts blocking further requests from that host to the

server. Resulting increasing availability of the Web

application along with high performance for the ligitimate

user. Again high deviation in the inconsistencyresults for

Traffic Volume requested and responded from the server

which was causeddue to Filter ON and Filter OFF scenarios. it

shows that DoS attack mitigation Filter model takesless

processing time and very less response size (in Bytes) than the

model without DoS protection. Hence, the request processing

time of this model is less than the model without DoS

protectionhence, this model is efficient to handle the multi-

millions requests sent blindly to the server to attack server.

Figure 4: Tomcat console showing error after DoS attack

made for 1 hour

Fig. 4 shows the Apache Tomcat server console log when

server was under attack and it went down after half hour,

since attack was started and throwing exceptions to all the

requests including legitimates request hitting to the server.

Figure 5: Application Performance without DoS attack

Protection (Filters OFF)

Figure 6: Application Performance with DoS attack

Protection (Filters ON)

It is to be expected that some errors may occur when

processing requests, especially under load (DoS attack). Most

of the time it has seen that errors begin to be reported when

the load has reached a point that exceeds the web

application’s ability to deliver what is necessary.The Error

Rate is the mathematical calculation that produces a

percentage of problem requests to all requests. The percentage

reflects how many responses are HTTP status codes indicating

an error on the server, as well as any request that never gets a

response or the exception message from Server. The web

server returns an HTTP Status Code in the response header.

Normal codes are usually 200 (OK) or something in the 3xx

range indicating a redirect on the server. A common error

code is 500, which means the web server knows it has a

problem with fulfilling that request and this is observed in

case of Filter OFF sinario. Whereas that of course doesn’t tell

user what caused the problem, but fig. 5 shows that the there

is a definitive technical defect in the functioning of the system

somewhere. From the Fig. 6 its crear that server servers all the

requets unser DoS attack and after server sturation fails to

serve and response server exceptions to the user.

Figure 7: Application Performance without DoS attack

Protection (Filters OFF)

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 14, November 2014

9

Following enlarged graphs showing the result difference

between two different test scenarios i.e. Filter ON and Filter

OFF tests. The above test proved that, as too many request

which found as DoS attack were rejected by the filter. The

Average Response Time takes into consideration every round

trip request/response cycle up until that point in time of the

load test and calculates the mathematical mean of all response

times. The resulting metric is a reflection of the speed of the

web application being tested – the BEST indicator of how the

web site is performing from the users’ perspective. The

Average Response Time includes the delivery of HTML,

images, CSS, XML, JavaScript files, and any other resource

being used. Thus, the following graphs shows average time

that significantly affected by two different scenarios.

Figure 8: Application Performance with DoS attack

Protection (Filters ON)

In this paper, an outline of some of the current DoS attacks

that can be launched to exploit vulnerabilities within Web

Services has been presented along with a comprehensive

Integrated Filter based Framework for preventing these

attacks. We presented a solution that uses Web Service filters

to detect malicious DoS attack. Our Web Service filters

combines traffic monitoring system and Threshold analyzer to

mitigate and filter the potential danger of DoS attack. After

analyzing existing different cookie based DoS attack

accounting models, The Filter based Framework model are

identified as well proven and more scalable. Later, Filter

model’s experimental results will be analyzed with respect to
attack detection and time complexity. The future work of this

paper could be to analyze traffic at network port efficiently at

application level and to work effectively on addition of few

more filters to cover different kinds of DoS attack.

6. CONCLUSION AND FUTURE WORK
In this paper, an outline of some of the current DoS attacks

that can be launched to exploit vulnerabilities within Web

Services has been presented along with a comprehensive

Integrated Filter based Framework for preventing these

attacks. We presented a solution that uses Web Service filters

to detect malicious DoS attack. Our Web Service filters

combines traffic monitoring system and Threshold analyzer to

mitigate and filter the potential danger of DoS attack. After

analyzing existing different cookie based DoS attack

accounting models, The Filter based Framework model are

identified as well proven and more scalable. Later, Filter

models’ experimental results will be analyzed with respect to

attack detection and time complexity. The future work of this

paper could be to analyze traffic at network port efficiently at

application level and to work effectively on addition of few

more filters to cover different kinds of DoS attack.

7. REFERENCES
[1] S. Venkatesan, M. Basha, C. Chellappan, A.Vaish, P.

Dhavachelvan “Analysis of accounting models for the

detection of duplicate requests in Web Services” Journal

of King Saud University May 2012.

[2] XiaoFeng Wang · Michael K. Reiter “A multi-layer

framework for puzzle-based denial-of-service defense”

Springer-Verlag 2007.

[3] M Mehra, M Agarwal, R Pawar, D Shah “Mitigating

Denial of Service attack using CAPTCHA Mechanism”

International Conference and Workshop on Emerging

Trends in Technology (ICWET 2011) – TCET, Mumbai,

India.

[4] Yi Xie ,Shun-Zheng Yu “Monitoring the Application-

Layer DoS Attacks for Popular Websites”

IEEE/ACM transactions on networking, vol.17, no.1,

February 2009

[5] Raja Azrina Raja Othman “Understanding the Various

Types of Denial of Service Attack” .

[6] N. Gruschka, L. Iacono. Vulnerable Cloud: SOAP

Message Security Validation Revisited. IEEE Int’l Conf.

on Web Services, 2009.

[7] M. Jensen, N. Gruschka, R. Herkenhoner, N.

Luttenberger. “SOA and Web Services: New

Technologies, New Standards - New Attacks” 5th

European Conference on Web Services, 2007.

[8] N. Antunes, M. Vieira.” Enhancing Penetration Testing

with Attack Signatures and Interface Monitoring for the

Detection of Injection Vulnerabilities in Web Service”

IEEE Int’l Conf. on Services Computing, 104-111, 2011.

[9] M. Ficco, M. Rak. “Intrusion Tolerant Approach for

Denial of Service Attacks to Web Services”. Int’l Conf.

on Data Compression, Communications and Processing,

285-292, 2011.

[10] N. Sidharth, J. Liu. “Intrusion Resistant SOAP

Messaging with IAPF” IEEE Asia-Pacific Conf.

on Services Computing, p. 856-862, 2008.

[11] B. Yildiz, G. Fox, S. Pallickara, “An Orchestration for

Distributed Web Service Handlers”. Int’l Conf.

on Internet and Web Applications and Services, p. 638-

643, 2008.

IJCATM : www.ijcaonline.org

