
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 13, November 2014

38

Performance Comparison of “Modified CO-DSEDF” with

CO-LALF for CO-Scheduling of Update and Control

Transactions of Real Time Data

Gauri Chavan

M.E. Student,
Electronics Department, Shah and Anchor Kutchhi

Engineering College, Chembur, Mumbai, India.

Vidya Gogate

Assistant Professor,
Electronics Department, Shah and Anchor Kutchhi

Engineering College, Chembur, Mumbai,
India.

ABSTRACT
Real time system is the system where data should be processed

in time. The real time data is stored in real time database

within the specified time interval. This time interval is called

as validity time interval [1],[2]. The validity of real time data is

maintained using different scheduling algorithms. The process

of maintaining the validity of real time data is done by using

several update transactions. The appropriate scheduling

algorithm is used to schedule the number of update

transactions. The different algorithms used to maintain the

validity of real time data are Earliest deadline First (EDF),

Deferrable scheduling with Earliest Deadline First (DS-EDF),

Deferrable scheduling with Least Actual Laxity First (DS-

LALF) [3],[4],[5]. The real-time data stored in real-time

database is compared with some predefined value [8]. If the

stored data value is not equal to the predefined value then

control transactions are generated. Therefore update and

control transactions are needed to be scheduled in such a way

that both the transactions meet their deadline constraints. In

literature the CO-Scheduling with Least Actual Laxity First

(CO-LALF) algorithm is used to schedule update and control

transactions [5]. After studying different algorithms we need to

propose the CO-scheduling with Deferrable scheduling with

Earliest Deadline First algorithm (CO-DSEDF) to schedule the

update and control transactions. DS-EDF and DS-LALF give

high priority to update transactions [4],[5]. So quality of data is

maximized [4]. To maximize the quality of data & the quality

of control coscheduling algorithms CO-DSEDF & CO-LALF

are used. These algorithms are used to schedule update &

control transactions. So quality of data and quality of control

are maximized [5]. We worked out different problems to

compare the performance of CO-DSEDF with CO-LALF. We

have checked the feasibility of the scheduling algorithms for

various scheduling problems to maintain the data freshness.

We also present the estimation of processor utilization and

context switching for CO-DSEDF & CO-LALF.

Keywords

Validity time, real-time database, Data freshness,

CO-Scheduling, update and control transactions,

response time

1. INTRODUCTION
In real-time system timing constraints are important to process

any data. The data value is bounded by some time interval. If

the data processing does not take place within the validity time

interval then real time system is invalid. So to have processing

of data dynamically, different scheduling algorithms are used.

For example, data generated by a temperature sensor.

Temperature sensor transmits sampled data to the controller

every 100 milliseconds (ms) [8],[11]. So the specified time

interval to send next update transaction is before 100 ms. Each

sampled value of data is associated with the update transactions.

There are several update transactions and each update

transaction has number of jobs. The specified time interval to

send next update transaction is called the validity time of data

[1]. If data is not updated before the validity time then that data

is called as stale data. So it is essential to maintain the validity

of this data as it is used for further processing. The process of

maintaining the real-time data valid is called as real-time data

freshness and the valid data is called as fresh data [2]. The

different update transactions are used to store the real time data

in real-time database (RTDBs) [6],[12]. The data value stored in

RTDB is compared with the threshold value. If the data value

stored in RTDB is more than the designed threshold value then

control transactions are generated [5],[11]. The scheduling of

such update and control transactions together in a real time

system is called as co-scheduling [5]. Different scheduling

algorithms are used to schedule the update transactions in such

a way that it meets its deadline constraints. The algorithms are

EDF, DS-EDF, DS-LALF are used to maximize the quality of

data[4]. CO-DSEDF & CO-LALF are co-scheduling algorithms

used to schedule the update as well as control transactions to

meet its deadline constraints. These algorithms maximized the

quality of data and the quality of control. We have compared

the performance of CO-DSEDF and CO-LALF by using

different scheduling problems to check the schedulability of the

problem for the given algorithm We have done the estimation

of processor utilization and context switching for each

algorithm. We have used TORSCHE scheduling toolbox to plot

the schedule of different transactions [14]. We have worked out

the different scheduling problems with different requirements.

& shown that the processor utilization is reduced for CO-

DSEDF than CO-LALF.

2. SYSTEM MODEL
The real time embedded system used in process control is

shown in fig 1. This process control system responds to external

inputs which can be from real time clock, input and output

devices, different sensors [11]. Sensor converts physical

quantities to be measured into electrical signals. After the

sensor analog to digital converter block is used. This converts

the sensor output into digital data. The sensor output acts as

input to the embedded processor. This sensor generates

different transactions to update the data in real-time database.

Embedded processor compares the stored data with the

designed threshold value. If the current value of the data is not

equal to the designed threshold then output signals are

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 13, November 2014

39

generated by the embedded processor. These signals are called

as control transactions. The control transactions act as input to

the actuator. Actuator is a device that takes inputs from the

embedded system and converts into electrical signal to have

corrective action on its environment [11]. The physical

quantities like temperature, pressure, flow are to be measured

for the given system. As shown in fig.1 the sensors of the real

time computer collect data from the environment and stores in

Real time Database using update transactions [6]. The

embedded system compares the data in RTDB with the

designed threshold level and generates control signals. The

embedded processor sends information to the actuators so that

actuators can carry out the required operation on the

environment [8], [9]. Real time operating system is the main

part of the real time embedded system. Scheduling is the main

function of RTOS kernel. Scheduler schedules the task to have

the proper order of execution of each task to meet its deadline.

Fig: 1 System Model

2.1 Real time Data-base (RTDB)
In real-time applications we need to store large amount of

data. This data is processed for further operation [12]. The

stored data is used for controlling the input parameters. The

examples of such a system are process control system,

Internet service Management, spacecraft Control system,

Network Management System [7]. Real-time database is

associated with the timing constraints. The basic requirement

of Real-time database is the transaction deadline. If the data in

real-time database gets updated before the deadline then we

get the valid data. Real-time database makes use of different

scheduling algorithms to update the data. The state of the

RTDB is changing continuously [13].The data should be

updated dynamically to have the correct results. The sensor or

input device monitors the state of the physical system and

updates the database with new information. This new

information must be updated time to time or in the given

validity interval. Examples of such RTDBs are railway

reservation system; spacecraft control system, internet service

management [7]. In real-time system large amount of data is

handled at a time. For example an air traffic control system

constantly monitors hundreds of aircrafts. Depending on the

data stored such as fuel, altitude & speed, the real time system

makes decisions about incoming flight paths and determines

the order in which aircraft should land [7].The other examples

are online railway reservation system, patient monitoring

system. In these systems also real-time databases get updated

time to time to avoid the failure of real-time system.

2.2 Update and Control Transactions
In real-time system different transactions are generated from

different sensor inputs. Each transaction is having its own

validity time interval. The transactions are used to update the

real-time data in Real-time database are called as update

transactions. System model shows a real time sensing and

control system.

Tui : i
th update transaction, i = 1 to n

Ji,j : j number of jobs of ith transaction, j = 0 to m.

Tcp: p
th Control transaction, p= 1 to t

Jcpq : q number of jobs of pth transaction, q= 0 to v

The system consists of a fixed set of update transactions

denoted as Tui where i= 1 to n. Each transaction is having n

number of jobs which are denoted as Ji,j [4],[5]. For example

transaction 1, Tu1 is having m number of jobs, each of the job is

denoted as J11, J12, J13,………J1m. The update transactions are

used to maintain the validity of data so these transactions are

updated before the validity interval expires. Each job Ji,m of

transaction Tui is updated depending upon the scheduling

algorithm used, to meet its deadline constraints. Each updated

job stored the new data value in RTDB. The real time controller

depending upon the application strategies compares the values

of each update transaction with the designed threshold value. If

data value exceeds than the threshold level then the control

transactions are generated denoted as Tcp, where p= 1 to t.

Control transactions can have q number of jobs. For example

Tc1 has q jobs Jc11Jc12,………Jc1q [5]. The scheduling of update

and control transactions together is called as co-scheduling.

Different scheduling algorithms are used to meet the deadline of

update & control transactions. If any of the update job is

missing its deadline then real-time system gets failed. So to

have the accurate results of real-time system, the update and

control transactions should meet its deadline constraints.

3. TORSCHE SCHEDULING TOOLBOX
TORSCHE (Time Optimization of Resources, Scheduling) is

a MATLAB-based toolbox used to show the scheduling of

different algorithms for off-line & on-line scheduling

problems [14]. Task, TaskSet and Problem are the main

objects of TORSCHE. The Task is a data structure; it includes

all parameters of the task. These parameters are processing

time, release date, deadline etc. If tasks are grouped then it

forms Taskset. The Problem is a small structure describing

classification of deterministic scheduling problems. Each task

or job has it own parameters. By defining suitable scheduling

algorithm, we can plot schedule of the required algorithm in

MATLAB [14].

The steps to plot schedule of the given scheduling problem is

as shown below:

1. First create task object

t1 = task ([Name,] ProcTime [, ReleaseTime [, Deadline [,

DueDate [, Weight [, Processor]]]]])

2. Create TaskSet Object

T = [t1 t2 t3], T1 consists of number of tasks or jobs for the

given scheduling problem. T1 is TaskSet Object [14].

3. Define the problem

prob = problem(‟P|prec|Cmax‟)

The problem consists of three parts. The first part „P‟

describes the processor that in uniprocessor or multiprocessor

environment. The second part „prec‟ describes precedence

constraints & third part „Cmax‟ describes the optimality

criterion [14].

4. Structure of scheduling Problem

TS = name (T, problem [, processors [, parameters]]), the „TS‟

is set of tasks with schedule of the define algorithm. The

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 13, November 2014

40

„name‟ is the name of the algorithm. The „T‟ is TaskSet object

which contains tasks or jobs to be scheduled. The „problem‟

describes the classification of deterministic scheduling

problem. The „processors‟ define the number of processors.

The ‟parameters‟ define additional information for algorithms

[14].

5. Plot the schedule

PLOT (TS), it gives schedule of all tasks or jobs defined in TS

for the given algorithm [14].

4. ALGORITHMS
Input: Number of Update Transactions, Validity time and

execution time of each update transaction, number of jobs in

each update transaction, release time and deadline time of each

job.

Output: Schedule of the input transactions job.

4.1 Deferrable Scheduling with Earliest

Deadline First (DS-EDF)
1. Input number of update transactions with its validity

time and execution time.

2. Input number of jobs in each transaction with its

release time and deadline time.

3. The deadline of next update job of same transaction is

calculated using following formula

Next update job deadline, di, j+1= r i, j + Vi

4. Sort all update jobs in ascending order of deadline

using following function:

sortAscending(); goto step 9

5. For (i=0; i < no_of_jobs; i++)

Create the array of jobs having deadline < next job

deadline.

6. For (j=0; j < count; j++)

If (Jj .d > Ji.d) Put this job in hp_ctime.

7. Calculate new release time for Ji.

reltime = calReleaseTime();

8. calReleaseTime()

calRelime= te - ctime – hp_ctime[i]

9. sort Ascending()

for (i=0; i < no_of jobs; i++)

if [(ji.r =Ji+1.r) || (Ji.r = Ji+1,r && Ji d > Ji+1.d)]

swap Ji and Ji+1.

4.2 Deferrable Scheduling with Least

Actual Laxity First (DS-LALF)
1. Input number of update transactions with its validity

time and execution time.

2. Input number of update jobs in each transaction with

its release time and deadline time.

3. The deadline of next update job of same transaction is

calculated using following formula

 Next update job deadline, di, j+1 = r i, j + Vi.

4. Sort all update jobs in ascending order of deadline

using following function:

sortAscending () ; goto step 8.

5. Group the job having release time = i and calculate

new release time.

Ji,j.laxity = calnewRelTime(); goto step 9.

6. Set priority as per new release time.

setpriority (); goto step 10

7. Process the first job and set the start and end time of

job.

8. sortAscending()

for (i=0; i <no_of_jobs ; i++)

if [(Ji.r = Ji+1.r) || (Ji.r = Ji+1 .r && Ji.d > Ji+1 .d)],

Swap Ji & Ji+1.

9. calnewRelTime();

tempjob.r = tempjob.d - timer - tempjob.ctime.

10. setpriority()

check Ji.laxity & Ji+1.laxity with respect to Ji.d.

4.3 Co-scheduling with Least Actual Laxity

First (CO-LALF)
1. Input number of update transactions with its validity

time and execution time.

2. Input number of update jobs in each transaction with

its release time and deadline time.

3. The deadline of next update job of same transaction is

calculated using following formula

 Next update job deadline, di, j+1 = r i, j + Vi.

4. Input if any control transactions are generated as Tc

and its control jobs as Jc

5. Sort all update jobs and control jobs in ascending

order of deadline using following function:

sortAscending() ;

6. Group the job having release time = i and calculate

new release time.

Ji,j.laxity = calnewRelTime();

7. Set priority as per new release time.

setpriority (); goto step 10

8. Process the first job and set the start and end time of

job.

9. sortAscending()

for (i=0; i <no_of_jobs ; i++)

if [(Ji.r = Ji+1.r) || (Ji.r = Ji+1 .r && Ji.d > Ji+1 .d)],

Swap Ji & Ji+1.

10. calnewRelTime();

tempjob.r = tempjob.d - timer - tempjob.ctime.

11. setpriority()

check Ji.laxity & Ji+1.laxity with respect to Ji.d.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 13, November 2014

41

4.4 Proposed Modified Algorithm: Co-

Scheduling with Deferrable Scheduling

with Earliest Deadline First (CO-DSEDF)
1. Input number of update transactions with its validity

time and execution time.

2. Input number of update jobs in each transaction with

its release time and deadline time.

3. The deadline of next update job of same transaction is

calculated using following formula

 Next update job deadline, di, j+1 = r i, j + Vi.

4. Input if any control transactions are generated as Tc

and its control jobs as Jc

5. Sort all update jobs and control jobs in ascending

order of deadline using following function:

sortAscending();

6. For (i=0; i < no_of_jobs; i++)

Create the array of jobs having deadline < next job

deadline.

7. For (j=0; j < count; j++)

If (Jj .d > Ji.d) Put this job in hp_ctime.

8. Calculate new release time for Ji.

reltime = calReleaseTime();

9. calReleaseTime()

calRelime= te - ctime – hp_ctime[i]

10. sort Ascending()

for (i=0; i < no_of jobs; i++)

if [(ji.r =Ji+1.r) || (Ji.r = Ji+1,r && Ji d > Ji+1.d)]

swap Ji and Ji+1.

5. RESULT AND ANALYSIS

5.1 Design of various Problems
1. There are n numbers of update transactions. Each update

transaction „i „is having its own validity time Vi and

computation time Ci.

2. Each update transaction is having m number of jobs Ji,m.

Job Ji,m of ith update transaction is represented with two

parameters. These parameters are release time ri,j and deadline

time di,j.

3. The first job of each update transaction is having zero

release time and respective validity time is used as a deadline.

4. The deadline of next update job is derived using this

formula: di,j+1 = ri,j + Vi.

5. The control trasanctions are generated at any time. The job

of control transaction is having release time and deadline time

[5].

5.2 Scheduling of Update Transactions

using DS-EDF and DS-LALF Algorithms

The different problems are given in table1 and 4 are worked

out to check the feasibility of scheduling algorithms.

Table 1. Problem Statement I

Tu1 Tu2 Tu3

V1=8, C1 = 2 V2=20, C2 = 3 V3=50, C3= 3

J10 (0,8), J11 (5, 8),

J12 (10, 13)

J20 (0, 20),

J21 (16, 20)

J30 (0,50).

Figure 2 shows the schedule for Deferrable scheduling with

Earliest Deadline First Algorithm (DS-EDF). In DS-EDF

algorithm, the new release time is calculated by considering

the deadline constraints. The jobs are deferred to meet its

deadline. Job, J30 has its new release time as 47 because it does

not have any other job and all jobs of first and second update

transactions are completed at 20 time units. The schedule of

Deferrable Scheduling with Least Actual Laxity First (DS-

LALF) for problem I is shown in fig. 3. In this figure by using

DS-LALF, the new release time is calculated by considering

the least laxity of each job. The update job with least laxity is

scheduled first. All jobs meet its deadline as shown in fig. 3

till 19 time units. Jobs with least laxity, preempt the job with

greater laxity. Jobs with same release time are inserted into

queue initially. The laxity of each job is calculated and jobs

are arranged in ascending order of Laxity. At each time unit

new release jobs are inserted into queue and laxity of each job

is calculated and arrange in ascending order of Laxity.

Fig: 2 Schedule of Example I using DS-EDF

Table 2. DS-EDF Result for Example I

Number

of Jobs

Schedulability Context

Switching

Processor

Utilization

6 Yes 0 0.3

All jobs meet its deadline for Example I using DS-EDF &

DS-LALF. So real time data freshness is maintained and real

time data stored in real-time database is valid. There are 6

update jobs for problem I. There is no context switching for

both algorithms. The processor utilization for update workload

is less in DS-EDF than DS-LALF. So power consumption of

processor is reduced in DS-EDF than DS-LALF.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 13, November 2014

42

Table 4. Problem Statement II

Tu1 Tu2 Tu3

V1=8, C1 = 2 V2=20, C2 = 3 V3=47, C3= 3

J10(0,8),J11(5,8),

J12(10,13),J13(15,18),

J14(20,23), J15(24,28).

J20 (0, 20),

J21(16,20),

J22(27,36).

J30 (0, 47)

In problem II we have increased number of jobs in each

update transaction, in first update transaction Tu1, from 3 to 6

update jobs and in second update transaction Tu2, from 2 to 3

update jobs. Figure 4 gives the scheduling of Example II by

using DS-EDF algorithm. By using DS-EDF algorithm, the

new release time is calculated in such a way that all update

jobs meets its deadline and we can maintain the data validity.

Figure 4 & 5 give the schedule of problem II using DS-EDF

& DS-LALF algorithm. But in problem II, the scheduling

using DS-EDF is not meeting its deadline constraint for job

J21.The update job J11 is completing its execution at 21 but J21

should be completed at 20. So J21 missing its deadline by 1

time unit. So data validity is not maintained. To maintain the

data validity the next algorithm DS-LALF is used to schedule

same transactions shown in problem II. The scheduling of

problem II using DS-LALF is shown in fig. 5. In this

algorithm the least laxity is calculated so that the update job

with the least laxity is scheduled first.

Fig: 3 Schedule of Example I using DS-LALF

Table 3. DS-LALF Result for Problem I

Number

of Jobs

Schedulability Context

Switching

Processor

Utilization

6 Yes 0 0.789

Fig: 4 Schedule of Example II using DS-EDF

Table 5. DS-EDF Result for Problem II

Number

of Jobs

Schedulability Context

Switching

Processor

Utilization

10 No 0 0.51

As shown in figure 5, update job J21 is meeting its deadline

using DS-LALF. Job J21 completes at 20. So data validity is

maintained using DS-LALF than DS-EDF in problem II.

Therefore we can check the schedule of update jobs by using

DS-EDF and DS-LALF algorithm. Depending on the given

problem we can use any one algorithm which gives the

schedule without missing its deadline.

Fig: 5 Schedule of Example II using DS-LALF

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 13, November 2014

43

Table 6. DS-LALF Result for Problem II

Number

of Jobs

Schedulability Context

Switching

Processor

Utilization

10 Yes 0 0.8

In Example II, the processor utilization in terms of update

workload is more in DS-LALF. But the schedulability of the

problem is not given by DS-EDF algorithm. The context

switching is zero in both algorithms. The data validity is not

maintained using DS-EDF algorithm. The DS-LALF

algorithm maintains the data validity.

5.3 CO-Scheduling of Update and Control

Transactions using Modified Algorithm

CO-DSEDF and CO-LALF
The different problems as given in table 7, 10 & 13 are

worked out to check the feasibility of scheduling algorithms.

These problems are worked for different transactions.

Table 7. Problem Statement III

Tu1 Tc1

V1=7, C1 = 2 C2 =2

J10 (0,7), J11 (4, 7),

J12 (8, 11)
Jc10 (3, 8).

In problem III, we have considered update and control

transactions. Figure 6 & 7 give the schedule of CO-DSEDF &

CO-LALF respectively. The CO-DSEDF and CO-LALF

algorithms meet the deadline constraints of update and control

transactions. So the real-time data validity is maintained. The

control transaction is also meeting its deadline so that the

corrective action can take place to avoid any hazards of real-

time system. The processor utilization for the update workload

and to schedule the control transaction is more in DS-LALF

than DS-EDF algorithm. The context switching is zero for CO-

DSEDF & CO-LALF algorithm for the problem III. Figure 8 &

9 give the schedule of example IV for CO-DSEDF & CO-

LALF algorithm. In example IV we have increased the number

of jobs.

Fig: 6 Schedule of Example III using CO-DSEDF

Table 8. CO-DSEDF Result for Problem III

Number

of Jobs

Schedulability Context

Switching

Processor

Utilization

4 Yes 0 0.727

Table 10. Problem Statement IV

Tu1 Tu2 Tu3
Tc1

V1=7, C1 = 2 V2=30, C2 = 3
V3=55,

C3= 3

Cc1=2

J10 (0,7),

J11 (4, 7),

12 (8, 11),

J13(10,15)

J20 (0, 30),

J21 (16, 30),

J22(20,46)

J30 (0,55).

Jc10(7,15),

Jc11 (17,25)

The CO-LALF and DS-EDF algorithm meet its deadline

constraints for update & control transactions. Therefore the real-

time data validity is maintained and corrective action take place

within the timing constraints. The context switching is more in

CO-LALF than CO-DSEDF. The processor utilization for the

update workload of update transaction and to schedule the

control transactions is more in CO-LALF than CO-DSEDF. To

minimize the power consumption of the processor we can use

CO-DSEDF. As numbers of jobs are increased the processor

utilization is reduced in CO-DSEDF as compared to problem

III. The context switching for any real-time application should

be as low as possible to have most accurate results of the real-

time system. Figure 10 & 11 show the schedule of problem V

using CO-DSEDF & CO-LALF respectively. Both algorithms

give proper scheduling of update & control transactions. So data

validity is maintained and the corrective action takes place

before the validity interval expires. In Co-DSEDF we get

number of free timeslots as compared to CO-LALF algorithm.

The context switching is also increased in CO-LALF than CO-

DSEDF for the same problem. All the update and control

transactions meet their deadline constraints and maintain the

quality of data and the quality of control. We have worked out

CO-DSEDF & CO-LALF algorithms for various problems and

done the comparative analysis which is given in table 1.

Fig: 7 Schedule of Example III using CO-LALF

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 13, November 2014

44

Table 9. CO-LALF Result for Problem III

Number

of Jobs

Schedulability Context

Switching

Processor

Utilization

6 Yes 0 0.8

Fig: 8 Schedule of Example IV using CO-DSEDF

Table 11. CO-DSEDF Result for Problem IV

Number

of Jobs

Schedulability Context

Switching

Processor

Utilization

6 Yes 0 0.8

Fig: 9 Schedule of Example IV using CO-LALF

Table 12. CO-LALF Result for Problem IV

Number

of Jobs

Schedulability Context

Switching

Processor

Utilization

10 Yes 3 1

Table 13. Problem Statement V

Tu1 Tu2 Tu3
Tu4 Tc1

V1=8,

C1 = 2

V2=25,

C2 = 3

V3=45,

C3= 3

V3=65,

C3= 2

Cc1=2

J10 (0,8),

J11 (4,8),

J12(9,12),

J13(14,21)

J20 (0,25),

J21(10,25),

J22(17,35).

J30 (0,45),

J31(20,45).

J40(0,65)

Jc10

(12,20),

Jc11

(17,25)

Fig: 10 Schedule of Example V using CO-DSEDF

Table 14. CO-DSEDF Result for Problem V

Number

of Jobs

Schedulability Context

Switching

Processor

Utilization

12 Yes 2 0.432

The performance comparison of CO-DSEDF & CO-LALF for

processor utilization & number of context switching is shown in

figure 12 & 13. The CO-DSEDF algorithm deferred the release

time of each job in such a way that it meets its deadline

constraints and minimizing the processor utilization. So we can

use this algorithm where processor power consumption is to be

reduced. The application of such algorithm is in the wireless

sensor network where the minimum power consumption is

required. We have done the analysis of different problems to

measure the performance comparison in terms of number of

context switching and processor utilization. Figure 12 shows the

comparison of CO-DSEDF & CO-LALF for number of context

switching.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 13, November 2014

45

Fig: 11 Schedule of Example V using CO-LALF

Table 15. CO-LALF Result for Problem V

Number

of Jobs

Schedulability Context

Switching

Processor

Utilization

12 Yes 3 1

Table 16. Comparison Parameters

Number

of Jobs
 4

10 10 12

Context

Switching

CO-DSEDF 0 1 2 2

CO-LALF 1 1 3 3

Processor

Utilization

CO-DSEDF 0.72 0.676 0.44 0.415

CO-LALF 0.8 0.821 1 1

In context switching low priority task is pre-empted and resume

later. If number of context switching is there then it may

degrade the performance of real-time system. Figure 13 shows

the processor utilization of CO-DSEDF & CO-LALF. The

processor utilization of CO-DSEDF is less as compared to CO-

LALF algorithm. So it reduces the power consumption of the

processor. As the numbers of jobs are increased the processor

utilization is reduced in CO-DSEDF. But In CO-LALF, as the

numbers of jobs are increased processor utilization is increased.

The processor utilization for the update workload of different

jobs is estimated for different problems. If numbers of free slots

are more in the scheduling of different tasks then processor

utilization is reduced, though the numbers of jobs are increased.

Fig: 12 Comparative Analysis of Context Switching

Fig: 13 Comparative Analysis of Processor Utilization

6. CONCLUSION
The DS-EDF and DS-LALF algorithms are used to schedule

the update transactions. These algorithms are used to maintain

the validity of real time data. If any of the algorithms is

missing its deadline then real-time data validity is not

maintained. So that the real time data updated in real-time

database is stale or invalid data. To check the validity of data,

different algorithms are worked out using different problems.

DS-EDF & DS-LALF are used for update transactions while

CO-LALF & modified algorithm, CO-DSEDF are used for

update as well as control transactions. We have compared

these algorithm using three different criteria for the same

problem statement. These criterions are schedulability,

context switching, and processor utilization in terms of update

workload. In modified CO-DSEDF we get less context

switching and less power consumption than CO-LALF. As

numbers of jobs are increased, the processor utilization for the

update workload is also increased in CO-LALF which is not

feasible to minimize the power consumption of the processor.

We have worked out these algorithms with uniprocessor

system. In future we have to extend these algorithms to

multiprocessor system where the performance measure

parameters like resource sharing will make the system more

complex. In CO-DSEDF, numbers of free time slots are also

available which can be utilized by other jobs.

7. REFERENCES
[1] M. Xiong, S. Han, K.-Y. Lam, and D. Chen, “Deferrable

“Scheduling for Maintaining Real-Time Data Freshness:

Algorithms, Analysis, and Results,” IEEE Transaction

Computers, vol. 57, no. 7, pp. 952-964, July 2008.

0

1

2

3

4

4 10 10 12

C
o

n
te

xt
 s

w
it

ch
in

g

Number of jobs

Comparison of Context Switching

CO-DSEDF
CO-LALF

0

0.2

0.4

0.6

0.8

1

1.2

4 10 10 12

P
ro

ce
ss

o
r

U
ti

liz
at

io
n

Number of jobs

Comaprison of Porcesor Utilization

CO-DSEDF

CO-LALF

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 13, November 2014

46

[2] “A schedulability Analysis of deferrable scheduling

Using Patterns” ,by Song Han, Deji Chen,Ming Xiong,

Euromicro Conference on Real-time systems,IEEE2008.

[3] S. Han, D. Chen, M. Xiong, K.-Y. Lam, A.K. Mok, , and

K.Ramamritham, “Schedulability Analysis of Deferrable

Data Freshness, Technical Report TR-11- 38TR- 2055.

pdf, 2011.

[4] “Schedulability Analysis of Deferrable Scheduling

Algorithms for maintaining Real-time Data Freshness”,

Song Han, Deji Chen, Ming Xiong, KAm-yiu Lam,

Aloysius K. Mok, Krithi Ramamritham, IEEE

TRASNACTIONS ON COMPUTERS,2012.

[5] “On Co-Scheduling of Update and Control Transactions

in Real-Time Sensing and Control Systems: Algorithms,

Analysis, and Performance ” by Song Han, Member,

IEEE, Kam-Yiu Lam, Member, IEEE, Jiantao Wang,

Student Member, IEEE, Krithi Ramamritham, Fellow,

IEEE, IEEE TRANSACTIONS OCTOBER 2013.

[6] “An essay on Real-time Databases”, by Raul Barbosa,

Department of Chalmers University of technology,

Sweden.

[7] “An overview of Real-time Database Systems”, by Ben

Kuo and Hector Garcia-Molina, Princeton University

USA.

[8] “Managing Deadline Miss ratio & sensor Data Freshness

in Real-time Daabases”, By Kyoung-Don Kang, Sang H.

Son, IEEE transactions, VOL. 16,No. 10,October 2004.

[9] ”Real-Time Systems” by Jane W.S. Liu, Pearson

Education.

[10] ”Real-Time Systems” by C.M.Krishna & Kang G. Shin,

Tata McGraw-Hill.

[11] “Process Control: Concepts, Dynamics & Applications:

By S.K. Singh, PHI.

[12] An overview of real-time database systems Ben Kao and

hector Garcia-Molina.

[13] ”Value-Based Scheduling in Real-Time Database

Systems” Jayant R. Haritsa, Michael J. Carey, and Miron

Livny.

[14] M. Kutil, P. Sucha, M. Sojka, and Z. Hanzalek

TORSCHE Scheduling Toolbox Manual, February 2006.

http://rtime.felk.cvut.

IJCATM : www.ijcaonline.org

http://apps.cs.utexas.edu/tech_reports/reports/tr/TR-
http://rtime.felk.cvut/

