
International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

5

A System for Green Personal Integrated Mobility:

Compensation Engine

Francesco Rizzi
Dept. of Industrial and Information
Engineering, University of Pavia
Via Ferrata 5, 27100 Pavia, Italy

Gianmario Motta

Dept. of Industrial and Information
Engineering, University of Pavia
Via Ferrata 5, 27100 Pavia, Italy

Daniele Sacco

Dept. of Industrial and Information
Engineering, University of Pavia
Via Ferrata 5, 27100 Pavia, Italy

ABSTRACT

This paper presents a component of the ongoing research

project Integrated Real-time Mobility Assistant (IRMA). The

component’s name is Compensation Engine. IRMA is a

software system that targets the personal mobility in a near

future scenario, based on green, shared and public transports.

IRMA handles end-to-end itineraries that may involve

multiple transport systems, and supports the users in schedule

and re-schedule their itineraries. This paper focuses on the

description of the Compensation Engine component, which

monitors the progress of the journey and spots possible

transportation issues. The component alerts the user when the

journey can not be completed and allows the rescheduling of

the route. The Compensation Engine has been implemented

and proved on test cases.

General Terms

Software engineering, Applications of Computer Science in

Modeling, Data and Information Systems

Keywords

Transport systems; software engineering; applications of

computer science in modeling data and information systems;

smart cities; urban mobility; human mobility; mobility

integrator; service oriented architecture.

1. INTRODUCTION: THE IRMA

PROJECT
The Integrated Real-time Mobility Assistant (IRMA) targets

individuals in whole lifecycle of their mobility. Work started

in Department of Information and Industrial Engineering of

Pavia University to develop a mobile application that could

assist travelers to meet their schedule even with transport

disruptions [1].

IRMA architecture includes various elements, namely

mobility analysis, mobility forecasting, mobility assistant,

terminals, communication services, sources which is shown in

Fig. 1. The personal mobility assistant shall assist the end user

to plan, configure, monitor, alarm, and reschedule mobility

across multiple mobility options. It manages and supports the

mobility itinerary by two phases in the mobility life cycle with

different modules/services [2].

Before the trip (Planning), the Request Handler processes the
mobility request that may concern an individual trip or a
calendar. The Handler helps the user to define the optimal
mobility plan by accessing mobility forecast and mobility
timetables through the Information Retrieval sub service. The

user will choose and confirm the ideal option as an individual
itinerary.

During the trip, the user receives information about disruptions
(Event Notifier) and use the assistance to choose a viable
alternative (Compensation Engine). Event Notifier is a set of
instances that are activated when the user confirms and
actually starts the trip. It concerns all connections of the
individual itinerary and relevant process disruption information
provided by communication services. Compensation Engine
processes mobility alternatives in front of a disruption or a
change, by browsing on mobility analyzer the closest option
(as an alternative the request handler could fetch a plan B in
advance). A more comprehensive description of the IRMA
project can be found in the paper at the reference [2].

The second section of this paper presents an overview about

the real-time information in the mobility field. This kind of

information is important to enhance the user experience. The

third section introduces the reader to the main concept of the

Compensation Engine and to its terminology. The design and

implementation of the component are described in the fourth

and fifth section. The UML diagrams are provided for a better

explaination. The sixth section is about the description of the

functionality test. In the end, some conclusions are outlined

with some proposal for the future evolution of the

Compensation Engine component.

Fig. 1: IRMA Architecture

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

6

2. RELATED WORK
Mobility assistance systems are evolving by taking into

account several research fields. Some systems focus on

tourism [3], others on disabled or not self-sufficient people

[4]. Many solutions support the travelers to search, filter and

choose the best offer [5], [6], [7]. Many web oriented

solutions have been developed to better fit the needs of the

travelers [8, 9, 10]. A good incentive has been the widespread

use of smartphone devices.

Current mobility can be defined as mono-modal because it is

based on a single type of transportation mean. This system

addresses multimodal mobility. This type of mobility is still at

a beginning phase and represents a potential advance in the

field of mobility. The travel experience of the user can be

enhanced by implementing a multimodal mobility system.

This is a good return for the transportation companies. Today

public transportation travelers need two kind of information

[11]: 1) static information: as the departure time and arrival

time, 2) dynamic information: as delays or cancellations of

carriers on the route.

The usage of dynamic information is increasing into the

transportation terminals like rail stations or bus stops. A

notable amount of money has been spent every year by

transportation companies for real-time information systems.

Screens are used more and more to provide real-time

information about delays, cancellations, incoming departures

or platform changes [12]. It has been verified that the usage of

real-time information allows transportation companies to offer

a better service level to the customers, because they enhance

the reliability and the quality of the whole amount of provided

information [13]. A multimodal trip planner system should be

aware of the updated travel time and delay problems, in this

way it can provide reliable information about the feasibility of

the trip [14]. Another key point is the simplification of the trip

planning task [15], because the user should be able to

reschedule the trip plan in every moment. A typical example

of rescheduling happens when the traveler changes a vector

for a cheaper one. In this case, the user should be able to

compare alternative vectors on the same route and reschedule

according to his or her needs. In several sources the

rescheduling is presented as a value for the traveler and a

winning feature for the system [16], [17], [18], [19], [20].

3. COMPENSATION ENGINE

CONCEPT
Compensation Engine is a component of IRMA. Its aim is to

be aware of the issue on each registered journey in the system.

A specific terminology is adopted:

1. Journey: It is every user’s trip. It is featured by a starting

and ending point/time. It is composed by one or more

different steps called Connections. Not all of the

Connections are peformed by the same type of vector or

by the same public transportation provider.

2. Connection: It is a single step into the user’s Journey.

Every Connection is featured by a starting and ending

point location and time. A Connection is also featured by

a vector, that is supposed perform the transportation.

3. Transportation carrier: any mean that is supposed to

carry the user from a location to another location. This

system focuses on public transportation means.

The Compensation Engine manages the journeys thanks to

two lists, inbound and outbound journey list. These two

journey lists are sorted by time. Every journey has got a states

and state transictions as it is shown in the state diagram in Fig.

2. The states are three: scheduled, running, completed.

A journey is moved through the two lists according to its state.

The scheduled journeys are inserted in the inbound list. The

running journeys are inserted in the outbound list. The

completed journeys are removed from outbound list. The

mechanism of the two lists is showed in Fig. 3.

Every running journey gets its own monitor object that is

responsible of the successful completion of the journey. The

monitor object uses a set of further objects that constantly

monitor the transportation carriers. This last operation is

accomplished by retrieving third part real-time information

from transportation companies. In case the journey can not be

completed, the Compensation Engine allows the user to

reschedule the journey.

4. ANALYSIS OF NEEDS

4.1. Usage Scenario
A situation is proposed to highlight the problems that the

Compensation Engine is supposed to solve:

Mister Rossi books a trip by train from Pavia to Rome. The

trip involves a change in Milan. He arrives to Pavia rail

station on time, but his train has got a delay. Mister Rossi

won’t be able to arrive on time in Milan in order to take the

train to Rome. Luckily, he notices the problem and he goes to

the ticket office to reschedule his trip plan. Unfortunately, the

line in front of the ticket office is too long.

Fig. 2: State Diagram

Fig. 3: Inbound and outbound lists

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

7

This scenario is uncomfortable for the traveler. He or she

needs to accomplish several steps and be aware of different

variables to solve the problem. The aim of the Compensation

Engine is to automatize as much as possible these steps and so

reduce the worries of the traveler.

4.2. Process Modeling
The analysis starts from this example. First, the logic of the

process is outlined. The assembly line in Fig. 4 shows the

sequence of macro-activities of the process. The assembly line

diagram is a variant of a Business Process Diagram (BPD).

The assembly line diagram is successfully used for process

modeling [21]. The diagram shows the interactions

(read/write) between the process and the information objects

during the execution. In this case the information objects are

identified by the database.

4.3. Requirement Design
A set of references in an assembly line diagram typically

becomes a use case that the information system has to

provide. This is very important, because it maps the business

process to use cases. The use cases describe the functional

requirements of an information system and its actors [21]. The

“Choose an alternative” use case was identified, its

description is in Table 1.

5. COMPONENT DESIGN

5.1. Deployment Diagram
The deployment diagram is presented in Fig. 5. The

Compensation Engine is located to the server-side. In this

way, the workload of the client is lightened.

Third part servers are owned by transportation companies.

They are used to retrieve real-time information about transport

carriers.

Compensation Engine communicates with the Persistence

component and the EventsNotifier component. The

Persistence component manages the access to the IRMA

server-side database. The EventsNotifier component manages

the notification delivery to the client.

5.2. Class Diagram
This section describes the classes involved into the

Compensation Engine. Much importance has been attached to

the modularity and maintenance of the system. The classes of

the component are seven:

1. JourneyGuardian

2. PromiseGuardian

3. ConnectionListener

4. CLManager

5. AlternativeManager

6. JourneyRecord

7. ConnectionRecord

The Fig. 6 shows the class diagram. The Compensation

Engine has got a multilevel approach on the journey. The

JourneyGuardian class is at the higher level and it treats the

journey as a single entity. The JourneyGuardian class manages

the journey state transitions.

Fig. 4: Assemly line. Full circle: information writting. Empty

circle: information reading

Fig. 5: Deployment Diagram of IRMA.

Table 1. Use case description table: Choose an Alternative

Choose an alternative

actors User

description the system alerts the user and allows the user

to reschedule the journey.

preconditions a journey has been already saved and it can

not be completed because of an issue on a

transportation carrier.

normal flow 1. the system recognize an issue on a

carrier (delay or cancellation)

2. the system checks the promise of the

journey.

3. the promise is not respected. The

system notifies the user.

4. the user sees the notification

5. the system allows the user to reschedule

the journey

6. the user modifies the journey

alternative flow 3. the promise is respected

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

8

Every journey gets its own PromiseGuardian instance. The

PromiseGuardian sees the journey at a lower level, so as a

sequence of connections.

The PromiseGuardian needs to be constantly aware about

issues on transportation carriers and use ConnectionListener

class that retrives connection information from third part

sources. Since more than one PromiseGuardian could be

interested in the same connection, the CLManager class

manages the ConnectionListener objects and their usage. Aim

of this class is to associate a PromiseGuardian with the

connections of its journey.

JourneyRecord and ConnectionRecord classes are data type of

the records of the lists that are used into the Compensation

Engine. A more detailed explanation of the other classes is

provided below.

5.2.1. JourneyGuardian
In the JourneyGuardian the state transiction of the journey is

managed thanks to an inbound and an outbound list. The

scheduled journeys are into the inbound list and the running

journeys are into the outbound list. The scheduled journeys

are sorted according to the departure time in descending order.

The running journeys are sorted according to the arrival time

in descending order. The descending order is guaranteed by

the method JourneyGuardian.insertJourney(), it inserts a

journey into a list without compromising its order. The

descending order makes sure that: 1) the last element of the

scheduled journeys is the next starting journey, 2) the last

element of the running journeys is the next ending journey.

The JourneyGuardian constantly checks the last element of

the lists. First, it checks which journeys have been already

started and which journeys are starting in thirty minutes. A

PromiseGuardian is created for these journeys. They are

moved to the outbound list and become running journeys. In

this way a journey is monitorized by its PromiseGuardian

thirty minutes before the departure.

The class checks also the running journeys. When a journey is

finished, its state becomes completed and it is removed from

the outbound list.

The class implements the Singleton Design Pattern [22] to

ensure only one instance of the class and to avoid managing

conflicts.

Fig. 6: Class diagram

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

9

5.2.2. PromiseGuardian
The PromiseGuardian class manages one single journey and

its related connections. A ConnectionListener is created for

every Connection of the Journey. The Observer Design

Pattern [22] is implemented. The PromiseGuardian takes the

role of the observer and the ConnectionListener takes the role

of the subject.

The method PromiseGuardian.checkPromise() implements an

algorithm, the so called check-promise algorithm (it is

described further in this paper). The algorithm’s aim is to

check that the time interval between every Connection doesn’t

last less then a fixed threshold. The algorithm ensures enough

time to the user for switching from a carrier to another one.

The time interval can last more because of delays on carriers,

in this case the PromiseGuardian calls the

AlternativeManager.

5.2.3. ConnectionListener
The ConnectionListener periodically checks the carrier. It

retrieves information like actual departure time, arrival time,

delay, cancellation, actual departure and arrival platform.

The ConnectionListener implements the Observer Design

Pattern [22] as the role of the subject.

In the proof of concept implementation, it takes information

by parsing every 5 minutes an Italian website for railways

www.viaggiatreno.it.

5.2.4. CLManager
The CLManager class is meant to support the Observer

Design Pattern [22] between PromiseGuardian and

ConnectionListener. Its aim is to manage the subscription of

the PromiseGuardians to the ConnectionListeners and to

eventually create the latters.

When two or more PromiseGuardians are interested to the

same carrier, the CLManager creates only one

ConnectionListener that will be unique for that carrier.

CLManager keeps a list of existing ConnectionListeners and

implements the Singleton Pattern to keep that list unique.

5.2.5. AlternativeManager
The AlternativeManager class is instantiated by the

PromiseGuardian when the promise is not respected. Its aim is

to make the user able to reschedule the Journey.

The rescheduling logic is simple, the

AlternativeManager.dummyStrategy() just notifies the user’s

device in order to allow the user to modify the Journey.

AlternativeManager.advancedStrategy() is an empty and not

used method, it was inserted for an improvement of this logic

in a future work.

5.3. Sequence Diagram
During the design phase, the sequence diagram was used to

design the interactions between classes and to outline the

entire execution flow.

The sequence diagram in Fig. 8 focuses on the

JourneyGuardian class. This class executes in loop the

following tasks. At first, the JourneyGuardian checks for new

journeys in the database. If necessary, the inbound list will be

updated. Then, the next starting journey and the next ending

journey are checked. If a journey is beginning, the relative

PromiseGuardian will be instantiated. If a journey is

completed, the relative record will be removed from the

outbound list.

A PromiseGuardian, during its instantiation, will subscribe to

one or more ConnectionListener thank to the CLManager.

Then, it will wait for an update from the listeners.

The interaction between the PromiseGuardian and the

ConnectionListeners is presented in the Fig. 7. A

ConnectionListener periodically retrieves information about

its transportation carrier. When an information changes, the

ConnectionListener updates the database and calls the method

PromiseGuardian.update(). The PromiseGuardian executes the

check-promise algorithm on its connections. If the journey

can not be completed, the method

AlternativeManager.findAlternative() is called.

AlternativeManager instantiates SendMSG from the

Communication component and sends a message to the user.

5.4. Check-Promise Algorithm

The flowchart in Fig. 9 shows the check-promise algorithm at

the base of the Compensation Engine. Two concepts need to

be defined: 1) gap-time: the time interval between two

consecutive connections. 2) safety-time: a minimal time

interval that must be ensured to switch from a carrier to

another.

Fig. 7: Sequence diagram: focus on the interaction between

PromiseGuardian and ConnectionListener.

Fig. 8: Sequence diagram: focus on JourneyGuardian.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

10

The check-promise algorithm checks that the gap-time is

greater or equal to the safety-time, taking into account the

accumulated delays on the connections.

The algorithm’s goal is then to check that the time interval

between two connections is long enough to make the user able

to catch the next carrier.

6. TEST
A demonstration version of the Compensation Engine was

implemented and integrated with a prototype version of IRMA

system. The goal was to validate the use case and the

functionalities to provide a proof of the concept. The

performances of the component were not considered as a

crucial point for the prototype, however, they are meant to be

tested and improved in further developments of the IRMA

project.

The implementation of the Compensation Engine includes

unit tests and logs. The unit tests ensured the correctness of

every implemented class. The logs track the component’s

execution and catch every potential exception at run-time.

A set of scenarios has been individualized and the relative test

cases have been outlined. Some of the test cases are presented

in Table 2.

The component has successfully passed the test cases

performed by the people of the developing team.

7. CONCLUSION
IRMA (Integrated Real-time Mobility Assistant) was

introduced and one of its components was described: the

Compensation Engine. IRMA is part of a research in progress

whose aim is to support integrated mobility into smart cities.

The Compensation Engine retrieves third part real-time

transportation information to reduce the incidence of an issue

on a transportation carrier. An overview on the real-time

information in transportation has been provided. Requirement

analysis has been performed and afterwards design,

implementation and test of the component have been outlined.

Future works should consider a further improvement of the

Compensation Engine. A more advanced logic, for instance,

could be implemented into the AlternativeManager to suggest

the alternative journeys to the user. Another important point

would be the improvement of the collaboration with

transportation providers. This would increase the amount of

real-time information and it would diversify the offer that is

proposed to the end-user.

Morover, the rescheduling of a running journey involves

ticket, money and booking issues. This kind of problems can

be solved by an agreement with transportation companies. A

good compromise, for example, would be to generate a single

Table 2. Test case table.

TEST DESCRIPTION INPUT
EXPECTED

OUTPUT

OBSERVED

OUTPUT

Scenario 1 No issues on the journey.

The user is not alerted.

A journey is created.

N° connections: 3

Departure: Bari (Italy)

Destination: Pavia (Italy)

The system keeps monitoring the

journey without alert the user.

It meets the

expected output.

Scenario 2 Delay on a connection.

The gap-time is smaller then

the safety-time, so the system

alerts the user.

The user decides to not

reschedule the journey.

A journey is created.

N° connections: 2

Departure: Trapani (Italy)

Destination: Messina (Italy)

The system spots the issue and alerts

the user.

The system keeps monitoring the

journey before, during and after

sending the alert.

It meets the

expected output.

Scenario 3 Delay on a connection.

The gap-time is smaller then

the safety-time, so the system

alerts the user.

The user reschedules the

journey.

A journey is created.

N° connections: 2

Departure: Torino (Italy)

Destination: Pavia (Italy)

The user successfully reschedules

the journey.

The system monitors the rescheduled

journey.

It meets the

expected output.

Fig. 9: Flowchart of the check-promise algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 105 – No. 1, November 2014

11

virtual ticket at the end of the journey. The virtual ticket

would be charged to the user account and it would exclude the

costs of the carriers not actually used by the user because of

the rescheduling of the journey.

8. REFERENCES
[1] Barroero T., Telese F. Motta G., "Design of performance

aware service systems," in The International Joint

Conference on Service Sciences (IJCSS), Taiwan, 2011.

[2] Sacco D., Belloni A., You L. Motta G., "A system for

green personal integrated mobility: a research in

progress," in Service Operations and Logistics, and

Informatics (SOLI), 2013 IEEE International Conference

on, Dongguan, 2013.

[3] W. Souffriau, P. Vansteenwegen, "Tourist trip planning

functionalities: state-of-the-art and future," Katholieke

Universiteit Leuven, Belgio, 2010.

[4] S. Barbeau, P. Winters, N. Georggi, "Travel assistant

device (tad) to aid transit riders with special needs,"

National Center for Transit Research at the Center for

Urban Transportation Research, University of South

Florida, 2008.

[5] C. Buhler, H. Heck, C. Radek, R. Wallbruch, J. Becker,

C. Bohner-Degrell, "User feed-back in the development

of an information system for public transport,"

Forschungsinstitut Technologie und Behinderung, Rhein-

Main-Verkehrsverbund GmbH (RMV), Rhein-Main-

Verkehrsverbund Servicegesellschaft mbH, Germania,

2010.

[6] S. Qi, W. Hai-yang, "Meta service in intelligent platform

of virtual travel agency," School of Computer Science

and Technology, Shandong University, China,.

[7] P. Moraitis, E. Petraki, N. I. Spanoudakis, "Providing

advanced, personalised infomobility services using agent

technology," Department of Computer Science,

University of Cyprus, Cipro, 2003.

[8] C. Canali, M. Colajanni, R. Lancellotti, "Performance

evolution of mobile web-based services," University of

Modena, University of Reggio Emilia, 2009.

[9] L. Jun, D. Junping, W. Su, "Study on travel route

intelligent navigation system based on webgis," School

of Computer Science, Beijing Key of Intelligent

Telecommunication Software and Multimedia, Beijing

University of Posts and Telecommunications, China,

2009.

[10] B. Pressl, C. Mader, M. Wieser, "User-specific web-

based route planning," Institute of Navigation and

Satellite Geodesy, Austria, 2010.

[11] H. Westerheim, B. Haugset, M. Natvig, "Developing a

unified set of information covering," in 13th World

Congress on Intelligent Transport Systems and Services,

Norvegia, 2007.

[12] K. Dziekan, K. Kottenhoff, "Dynamic at-stop real-time

information displays for public transport: effects on

customers," Transportation & Logistics, Royal Institute

of Technology (KTH), Svezia, 2006.

[13] C. Zhou, Y. Liu, Y. Tan, L. Liao, "Dynamic vehicle

routing and scheduling with variable travel times in

intelligent transportation system," College of Information

System and Management, National University of

Defense Technology, China, 2006.

[14] A. T. Baptista, E. Bouillet, F. Calabrese, O. Verscheure,

"Towards building an uncertainty-aware personal journey

planner," in 14th International IEEE Conference on

Intelligent Transportation Systems, Washington, DC,

USA, 2011.

[15] M.K. Natvig, H. Westerheim, "National multimodal

travel information – a strategy based on stakeholder

involvement and intelligent transportation system

architecture," in 13th World Congress on Intelligent

Transport Systems and Services, Norvegia, 2007.

[16] J. P. Dillenburg, O. Wolfson, P. C. Nelson, "The

intelligent travel assistant," in The 5th International

Conference on Intelligent Transportation Systems,

Singapore, 2002.

[17] M. D. Hickman, N. H. M. Wilson, "Passenger travel time

and path choice," University of California-Berkeley,

Massachusetts Institute of Technology, USA,.

[18] J. Jariyasunant, D. B. Work, B. Kerkez, R. Sengupta, S.

Glaser, A. Bayen, "Mobile transit trip planning with real–

time data," Department of Civil Engineering, University

of California, USA, 2009.

[19] S. J. Barbeau, N. L. Georggi, P. Winters, "Dynamic travel

information personalized and delivered to your cell

phone," National Center for Transit Research Center for

Urban Transportation Research, University of South

Florida, USA, 2011.

[20] S. Barbeau, N. L. Georggi, P. Winters, "Travel assistance

device (tad) – deployment to transit agencies," National

Center for Transit Research, Center for Urban

Transportation Research, University of South Florida,

USA, 2010.

[21] Magnus Penker Hans-Erik Eriksson, Business modeling

with uml: business patterns at work.: John Wiley & Sons,

2000.

[22] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design

patterns: elements of reusable object-oriented software.,

1995.

IJCATM : www.ijcaonline.org

