
International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

1

 D- A Powerful General Purpose Application

Programming Language

Tarun Kumar
Assistant Professor

Vidya College of Engineering
Bagphat Road, Meerut (India)

Mayank Singh
Associate Professor

Krishna Engineering College
Mohan Nagar, Ghaziabad (India)

Arun Sharma
Professor& Head, CSED
KIET, Ghaziabad (India)

ABSTRACT

The real purpose of a programming language is to
communicate a set of instructions to a system, basically a
computer. Just like natural languages, programming

languages are described using their syntaxes and semantics.
This paper presents a comparison of a newly-developed
Programming Language called D with traditional languages
like C, C++, C# and JAVA. D is applicable to many
programming paradigms like object-oriented with classes and
interfaces, generic programming with templates and mix-ins,
procedural programming with functions and arrays etc. There
are two major versions of this language - D1 and D2. This

paper also presents a comparison of the execution times of a
program, which is written in the C, JAVA, C# and D
languages. This is a comparative study, which illustrates the
behavior of these languages using a program structure in each
of the languages. This is done by developing a sample
program in which various languages are used to check for the
difference in flow of execution. This will firstly provide an
opportunity to examine the variation in programming styles of

different programmers. Second, it permits accessing and
comparing the variability of program properties induced by
different languages. Results indicate that for the given
programming problem, D is more productive compared to
other languages like C, C++, C# and Java.

Keywords
C, C++, C#, Java, D, and Execution Time etc...

1. INTRODUCTION
BCPL stands for Basic Combined Programming Language. It
was designed by Martin Richard who was associated with the

University of Cambridge in 1966. It works with the approach
of structural, procedural and imperative paradigm.

The fundamental planning behind the initiation of BCPL was

for developing compilers for other languages, which is less
frequently use now. The extended version of BCPL is called
B, which was used for developing the UNIX operating
system. Later on the B language become the core of the C
language. The aim of a programming language is to
synchronize the operations that are performed by a computer.
There are thousands of new programming languages on which
programmers are working to develop new software; but only a

few of them popular to be utilized in the long run of
development. Simply working with one programming
language may not support all the requirement of the users.
There must be a multi-functional programming platform
which is support all the requirement of the users by using the
different syntax. Generally there are two paradigms to
develop any application specifically the function-oriented and
object-oriented language. Both paradigms have their own

limitations. The D language is a combination of a procedural
and an object-oriented language.

D is an application-based language, which is used for general-
purpose system programming, providing an interface between
hardware and application programming. It provides features
such as first-class array, inline assembler, lack of
preprocessor, contracts, a garbage collector and many more.
D is a multi-paradigm, natively-defined, compiled, and
statically-typed language. The motive behind the D language

is to develop any type of application by combining the
syntaxes of flexible C and JAVA languages.

The first ANSI C++ compiler for DOS was written by Walter

Bright who originally conceived the D language. Compliers
of the D language are freely downloadable for Windows and
Linux.

Over the last fifty years, programming languages have taken a
great leap in terms of development as well as their utilization.
In comparison to the advent of UNIX and C, when compiler
translates these languages they were just getting their initial
start, the latest features of the languages are fulfilling the
requirements of different development strategies [2].

D is well fitted for writing small-scale to large-scale
programs. With a group of programmers, it is very easy to
learn and utilize many features of programs, which are suited
for aggressive compiler optimization technology. This
language fulfills different requirements in the programming
community. D can be compared with Ruby; python the basis
of SHI syntax, array and type inference and it is also available
for low level system programmer with features such as inline
assembler.

It brings in features of imperative languages, such as Lisp,
with the lazy storage class, which drastically speeds up
efficiency. The language is relatively stable, with the
occasional new features or changes in it.

D is basically used by a programmer for coding high
performance and reliable code, which wants a C++/JAVA
style language, but requires a special language which is much
easier to master with support of modern techniques and
management like a D program as it contains comparatively
less code. It is not unusual for a D program to contain 30%
less source code as compared to an equivalent C++ source
code, yet it runs at the same speed or faster. It is manageable
to develop and debug code in D platform at a fast speed. The
D language was designed with the following rules in mind:

1) Text pre-processor is not required.
2) Command line switch cannot change the syntax
3) Imported file cannot change the syntax
4) A source code can be tokenized without direction to
semantics or syntax
5) Analysis of source file can be performed

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

2

In short, D is a language ready for real-world deployment.

2. GENERAL COMPARISON
Table-1 compares general and technical information for a

selection of common- used programming languages [1] [4-7].

Table 1: A General Comparison

Language Intended Use Paradigm(s)

C System
Imperative,
Procedural

C++
Application,
System

Generic,

Imperative,
Object-Oriented,
Procedural,
Functional

Java

Application,
Business, Client-
side, General,
Server-side, Web

Reflective ,
Generic,
Imperative,
Object-Oriented,

Python
Application,
General, Web,
Scripting

Aspect-oriented,
Functional,
Imperative,
Object-oriented,
Reflective

PHP
Server-side, Web
Application, Web

Reflective,

Imperative,
Object-Oriented,
Procedural,

C#

Software
components,
hosted and
embedded systems

multi-paradigm:
structured,
imperative,
object-Oriented,
event-driven,

functional,
generic,
reflective,
concurrent

D
Application,
System

Generic,
Generative,
Imperative,
Object-oriented,

Functional,
Concurrent

3. D LANGUAGE
GDC compiler utilizes the GCC with the back end, built using

the open DMD compiler source code. D's key features retain
C++'s ability to do low-level coding, support memory safe
programming and multi-paradigm programming, has a
garbage collector, flexible first-class arrays, implements
design by contracts, integrated inline assembler, etc. The D
language also exhibits application programming interface
compatibility with C, thereby permitting usage of all the old C
libraries and being shorter and memory-safe as well. All

standard C, C++ and Java functions are a part of the D
standard library [2].

(1) In D, the ‘Welcome in D’ program:

import std.stdio; // standard I/O module

int main (char [] [] args)

{

 writefln (" First Step in D!");

 return 0;

}

(i) printf id d is represented as writef.

(ii) writefln is used as a newline character at the end.

(2) Alias and typedef

Alias is providing an alternative name to an already existing
typedef which considers only types and develops a new type
[8]:

alias int size_r;

typedef int mynumeric;

alias someReallyLongFunctionName func;

(3) Arrays

Three types of arrays hold with the D language: associative
arrays, static and dynamic array. Fashion of declarations of
array is right to left [8].

char [] [] is understood as a collection of characters:

int [] array_namr; // dynamic array of ints

int [2] [4] array_name; // a 2x4 matrix

Sort, reverse and length properties also exit in array with the
D language. The Operator slices with Dynamic and static
array.

int [] num = [15, 22, 32, 42, 50, 62, 72];

num = num [0..20]

(4) ~ operator

Tidle ~ operator in the D language is used for concatenation
and most important fundamental concept of concatenation is
the string [3].

char [] string1 = "Welcome ";

char [] string2 = "In D!";

char [] string = string1 ~ string2; // Welcome in D!

Additionally, there are three types of string based on UTF-8,
16, and 32 bit systems on D platform.

char;

wchar, and

dchar;

D is a suitable language to internationalized programming due
to different kind of supporting Unicode protocol, wherein the
Unicode characters are manipulated using the standard and
library routines.

(5) Unit Test

Unit testing is a main feature of D. The purpose of Unit
Testing is to ensure that a particular function or set of
functions is working according to specification with various
possible arguments [3]:

int add (int a, int b)
{
 return a + b;
 }

The unit test would be placed in the same module, and if the

unit test option is enabled, it would run as soon as the module
is imported and any function from it is executed. In this case,
it probably would look something like this:

http://en.wikipedia.org/wiki/C_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Generic_programming
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/D_%28programming_language%29
http://en.wikipedia.org/wiki/Low-level_programming_language

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

3

Unit_test
{
 assert (add (1, 2) == 3);
 assert (add (-1, -2) == -3);
}

(6) Conditional Compilation
In the D language program no pre-processor is required; this
saves the line of code for compiling and saves the time as well
as space of run time. Conditional compilation statements are
part of the language itself. This gives extra usability to
program and at the time of debugging process will take less
time. The version statement is a lot like #ifdef in C. If a
version identifier is defined, the code under it gets compiled;

otherwise, it doesn't [3]

version (Linux)

import std.c.linux.linux;

else version (Win32)

import std.windows.windows;

(7) Type Inference

With the help of auto key word; D complier can understand
the data type automatically. This gives the optimal
environment during run time [3]

auto q = 1; // here q is integer type
auto t= "hello"; // Here t is character type

(8) Exceptions

D uses exceptions for error handling as opposed to error
codes. Exception handling mechanism of D resembles the
way the operating system handles exceptions in an
application. It uses the superior try-catch-finally model, which
allows cleanup code to be inserted conveniently in the finally

block. For certain cases when they finally block is
insufficient, scope statements prove to be quite handy.

(9) Classes

Like any object-oriented language, the D has the ability to
create object classes. From simple scripts to large projects, D
has the potential to scale with any application’s needs. Its
focus is to combine the power and high performance of C and
C++. D uses a single-inheritance paradigm.

Classes are passed by reference rather than by value, so the

programmer doesn't have to worry about treating it like a
pointer. Furthermore, there is no -> or :: operator, the. (Dot)
operator is used in all situations to access members of structs
and classes.

class Class_name
{
 int i;
 char [] str;

 void doSomething () {...};
}

(10) Functions

In D, there is no inline keyword—the compiler decides which
functions to inline, so the programmer doesn't even have to
worry about it. Functions can be overloaded—this is to say,
two functions with the same name can take different
parameters. Function parameters can be either in, out, inout or

lazy, with ‘in’ being the default behavior.

Out parameters are simple outputs:

void function (out int i)
{
 I += 3;
 }

void main()
{
 int n = 50;
 writefln (n);
 func (n);
 writefln (n);
}

inout parameters are read/write, but no new copy is created:

void func (inout int a)
{
 if (a >= 0)
 ..
 else
 ..

}

Lazy parameters are computed only when they are needed. .
Nested functions in D allow the nesting of functions within
other functions same as C, C++ and Java.

(11) Templates

D has a highly flexible template system. For starters, the ‘!’
Operator is used for template instantiation. Here is a simple
template example:

template TCopy (t)
 {
 void copy (T from, out T to)
 {
 to = from;
 }
}

void main ()

{
 int from = 7;
 int to;
 TCopy! (int).copy (from, to);
}

4. PROPOSED ALGORITHM

A program using for, while and do-while loop is implemented
in C, Java, C# and D language to calculate how much time is
required for execution using the below algorithm.

Algorithm in C language:

 % start clock();

 % for (i=0; i<n; i++)

% or while(i<n) i++; //i=0

% or do{}while(i<n) //i=0

%printf(i);

 % end clock ();

% printf(end - start)/CLK_TCK));

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

4

Algorithm in JAVA language:

% startTime=System.currentTimeMillis();

% for (i=0; i<n; i++)

% or while(i<n) i++; //i=0

% or do{}while(i<n) //i=0

% println(i);

% endTime=System.currentTimeMillis();

% println(endTime-startTime);

Algorithm in C# language:

% Stopwatch stopWatch = new Stopwatch();

 % stopWatch.Start();

% for (i=0; i<n; ++i)

% or while(i<n) i++; //i=0

% or do{}while(i<n) //i=0

% stopWatch.Stop();

 % TimeSpan ts = stopWatch.Elapsed

% Console.WriteLine(elapsedTime);

Algorithm in D language:

% StopWatch sw;

% sw.start;

% for (i=0; i<n; ++i)

% or while(i<n) i++; //i=0

% or do{}while(i<n) //i=0

% sw.stop;

% sw.peek.msecs.writeln(time);

We are using different values of n: 200, 400, 600, 800, 1000,
2000, 3000 and 4000 for the calculation of execution time
with single loop among three loop which are for, while and
do-while, and result has been shown in Table 3, 4 and 5.

5. RUN TIME ENVIRONMENT

 All programs were executed on different compliers and
interpreters with 1 GB RAM and Intel(R) Pentium(R) dual
CPU E2220 @2.40 GHZ, running under Microsoft Window
XP service pack 2 2002.The compilers and interpreters are
listed in Table 2.

Table 2: Compilers and interpreters used

Language Complier or execution Platform

C Turbo C++ IDE

Java JDK 5.0.30.7

C# Microsoft Visual studio 2008

D DMD2

6. EXECUTION TIME
The efficiency of a program depends upon two factors:

1. Space.

2. Time.

In the modern computer technologies, there is a lot of space
available and hence a programmer is free from space chores.

So the main factor which decides whether the particular
algorithm is best or efficient to perform certain task depends
on its execution time. We can define execution time as time in
which a particular algorithm generates output from 'n' inputs.

We can calculate the execution time for an algorithm or a
program in three cases:

1. Worst Case: In this case program requires maximum time
to execute for 'n' inputs.

2. Best Case: Best case occurs when program require

minimum time to execute for 'n' inputs.

3. Average Case: Average case occurs when program execute
in a time that is between its maximum and minimum time
requirement for 'n' inputs [9-10].

7. RESULT
The execution time of a given algorithms is equal to the time
spent by the processed algorithms from entry point to exit.
Here we have defined and calculated the execution time for
the different algorithms. It can depend upon the work-
satiation which the stakeholder will use for analyzing the time
with different languages. Table [3-5] shows the comparison of
execution time in different languages using same program
logic i.e. loop implementation (for, while and do-while).

Three different loops (for, while and do-while) have been
implemented independently for the same value of n in
different languages (C, C#, JAVA and D) and the execution
time is calculated in sec. The results states that for the given
problem; the D language is more productive than most
conventional languages, In terms of run time the D language
is often better than Java, C and C#.

Table 3: Comparisons of Execution Time using for loop

Table 4: Comparisons of Execution Time using while
Loop

Value
of N

Time
in Sec
(Using
for
loop in
JAVA)

Time in
Sec
(Using
for loop
in C)

Time in
Sec (Using
for loop in
C#)

Time in
Sec (Using
for loop in
D)

0-200 0.078 0.329670 0.06 0.010

0-400 0.125 0.769231 0.10 0.040

0-600 0.172 1.208791 0.11 0.054

0-800 0.234 1.648352 0.12 0.068

0-1000 0.282 2.087912 0.13 0.083

0-2000 0.532 4.178824 0.18 0.156

0-3000 0.782 6.373626 0.24 0.229

0-4000 1.031 8.571429 0.32 0.301

Value
of N

Time in
Sec

(Using
while
loop in
JAVA)

Time in
Sec

(Using
while
loop in C)

Time in
Sec

(Using
while
loop in
C#)

Time in
Sec

(Using
while
loop in
D)

0-200 0.078 0.329670 0.06 0.010

0-400 0.125 0.769231 0.09 0.039

0-600 0.141 1.208791 0.11 0.054

0-800 0.250 1.648352 0.12 0.068

0-
1000

0.281 2.087912 0.13 0.082

0-
2000

0.531 4.285714 0.18 0.155

0-
3000

0.782 6.428571 0.24 0.228

0-
4000

1.016 8.571429 0.31 0.303

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

5

Table 5: Comparisons of Execution Time using do-while
Loop

Graphical representation and some other program with
execution time are discussed in Appendix A:

8. CONCLUSIONS
It can be concluded that taking into consideration a system-
level language for application execution , D Programming
language would serve as a better choice over other platforms
.One of the more unique aspects of D language is that it takes
less time for the execution of a program. This paper provides
same objective information comparing serial languages,

namely C, JAVA, C# and D languages. The task of the
program is to find out the execution time in different
languages. The common software engineering wisdom says
that the number of lines coded in the D language per hour is
independent of the language platform and this holds fairly
well across all languages. We find that D language clearly
provides a much faster execution time than C, C# and JAVA.
In general the difference between languages does not matter

much as compared to the typical differences due to different
programmers working on the same language.

Summing up, it appears warranted saying that the execution
platform of D language is more productive than that of JAVA,
C# and C.

9. REFERENCES
[1] Lutz Prechelt, “An empirical comparison of C, C++,

Java, Perl, Python, Rexx, and Tcl for a search/string-

processing program”, Technical Report 2000-5, March
10, 2000.

[2] Ali Çehreli, "Programming in D" D.ershane Series,
revision: r501, 2012-08-23.2012.

[3] Overview D Programming Language,
http://dlang.org/overview.html, Retrieved Jan 2014

[4] Schildt, Herbert, “C++ the Complete Reference”, Third
ed, Osborne McGraw-Hill., ISBN 978-0-07-882476-0.

[5] Giannini, Mario; Code Fighter, Inc.; Columbia
University (2004). "C/C++". In Hossein Bidgoli. The
Internet encyclopedia. 1. John Wiley and Sons. p. 164,

ISBN 0-471-22201-1.

[6] Bagley: http://www.bagley.org/~doug/shootout/, Jan
2013.

[7] Hao Chen, "Comparative Study of C, C++, C# and Java
Programming Languages", vaasan
ammattikorkeakouluuniversity of applied sciences
degree program of information technology, 2010.

[8] D programming Language. Arrays:

http://dlang.org/arrays.html, Retrieved June 2014

[9] P. Puschner, Ch. Koza, “Calculating the maximum
execution time of real-time programs”, Real-Time
Systems September 1989, Volume 1, Issue 2, pp 159-
176,DOI 10.1007/BF00571421 Print ISSN 0922-6443
Online ISSN 1573-1383, Springer link.

[10] Peter P. Puschner, Anton V. Schedl, “Computing
Maximum Task Execution Times -A Graph-Based

Approach,Real-Time Systems”, July 1997, Volume 13,
Issue 1, pp 67-91,DOI 10.1023/A:1007905003094 Print
ISSN 0922-6443 Online ISSN 1573-1383,Springer link.

[11] Patricia K. Lawlis, C.J. kemp, "Guidelines for Choosing
a Computer Language: Support for the Visionary
Organization". Ada Information Clearinghouse.
Retrieved 18 July 2006.

[12] TIOBE Software,

http://www.tiobe.com/index.php/content/paperinfo/tpci/i
ndex.html, Retrieved by Jan 2014

[13] "TIOBE Programming Community Index". 2009.

[14] Stroustrup, Bjarne, "Bjarne Stroustrup's FAQ – When
was C++ invented?", Retrieved Jan 2014

[15] C. Brandolese, W. Fornaciari, F. Salice, D. Sciuto,
"Source–Level Execution Time Estimation of C
Programs", Politecnico di Milano Piazza L. da Vinci, 32
20133 Milano, Italy.

[16] Robert Henderson, Benjamin Zorn, “Comparison of
object-oriented programming in four modern languages”,
software-practice and experience, vol. 24(11), 1077–
1095 (November 1994).

[17] Luiz Fernando Capretz, “A Brief History of the Object-
Oriented Approach”, ACM SIGSOFT, Software
Engineering Notes vol 28 no 2, March 2003 Page 1.

[18] Nami, Mohammad Reza Hassani, Fatemeh, "A

comparative evaluation of the Z, CSP, RSL, and VDM
languages", ACM SIGSOFT Software Engineering
Notes, Volume 34, issue 3 (May 30, 2009), p. 1-4. ISSN:
0163-5948 DOI: 10.1145/1527202.1527211.

Value
of N

Time in
Sec
(Using

do-while
loop in
JAVA)

Time in
Sec
(Using

do- while
loop in C)

Time in
Sec
(Using

do-while
loop in
C#)

Time in
Sec
(Using

do-while
loop in
D)

0-200 0.078 0.329670 0.06 0.025

0-400 0.125 0.769231 0.09 0.040

0-600 0.172 1.208791 0.11 0.054

0-800 0.234 1.648352 0.12 0.068

0-
1000

0.282 2.087912 0.13 0.082

0-
2000

0.532 4.236769 0.18 0.155

0-

3000

0.797 6.428571 0.24 0.228

0-
4000

1.032 8.626374 0.31 0.301

http://dlang.org/overview.html
http://www.bagley.org/~doug/shootout/
http://dlang.org/arrays.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html

International Journal of Computer Applications (0975 – 8887)

Volume 104 – No.7, October 2014

6

Appendix A:

Program: 1

1000 random number have been generated using same
program logic (Explain in algorithm 1) in different language
i.e. C, java, C# and D languages [11]. And calculates the how
much time is required to run the program in different
languages which is shown in table 5.

Proposed Algorithm 1:

% IM 139968
% IA 3877
% IC 29573
% last 42
% gen_random(double max) {

% last = (last * IA + IC) % IM;
% return(max * last / IM);}
 % int N =1000;
% while (N--) {
 % result = gen_random(100.0);}
 % printf(result);

The execution time is shown in Table 6.

Table 6: Execution Time for Random Number Generator
Program

Language Execution Time in Second

C 2.0879120

Java 0.141

C Sharp 0.14

D 0.119

Program 2:
Program has been written (Hybrid Program) in different
languages (C, C#, JAVAand D) to print the factorial number
starting from 0 to 14, (because after the given range long int

limt has been exceed, so we are using said range) and square
root of first 45 number (0-44) and first 45 Fibonacci series
number (Explain in algorithm 2). And calculate the how much
time is required to run the program in different languages
which is shown in table 7.

Table 7: Execution Time of Program 2

Languages Execution Time in Second

C 0.109890

Java 0.078

C # 0.030

D 0.027

Proposed Algorithm 2:

% printf("%ld\n%ld",i,j); //printing first two values.

 % for(k=2;k<r;k++){

% f=i+j;

% i=j;

% j=f;

% printf(" %ld\n",j);}

% for(w=0;w<=10;w++){

% l=fact(w);

% printf(w,l); }

% for(g=0;g<r;g++){

 % p=sqrt(g); }

0

0.5

1

1.5

2

2.5

C

JAVA

C SHARP

D 0

0.02

0.04

0.06

0.08

0.1

0.12

Language

C

JAVA

C SHARP

D

IJCATM : www.ijcaonline.org

