Semi-Star-Alpha-Open Sets and Associated Functions

A. Robert
Department of Mathematics
Aditanar College of Arts and Science
Tiruchendur, India

S. Pious Missier
P.G. Department of Mathematics
V.O.Chidambaram College
Thoothukudi, India

ABSTRACT: The aim of this paper is to introduce various functions associated with semi*α-open sets. Here semi*α-continuous, semi*α-irresolute, contra-semi*α-continuous and contra-semi*α-irresolute functions are defined. Characterizations for these functions are given. Further their fundamental properties are investigated. Many other functions associated with semi*α-open sets and their contra versions are introduced and their properties are studied. In addition strongly semi*α-irresolute functions, contra-strongly semi*α-irresolute functions, semi*α-totally continuous, totally semi*α-continuous functions and semi*α-homeomorphisms are introduced and their properties are investigated.

General Terms: General topology

Keywords: semi*α-continuous, semi*α-irresolute, semi*α-open, semi*α-closed, pre-semi*α-open function, pre-semi*α-closed function

1. INTRODUCTION

In this paper various functions associated with semi*α-open sets are introduced and their properties are investigated.

2. PRELIMINARIES
Throughout this paper X, Y and Z will always denote topological spaces on which no separation axioms are assumed.

Definition 2.1[10]: A subset A of a topological space (X, τ) is called (i) generalized closed (briefly g-closed) if Cl(A) ⊆ U whenever A ⊆ U and U is open .

Definition 2.2: Let A be a subset of X. Then (i) generalized closure[11] of A is defined as the intersection of all g-closed sets containing A and is denoted by Cl*_{g}(A).

(ii) generalized interior of A is defined as the union of all g-open subsets of A and is denoted by Int_{g}(A).

Definition 2.3: A subset A of a topological space (X, τ) is (i) semi-open [1] (resp. α-open[12], semi α-open[13], semi-preopen[14], semi-open, semi*α-open[7], semi*-preopen[6]) if A ⊆ Cl(Int(A)) (resp. A ⊆ Int(Cl(Int(A))), A ⊆ Int(Cl(Cl(Int(A))), A ⊆ Cl(Int(Cl(A))), A ⊆ Cl*_{g}(Int(A)), A ⊆ Cl*_{g}(Int(Int(A))).

Definition 2.4: Let A be a subset of X. Then (i) The semi*α-interior [7] of A is defined as the union of all semi*α-open subsets of A and is denoted by s*αInt(A).

Theorem 2.8: [7] (i) Every α-open set is semi*α-open .

Theorem 2.10: [7] (i) Arbitrary union of semi*α-open sets is also semi*α-open.

Remark 2.9:[8] Similar results for semi*α-closed sets are also true.
(ii) If A is semi*-α-open in X and B is open in X, then $A \cap B$ is semi*-α-open in X.

(iii) A subset A of a space X is semi*-α-open if and only if $s^*\alpha int(A) = A$.

Theorem 2.11: [7] For a subset A of a space X the following are equivalent:

(i) A is semi*-α-open in X

(ii) $A \subseteq C^*(s^*\alpha int(A))$

(iii) $C^*(s^*\alpha int(A)) \subseteq C^*(A)$.

Theorem 2.12: [8] For a subset A of a space X the following are equivalent:

(i) A is semi*-α-closed in X.

(ii) $Int^*(\alpha Cl(A)) = A$

(iii) $Int^*(\alpha Cl(A)) = Int^*(A)$.

Theorem 2.13: [8] (i) A subset A of a space X is semi*-α-closed if and only if $s^*\alpha Cl(A) = A$.

(ii) Let ΔX and let $x \in X$. Then $x \in s^*\alpha Cl(A)$ if and only if every semi*-α-open set in X containing x intersects A.

Definition 2.14: [9] If A is a subset of X, the semi*-α-Frontier of A is defined by $s^*\alpha Fr(A) = s^*\alpha Cl(A) \setminus s^*\alpha int(A)$.

Theorem 2.15: [9] If A is a subset of X, then $s^*\alpha Fr(A) = s^*\alpha Cl(A) \setminus s^*\alpha int(A)$.

Definition 2.16: [15] A function $f: X \to Y$ is said to be (i) semi α*-continuous (resp. semi α**-continuous) if $f^{-1}(V)$ is semi α-open (resp. open) set in X for every semi α-open set V in Y.

(ii) totally semi-continuous [16] if $f^{-1}(V)$ is semi regular in X for every open set V in Y.

(iii) semi-totally continuous [17] if $f^{-1}(V)$ is clopen in X for every semi-open set V in Y.

3. **SEMI*-α-CONTINUOUS FUNCTIONS**

In this section we define the semi*-α-continuous and contra-semi*-α-continuous functions and investigate their fundamental properties.

Definition 3.1: A function $f: X \to Y$ is said to be semi*-α-continuous at $x \in X$ if for each open set V in Y containing $f(x)$, there is a semi*-α-open set U in X such that $x \in U$ and $f(U) \subseteq V$.

Definition 3.2: A function $f: X \to Y$ is said to be semi*-α-continuous if $f^{-1}(V)$ is semi*-α-open in X for every open set V in Y.

Theorem 3.3: Let $f: X \to Y$ be a function. Then the following statements are equivalent:

(i) f is semi*-α-continuous.

(ii) f is semi*-α-continuous at each point $x \in X$.

(iii) $f^{-1}(F)$ is semi*-α-closed in X for every closed set F in Y.

(iv) $s^*\alpha Cl(f(A)) \subseteq Cl(s^*\alpha f(A))$ for every subset A of X.

(v) $s^*\alpha Cl(f^{-1}(B)) \subseteq f^{-1}(Cl(B))$ for every subset B of Y.

(vi) $Int(f^{-1}(B)) \subseteq s^*\alpha Int(f^{-1}(B))$ for every subset B of Y.

(vii) $Cl(s^*\alpha (f^{-1}(F))) = Int(s^*\alpha f^{-1}(F))$ for every closed set F in Y.

(viii) $C^*(s^*\alpha Int(f^{-1}(V))) = Int(f^{-1}(V))$ for every open set V in Y.

Proof: (i) \Rightarrow (iii): Let $f: X \to Y$ be semi*-α-continuous. Let $x \in X$ and V be an open set in Y containing $f(x)$. Then $x \notin f^{-1}(V)$. Since f is semi*-α-continuous, $U = f^{-1}(V)$ is a semi*-α-open set in X containing x such that $f(U) \subseteq V$.

(ii) \Rightarrow (i): Let $f: X \to Y$ be semi*-α-continuous at each point of X. Let $x \notin f^{-1}(V)$. Then V is an open set in Y containing $f(x)$. By (ii), there is a semi*-α-open set U, in X containing x such that $x \notin U \subseteq f^{-1}(V)$. Therefore $U \notin f^{-1}(V)$. Hence $f^{-1}(V) = U \cup f^{-1}(V)$. By Theorem 2.10(i), $f^{-1}(V)$ is semi*-α-open in X.

(iii) \Rightarrow (ii): Let C be a closed set in Y. Then $C \cap f^{-1}(V)$ is open in Y. Then $f^{-1}(V)$ is semi*-α-open in X. Therefore $f^{-1}(V) \notin f^{-1}(C)$. Hence $f^{-1}(V) \notin C$. By Theorem 2.10(i), $f^{-1}(V)$ is semi*-α-open in X.

(iv) \Rightarrow (iv): Let $A \subseteq X$. Then $A \subseteq Y$. Therefore $f \subseteq f^{-1}(V)$. Hence $f^{-1}(V)$ is semi*-α-open in X.

(v) \Rightarrow (v): Let V be an open set in X. Then $f^{-1}(V)$ is semi*-α-open. By (vii), $f^{-1}(V)$ is semi*-α-closed. Hence $f^{-1}(V) = f^{-1}(f^{-1}(V))$ is semi*-α-open.

(vi) \Rightarrow (vi): Let $A \subseteq X$. Then $A \subseteq Y$. Therefore $f \subseteq f^{-1}(V)$. Hence $f^{-1}(V)$ is semi*-α-open in X.

(vi) \Rightarrow (vii): Let $B \subseteq Y$. Then $A \subseteq B$. By assumption, $f(s^*\alpha Cl(A)) \subseteq s^*\alpha Cl(B)$. This implies that $s^*\alpha Cl(A) \subseteq f^{-1}(Cl(B))$.

(vii) \Rightarrow (viii): Let $A \subseteq X$. Then $A \subseteq B$. Therefore $f \subseteq f^{-1}(B)$. Hence $s^*\alpha Cl(f^{-1}(B)) = f^{-1}(B)$.

(viii) \Rightarrow (vi): Every semi*-α-continuous function is semi*-α-continuous.

(vii) \Rightarrow (vi): Every semi*-α-continuous function is semi*-α-continuous.

(vii) \Rightarrow (vii): Every semi*-α-continuous function is semi*-α-continuous.

Remark 3.5: In general the converse of each of the statements in Theorem 3.4 is not true.

Theorem 3.6: If the topology of the space Y is given by a basis B, then a function $f: X \to Y$ is semi*-α-continuous if and only if the inverse image of every basic open set in Y under f is semi*-α-open.

Proof: Suppose $f: X \to Y$ is semi*-α-continuous. Then inverse image of every open set in Y is semi*-α-open in X. In particular, inverse image of every basic open set in Y is semi*-α-open in X. Conversely, let V be an open set in Y. Then $f^{-1}(V)$ is semi*-α-open in X. Hence $f^{-1}(B)$ is semi*-α-open for each B. By Theorem 2.10(i), $f^{-1}(V)$ is semi*-α-open in X.

Theorem 3.7: A function $f: X \to Y$ is not semi*-α-continuous at point $x \in X$ if and only if x belongs to the semi*-α-frontier of the inverse image of some open set in Y containing $f(x)$.

Proof: Suppose f is not semi*-α-continuous at x. Then by Definition 3.1, there is an open set V in Y containing $f(x)$ such that $f(U)$ is not a subset of V for every semi*-α-open set U in X containing x. Hence $U \cap f^{-1}(V) \neq \emptyset$ for every semi*-α-open set U containing x. By Theorem 2.13(ii), we get $x \in s^*\alpha Cl(f^{-1}(V))$. Also $x \in f^{-1}(V) \subseteq s^*\alpha Cl(f^{-1}(V))$. Hence $x \in s^*\alpha Cl(f^{-1}(V))$.

25
Theorem 3.8: Let \(f : X \to \Pi X \) be semi-\(\alpha \)-continuous where \(\Pi X \) is given the product topology and \(f(x)=\pi (\pi (x)) \). Then each coordinate function \(\pi _j X \to X \) is semi-\(\alpha \)-continuous.

Proof: Let \(V \) be an open set in \(\Pi X \), Then \(f \circ \pi _j X \to X \) is semi-\(\alpha \)-continuous.

Theorem 3.9: Let \(f : X \to Y \) be defined by \(f(x)=f(x) \) and \(\Pi X \) be given the product topology. Suppose \(S \ast \alpha (O) \) is closed under finite intersection. Then \(f \) is semi-\(\alpha \)-continuous if each coordinate function \(f \circ \pi _j X \to X \) is semi-\(\alpha \)-continuous.

Proof: Let \(V \) be a basic open set in \(\Pi X \). Then \(V=\bigcap \pi _j \circ x \in V \) where each \(V \) is open in \(X \), the intersection being taken over finitely many \(\alpha \). Now \(f^{-1}(V)=f^{-1}(\pi _j \circ x \in V)=\bigcap \pi _j \circ x \in V \) is semi-\(\alpha \)-open, by hypothesis. Hence by Theorem 3.6, \(f \) is semi-\(\alpha \)-continuous.

Theorem 3.10: Let \(f : X \to Y \) be continuous and \(g : Z \to X \) be semi-\(\alpha \)-open. Let \(h = X \to Y \) be defined by \(h(x)=f(x) \), \(g(x) \) and \(Y \times Z \) be given the product topology. Then \(h \) is semi-\(\alpha \)-continuous.

Proof: By virtue of Theorem 3.6, it is sufficient to show that inverse image under \(h \) of every basic open set in \(Y \times Z \) is semi-\(\alpha \)-open in \(X \). Let \(U \times V \) be a basic open set in \(Y \times Z \). Then \(h^{-1}(U \times V)=f^{-1}(V) \times g^{-1}(U) \) is continuous, \(f^{-1}(V) \) open in \(Y \), and \(g^{-1}(U) \) is semi-\(\alpha \)-open in \(X \). By invoking Theorem 2.10(ii), we get \(h^{-1}(U \times V)=f^{-1}(V) \times g^{-1}(U) \) is semi-\(\alpha \)-open.

Remark 3.11: The above theorem is true even if \(f \) is semi-\(\alpha \)-continuous and \(g \) is continuous.

Theorem 3.12: Let \(f : X \to Y \) be semi-\(\alpha \)-continuous and \(g : Y \to Z \) be continuous. Then \(g \circ f : X \to Z \) is semi-\(\alpha \)-continuous.

Proof: Let \(V \) be an open set in \(Z \). Since \(g \) is continuous, \(g^{-1}(V) \) is open in \(X \). By semi-\(\alpha \)-continuity of \(f \), \(f^{-1}(g^{-1}(V)) \) is semi-\(\alpha \)-open in \(X \). Hence \(g \circ f \) is semi-\(\alpha \)-continuous.

Remark 3.13: Composition of two semi-\(\alpha \)-continuous functions need not be semi-\(\alpha \)-continuous.

Definition 3.14: A function \(f : X \to Y \) is called contra-semi-\(\alpha \)-continuous if \(f^{-1}(V) \) is semi-\(\alpha \)-closed in \(X \) for every open set \(V \) in \(Y \).

Theorem 3.15: For a function \(f : X \to Y \), the following are equivalent:

(i) \(f \) is contra-semi-\(\alpha \)-continuous.

(ii) For each \(x \in X \) and each closed set \(F \) in \(Y \), there exists a semi-\(\alpha \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq F \).

(iii) The inverse image of each closed set in \(Y \) is semi-\(\alpha \)-open in \(X \).

(iv) \(C^\alpha (\text{Cl}_{\alpha}(f^{-1}(V)))=C^\alpha (f^{-1}(V)) \) for every closed set \(F \) in \(Y \).

(v) \(\text{Int}^\alpha (\text{Cl}_{\alpha}(f^{-1}(V)))=\text{Int}^\alpha (f^{-1}(V)) \) for every open set \(V \) in \(Y \).

Proof: (i) \(\Rightarrow \) (ii): Let \(f : X \to Y \) be contra-semi-\(\alpha \)-continuous. Then \(x \in X \) and \(F \) is a closed set in \(Y \) containing \(f(x) \). Then \(V \subseteq f^{-1}(F) \) is an open set in \(Y \) not containing \(f(x) \). Since \(f \) is contra-semi-\(\alpha \)-continuous, \(f^{-1}(V) \) is a semi-\(\alpha \)-closed set in \(X \) not containing \(x \). That is, \(f^{-1}(F) \) is a semi-\(\alpha \)-closed set in \(X \) not containing \(x \). Therefore \(f^{-1}(V) \) is a semi-\(\alpha \)-open set in \(X \) containing \(x \) such that \(f(U) \subseteq F \).

(ii) \(\Rightarrow \) (iii): Let \(F \) be a closed set in \(Y \). Let \(x \in \text{Int}^\alpha (f^{-1}(F)) \), then \(f(x) \in F \). By (ii), there is a semi-\(\alpha \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq F \). That is, \(x \in U \subseteq f^{-1}(F) \). Therefore \(f^{-1}(F) \) is a semi-\(\alpha \)-open set in \(X \) containing \(x \).

(iii) \(\Rightarrow \) (iv): Let \(f \) be a closed set in \(Y \). By (iii), \(f^{-1}(F) \) is a semi-\(\alpha \)-open set in \(X \). By Theorem 2.11(i), \(f^{-1}(F) \) is semi-\(\alpha \)-open in \(X \).

(iv) \(\Rightarrow \) (v): If \(V \) is any open set in \(Y \), then \(Y \times V \) is closed in \(Y \). By (iv), we have \(C^\alpha (\text{Cl}_{\alpha}(f^{-1}(V)))=C^\alpha (f^{-1}(V)) \). Taking the complements, we get \(\text{Int}^\alpha (\text{Cl}_{\alpha}(f^{-1}(V)))=\text{Int}^\alpha (f^{-1}(V)) \).

(v) \(\Rightarrow \) (i): Let \(V \) be any open set in \(Y \). Then by assumption, \(\text{Int}^\alpha (\text{Cl}_{\alpha}(f^{-1}(V)))=\text{Int}^\alpha (f^{-1}(V)) \). By Theorem 2.12, \(f^{-1}(V) \) is semi-\(\alpha \)-closed.

Theorem 3.16: Every contra-semi-\(\alpha \)-continuous function is contra-semi-\(\alpha \)-continuous.

Proof: Follows from Remark 2.9.

Remark 3.17: It can be seen that the converse of the above theorem is not true.

Theorem 3.18: Every contra-semi-\(\alpha \)-continuous function is contra-semi-\(\alpha \)-continuous.

Proof: Let \(f : X \to Y \) be contra-semi-\(\alpha \)-continuous. Let \(V \) be a closed set in \(Y \). Since \(f \) is contra-semi-\(\alpha \)-continuous, \(f^{-1}(V) \) is semi-\(\alpha \)-closed in \(X \). By Remark 2.9, \(f^{-1}(V) \) is semi-\(\alpha \)-closed in \(X \). Hence \(f \) is contra-semi-\(\alpha \)-continuous.

Remark 3.19: It can be easily seen that the converse of the above theorem is not true.

Composition of two contra-semi-\(\alpha \)-continuous functions need not be contra-semi-\(\alpha \)-continuous.

4. SEMI-\(\alpha \)-IRRESOLUTE FUNCTIONS

In this section we define the semi-\(\alpha \)-irresolute and contra-semi-\(\alpha \)-irresolute functions and investigate their fundamental properties.

Definition 4.1: A function \(f : X \to Y \) is said to be semi-\(\alpha \)-irresolute at \(x \in X \) if for each semi-\(\alpha \)-open set \(V \) in \(Y \), \(f \) is a semi-\(\alpha \)-open set \(U \) in \(X \) such that \(f(U) \subseteq Y \).

Definition 4.2: A function \(f : X \to Y \) is said to be semi-\(\alpha \)-irresolute if \(f^{-1}(V) \) is semi-\(\alpha \)-open in \(X \) for every semi-\(\alpha \)-open set \(V \) in \(Y \).

Definition 4.3: A function \(f : X \to Y \) is said to be contra-semi-\(\alpha \)-irresolute if \(f^{-1}(V) \) is semi-\(\alpha \)-closed in \(X \) for every semi-\(\alpha \)-closed set \(V \) in \(Y \).
Definition 4.4: A function $f : X \to Y$ is said to be strongly semi-α-irresolute if $f^{-1}(V)$ is open in X for every semi-α-open set V in Y.

Definition 4.5: A function $f : X \to Y$ is said to be contra-
strongly semi-α-irresolute if $f^{-1}(V)$ is closed in X for every semi-
α-open set V in Y.

Theorem 4.6: Every semi-α-irresolute function is semi-α-
continuous.
Proof: Let $f : X \to Y$ be semi-α-irresolute. Let V be open in Y. Then by Theorem 2.8(ii), V is semi-α-open. Since f is semi-α-irresolute, $f^{-1}(V)$ is semi-α-open in X. Thus f is semi-α-continuous.

Theorem 4.7: Every constant function is semi-α-irresolute.
Proof: Let $f : X \to Y$ be a constant function defined by $f(x) = y_0$ for all $x \in X$, where y_0 is a fixed point in Y. Let V be a semi-α-open set in Y. Then $f^{-1}(V) = \{x \in X: f(x) \in V\}$ or $y_0 \notin V$. Thus $f^{-1}(V)$ is semi-α-open in X. Hence f is semi-α-irresolute.

Theorem 4.8: Let $f : X \to Y$ be a function. Then the following are equivalent:
(i) f is semi-α-irresolute.
(ii) f is semi-α-irresolute at each point of X.
(iii) $f^{-1}(F)$ is semi-α-closed in X for every semi-α-closed set F in Y.
(iv) $f(s*aCl(A)) \subseteq s*aCl(f(A))$ for every subset A of X.
(v) $f(s*aCl(f^{-1}(B))) \subseteq s*aCl(f(B))$ for every subset B of Y.
(vi) $\text{Int}(s*aCl(f^{-1}(F))) = \text{Int}(f^{-1}(F))$ for every semi-α-closed set F in Y.
(vii) $\text{Cl}(\text{Int}(f^{-1}(V))) = \text{Cl}(f^{-1}(V))$ for every semi-α-open set V in Y.
Proof: (i) \Rightarrow (ii): Let $f : X \to Y$ be semi-α-irresolute. Let $x \in X$ and V be a semi-α-open set in Y containing $f(x)$. Then $x \in f^{-1}(V)$. Since f is semi-α-irresolute, $U = f^{-1}(V)$ is a semi-α-
open set in X containing x such that $f(U) \subseteq V$.
(ii) \Rightarrow (i): Let $f : X \to Y$ be semi-α-irresolute at each point of X. Let V be a semi-α-open set in Y. Let $x \in f^{-1}(V)$. Then V is a semi-α-open set in Y containing $f(x)$. By (ii), there is a semi-α-open set U in X containing x such that $x \in U \subseteq V$. Therefore $U \subseteq \text{Cl}(f^{-1}(V))$. Hence $f^{-1}(V) = U \cup \{x \in X : f^{-1}(V)\}$. By Theorem 2.10(i), $f^{-1}(V)$ is semi-α-open in X.
(iii) \Rightarrow (i): Let F be a semi-α-closed set in Y. Then $V = Y \setminus F$ is semi-α-open in Y. Then $f^{-1}(V)$ is semi-α-open in X. Therefore $f^{-1}(V) = f^{-1}(V) \setminus Y \setminus F = f^{-1}(V)$ is semi-α-closed.
(iv) \Rightarrow (iii): Let $A \subseteq X$. Let f be a semi-α-closed set containing A. This implies that $s*aCl(A) \subseteq f^{-1}(F)$ and hence $s*aCl(f(A)) \subseteq f(F)$. Therefore $f(s*aCl(f(A))) \subseteq f(A)$.
(v) \Rightarrow (iv): Let BGY and let $A \subseteq f(A)$. By assumption, $f(s*aCl(A)) \subseteq s*aCl(f(A)) \subseteq s*aCl(B)$. This implies that $s*aCl(f^{-1}(F)) \subseteq s*aCl(A)$. Hence $s*aCl(f^{-1}(F)) = f^{-1}(s*aCl(B))$.
(vi) \Rightarrow (v): Let f be semi-α-closed in Y. Then $s*aCl(f) = F$. Therefore $f^{-1}(V) = f^{-1}(V) \subseteq f^{-1}(F)$, Hence $s*aCl(f^{-1}(F)) = f^{-1}(V)$. By Theorem 2.13(i), $f^{-1}(F)$ is semi-α-closed.
(vii) \Rightarrow (vi): The equivalence of (v) and (vi) can be proved by taking the complements.
(viii) \Rightarrow (i): Follows from Theorem 4.2.
(ix) \Rightarrow (ii): Follows from Theorem 2.11.

Theorem 4.9: Let $f : X \to Y$ be a function. Then f is not semi-α-irresolute at a point x in X if and only if x belongs to the semi-α-frontier of the inverse image of some semi-α-open set in Y containing $f(x)$.
Proof: Suppose f is not semi-α-irresolute at x. Then by Definition 4.1, there is a semi-α-open set V in Y containing $f(x)$ such that $f(U) \subseteq V$ is a semi-α-open set U in X containing x. Hence $f^{-1}(U) \cap V \neq \emptyset$ for every semi-α-open set U in X containing x. Thus $x \in f^{-1}(V) \subseteq s*aCl(f^{-1}(V))$. Hence by Theorem 2.15, $x \notin s*aCl(f^{-1}(V))$. On the other hand, let f be semi-α-irresolute at x. Let V be a semi-α-open set in Y containing $f(x)$. Then there is a semi-α-open set U in X containing x such that $f(x) \in f(U) \subseteq V$. Therefore $U \subseteq f^{-1}(V)$. Hence $x \notin s*aCl(f^{-1}(V))$. Therefore by Definition 2.14, $x \notin s*aCl(f^{-1}(V))$ for every open set V containing $f(x)$.

Theorem 4.10: Every contra-semi-α-irresolute function is contra-semi-α-continuous.
Proof: Let $f : X \to Y$ be a contra-semi-α-irresolute function. Let V be an open set in Y. Then by Theorem 2.8(ii), V is semi-α-open in Y. Since f is contra-semi-α-irresolute, $f^{-1}(V)$ is semi-α-closed in X. Hence f is contra-semi-α-continuous.

Theorem 4.11: For a function $f : X \to Y$, the following are equivalent:
(i) f is contra-semi-α-irresolute.
(ii) The inverse image of each semi-α-closed set in Y is semi-
α-open in X.
(iii) For each $x \in X$ and each semi-α-closed set F in Y with $f(x) \in F$, there exists a semi-α-open set U in X such that $x \in U \subseteq F$.
(iv) $f(s*aCl(f^{-1}(F))) = f(s*aCl(f^{-1}(F)))$ for every semi-α-
open set F in Y.
(v) $f(s*aCl(f^{-1}(V))) = f(s*aCl(f^{-1}(V)))$ for every semi-α-
open set V in Y.
Proof: (i) \Rightarrow (ii): Let F be a semi-α-closed set in Y. Then $Y \setminus F$ is semi-α-open in Y. Since f is contra-semi-α-irresolute, $f^{-1}(Y \setminus F) = X \setminus f^{-1}(F)$ is semi-α-closed in X.
(ii) \Rightarrow (iii): Let F be a semi-α-closed set in Y containing $f(x)$. Then $f^{-1}(F)$ is a semi-α-open set containing x such that $f(x) \not\subseteq F$.
(iii) \Rightarrow (iv): Let f be a semi-α-closed set in Y and $x \in f^{-1}(F)$, then $f(x) \in F$. By assumption, there is a semi-α-open set U in X containing x such that $x \in U \subseteq F$ which implies that $x \in U \subseteq f^{-1}(F)$. This follows that $f^{-1}(F) = U \cup \{x \in U : f^{-1}(F)\}$. By Theorem 2.10(i), $f^{-1}(F)$ is semi-α-
open in X. By Theorem 2.11, $f(s*aCl(f^{-1}(F))) = f(s*aCl(f^{-1}(F)))$.
(iv) \Rightarrow (v): Let f be a semi-α-closed set in Y. Then $Y \setminus f$ is semi-α-closed in Y. By assumption, $f(s*aCl(f^{-1}(V))) = f(s*aCl(f^{-1}(V)))$. Taking the complements we get, $f(s*aCl(f^{-1}(V))) = f(s*aCl(f^{-1}(V)))$.
(v) \Rightarrow (i): Let V be any semi-α-open set in Y. Then by assumption, $f(s*aCl(f^{-1}(V))) = f(s*aCl(f^{-1}(V)))$. By Theorem 2.12, $f^{-1}(V)$ is semi-α-closed in X.

27
Theorem 4.12: (i) Every strongly semi*-u-irresolute function is semi*-u-irresolute and hence semi*-a-continuous.
(ii) Every semi a*-continuous function is strongly semi*-u-irresolute.

Proof: Let \(f: X \to Y \) be a semi*-a-open function. Then \(f^{-1}(V) \) is semi*-a-open for every semi*-a-open set \(V \subseteq Y \). Hence \(f^{-1}(V) \) is semi*-u-open. Therefore \(f \) is semi*-u-irresolute. Hence by Theorem 4.6, \(f \) is semi*-a-continuous.

Theorem 4.13: Every constant function is strongly semi*-a-irresolute.

Proof: Let \(f: X \to Y \) be a constant function defined by \(f(x) = x_0 \) for all \(x \in X \), where \(x_0 \) is a fixed point in \(Y \). Let \(V \subseteq Y \) be a semi*-a-open set in \(Y \). Then \(f^{-1}(V) = \emptyset \) or \(\emptyset \) according as \(x_0 \notin V \) or \(x_0 \in V \). Thus \(f^{-1}(V) \) is open in \(X \). Hence \(f \) is strongly semi*-a-irresolute.

Theorem 4.14: Let \(f: X \to Y \) be a function. Then the following are equivalent:
(i) \(f \) is strongly semi*-u-irresolute.
(ii) \(f^{-1}(F) \) is closed in \(X \) for every semi*-a-closed set \(F \) in \(Y \).
(iii) \(f(\text{Cl}(A)) \subseteq \text{s*aCl}(f(A)) \) for every subset \(A \) of \(X \).
(iv) \(f^{-1}(f(B)) \subseteq f^{-1}(s*aCl(B)) \) for every subset \(B \) of \(Y \).

Proof: (i) \(\Rightarrow \) (ii): Let \(f \) be a semi*-a-closed set in \(X \). Then \(f^{-1}(V) \) is semi*-a-open. Therefore \(f^{-1}(V) \) is open. Hence \(f \) is semi*-u-irresolute.
(ii) \(\Rightarrow \) (i): Let \(A \subseteq X \). Let \(f \) be a semi*-u-irresolute set containing \(A \). Then by (ii), \(f^{-1}(F) \) is a closed set containing \(A \). This implies that \(Cl(A) \subseteq f^{-1}(F) \) and hence \(f(Cl(A)) \subseteq f(F) \). Therefore \(f(Cl(A)) \subseteq s*aCl(f(A)) \).

(iii) \(\Rightarrow \) (iv): Let \(B \subseteq Y \) and let \(A = f^{-1}(B) \). By assumption, \((Cl(A)) \subseteq s*aCl(f(A)) \subseteq s*aCl(B) \). This implies that \(Cl(A) \subseteq f^{-1}(s*aCl(B)) \).
(iv) \(\Rightarrow \) (ii): Let \(f \) be semi*-u-closed in \(X \). Then by Theorem 2.13(ii), \(s*aCl(\text{Cl}(A))=f^{-1}(s*aCl(B)) \). This proves (iv).

(iii) \(\Rightarrow \) (v): Let \(f \) be a semi*-u-closed set in \(X \). Then \(\text{Cl}(f^{-1}(Y)) \subseteq Y \). By assumption, \(f^{-1}(Y) \subseteq f^{-1}(U) \) is semi*-a-closed in \(X \). Hence \(f^{-1}(U) \) is open. This proves (ii).

Theorem 5.1: A function \(f: X \to Y \) is said to be semi*-a-open if \(f(U) \) is semi*-a-open in \(Y \) for every open set \(U \) in \(X \).

Theorem 5.2: A function \(f: X \to Y \) is said to be contra-semi*-a-open if \(f(U) \) is semi*-a-closed in \(Y \) for every open set \(U \) in \(X \).

Theorem 5.3: A function \(f: X \to Y \) is said to be pre-semi*-a-open if \(f(U) \) is semi*-a-closed in \(Y \) for every semi*-a-open set \(U \) in \(X \).

Theorem 5.4: A function \(f: X \to Y \) is said to be contra-pre-semi*-a-open if \(f(U) \) is semi*-a-closed in \(Y \) for every semi*-a-open set \(U \) in \(X \).

Theorem 5.5: A function \(f: X \to Y \) is said to be semi*-a-closed if \(f(U) \) is semi*-a-closed in \(Y \) for every open set \(U \) in \(X \).

Theorem 5.6: A function \(f: X \to Y \) is said to be contra-semi*-a-closed if \(f(U) \) is semi*-a-closed in \(Y \) for every semi*-a-open set \(U \) in \(X \).

Theorem 5.7: A function \(f: X \to Y \) is said to be pre-semi*-a-closed if \(f(U) \) is semi*-a-closed in \(Y \) for every semi*-a-closed set \(U \) in \(X \).

Theorem 5.8: A function \(f: X \to Y \) is said to be contra-pre-semi*-a-closed if \(f(U) \) is semi*-a-closed in \(Y \) for every semi*-a-closed set \(U \) in \(X \).

Theorem 5.9: A bijection \(f: X \to Y \) is called a semi*-a-homeomorphism if \(f \) is both semi*-a-irresolute and pre-semi*-a-open. The set of all semi*-a-homeomorphisms of \((X, \tau) \) into itself is denoted by \(\text{s*aH}(X, \tau) \).

Theorem 5.10: A function \(f: X \to Y \) is said to be semi*-a-totally continuous if \(f^{-1}(V) \) is clopen in \(X \) for every semi*-a-open set \(V \) in \(Y \).

Theorem 5.11: A function \(f: X \to Y \) is said to be totally semi*-a-continuous if \(f^{-1}(V) \) is semi*-a-regular in \(X \) for every open set \(V \) in \(Y \).

Theorem 5.12: (i) Every pre-semi*-a-open function is semi*-a-open.
(ii) Every semi*-a-open function is semi*-a-continuous.
(iii) Every contra-pre-semi*-a-open function is contra-semi*-a-continuous.
(iv) Every pre-semi*-a-closed function is semi*-a-closed.
(v) Every contra-pre-semi*-a-closed function is contra-semi*-a-closed.
Proof: Follows from definitions, Theorem 2.8 and Remark 2.9.

Theorem 5.13: Let \(f : X \rightarrow Y \) and be \(g : Y \rightarrow Z \) be functions. Then (i) \(g \circ f \) is pre-semi\(^* \alpha \)-open if both \(f \) and \(g \) are pre-semi\(^* \alpha \)-open.
(ii) \(g \circ f \) is semi\(^* \alpha \)-open if \(f \) is semi\(^* \alpha \)-open and \(g \) is pre-semi\(^* \alpha \)-open.
(iii) \(g \circ f \) is pre-semi\(^* \alpha \)-closed if both \(f \) and \(g \) are pre-semi\(^* \alpha \)-closed.
(iv) \(g \circ f \) is semi\(^* \alpha \)-closed if both \(f \) is semi\(^* \alpha \)-closed and \(g \) is pre-semi\(^* \alpha \)-closed.

Proof: Follows from definitions.

Theorem 5.14: Let \(f : X \rightarrow Y \) be a function where \(X \) is an Alexandroff space and \(Y \) is any topological space. Then the following are equivalent:
(i) \(f \) is semi\(^* \alpha \)-totally continuous.
(ii) For each \(x \in X \) and each semi\(^* \alpha \)-open set \(U \in Y \) with \(f(x) \in U \), there exists a clopen set \(V \) in \(X \) such that \(x \in V \) and \(f(V) \subseteq U \).

Proof: (i)\(\Rightarrow \)(ii): Suppose \(f : X \rightarrow Y \) is semi\(^* \alpha \)-totally continuous. Let \(x \in X \) and let \(V \) be a semi\(^* \alpha \)-open set containing \(f(x) \). Then \(V = f^{-1}(V) \) is a clopen set in \(X \) containing \(x \) and hence \(f(U) \subseteq V \).

(ii)\(\Rightarrow \)(i): Let \(V \) be a semi\(^* \alpha \)-open set in \(Y \). Let \(x \in f^{-1}(V) \). Then \(f(x) \) lies in \(V \) and hence \(f^{-1}(V) \subseteq U \). Therefore \(f^{-1}(V) \) is open.

Theorem 5.15: A function \(f : X \rightarrow Y \) is semi\(^* \alpha \)-totally continuous if and only if \(f^{-1}(F) \) is clopen in \(X \) for every semi\(^* \alpha \)-closed set \(F \) in \(Y \).

Proof: Follows from definitions.

Theorem 5.16: A function \(f : X \rightarrow Y \) is totally semi\(^* \alpha \)-continuous if and only if \(f \) is both semi\(^* \alpha \)-continuous and contra-semi\(^* \alpha \)-continuous.

Proof: Follows from definitions.

Theorem 5.17: A function \(f : X \rightarrow Y \) is semi\(^* \alpha \)-totally continuous if and only if \(f \) is both strongly semi\(^* \alpha \)-irresolute and contra-strongly semi\(^* \alpha \)-irresolute.

Proof: Follows from definitions.

Theorem 5.18: Let \(f : X \rightarrow Y \) be semi\(^* \alpha \)-totally continuous and \(A \) is a subset of \(Y \). Then the restriction \(f_A : A \rightarrow Y \) is semi\(^* \alpha \)-totally continuous.

Proof: Let \(V \) be a semi\(^* \alpha \)-open set in \(Y \). Then \(f^{-1}(V) \) is clopen in \(X \) and hence \(f(A \cap f^{-1}(V)) = A \cap f^{-1}(V) \) is clopen in \(A \). Hence the theorem follows.

Theorem 5.19: Let \(f : X \rightarrow Y \) be a bijection. Then the following are equivalent: (i) \(f \) is semi\(^* \alpha \)-irresolute.
(ii) \(f^{-1} \) is pre-semi\(^* \alpha \)-open.
(iii) \(f^{-1} \) is pre-semi\(^* \alpha \)-closed.

Proof: Follows from definitions.

Theorem 5.20: A bijection \(f : X \rightarrow Y \) is a semi\(^* \alpha \)-homeomorphism if and only if \(f \) and \(f^{-1} \) are semi\(^* \alpha \)-irresolute.

Proof: Follows from definitions.

Theorem 5.21: (i) The composition of two semi\(^* \alpha \)-homeomorphisms is a semi\(^* \alpha \)-homeomorphism
(ii) The inverse of a semi\(^* \alpha \)-homeomorphism is also a semi\(^* \alpha \)-homeomorphism.

Proof: (i) Let \(f : X \rightarrow Y \) and \(g : Y \rightarrow Z \) be semi\(^* \alpha \)-homeomorphisms. By Theorem 4.16 and theorem 5.13(i), \(g \circ f \) is a semi\(^* \alpha \)-homeomorphism.
(ii) Let \(f : X \rightarrow Y \) be a semi\(^* \alpha \)-homeomorphism. Then by Theorem 4.16(ii) and by Theorem 5.20, \(f^{-1} : Y \rightarrow X \) is also semi\(^* \alpha \)-homeomorphism.

Theorem 5.22: If \((X, \tau) \) is a topological space, then the set \(s^* \alpha H(X, \tau) \) of all semi\(^* \alpha \)-homeomorphisms of \((X, \tau) \) into itself forms a group.

Proof: Since the identity mapping \(I \) on \(X \) is a semi\(^* \alpha \)-homeomorphism, \(I \in s^* \alpha H(X, \tau) \) and hence \(s^* \alpha H(X, \tau) \) is non-empty and the theorem follows from Theorem 5.21.

6. REFERENCES