
International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.9, October 2014

8

From Idea to Reality: Google File System

Aditya Kamath

MIT College of Engineering
Paud Road, Kothrud

Pune-411038.

Archit Jaiswal
MIT College of Engineering

Paud Road, Kothrud
Pune-411038.

Kranti Dive
MIT College of Engineering

Paud Road, Kothrud
Pune-411038.

ABSTRACT

In the recent times, there has been an exposure to distributed

systems that exemplify some degree of transparency

predominantly through distributed file systems. Any user

would like the look and feel of remote files just as the local

ones. The Google File System implements such features.

Instrumenting a master/slave pattern, the GFS provides

appending data, taking snapshots and checkpoints which in

various ways help in handling critical situations and failures.

In addition, duplication of chunk servers allows faster access

and retrieval of requested data.

General Terms

Append, Chunk servers, snapshots, and master/slave.

Keywords

GFS, chunk server, Meta Data.

1. INTRODUCTION
A Distributed File System is a file system that merges the file

systems of individual machines in network. Files are stored

(distributed) in different machines in a computer network but

are accessible from all machines. Another name for

Distributed file system is network file system. The Andrew

File System [AFS], which has a heavy client cache and uses

Kerberos for authentication & the Apple Filing Protocol by

Apple Computer are some examples of various file systems.

Developing an effective design is an important skill in

distributed systems, requiring an awareness of the different

technological choices and a thorough understanding of the

requirements of the relevant application domain. The eventual

goal is to come up with a consistent distributed system

architecture incorporating a consistent and complete set of

design choices able to address the overall requirements. This

is a demanding task and one that requires considerable

experience with distributed systems development. Taking into

consideration these essential requirements, the Internet search

giant Google implemented their own file system popularly

known as the GOOGLE FILE SYSTEM [GFS]. This paper

shall cover a deep insight of the GFS.

2. LITERATURE REVIEW
A general question that would strike one’s mind is that what

motivated and inspired Google to develop and implement its

own file system? The reason is simple. Inside the Google’s

world of database, nothing is small. As a consequence of the

services Google provides, Google faces the requirement to

manage large amounts of data – including but not being

limited to the crawled web content to be processed by the

indexing system. So the block size of general file system was

needed to be re-examined for their file system [3].

Google’s operation of data management chiefly appends new

data rather than over-writing existing data. Append allows

clients to add information to an existing file without altering

the previously written data. The web behemoth Google is

continuously pioneering various applications leading to

various challenges that they have to face. There are many

different components that are required for these applications

and therefore it is more flexible for Google if the file system

and applications are co-designed. Co-designing helps in

handling the components by the file system itself which

increases the overall efficiency. Google implemented their file

system, Google File System (GFS), handling these problems

that serve their environment and application, along with

general distributed file system features like scaling, security,

performance, reliability, etc. [3].

GFS runs reliably on the physical architecture -that is a very

large inexpensive system built from commodity hardware that

might fail anytime [2]. It is the duty of GFS to constantly

monitor itself and detect, tolerate, and recover promptly from

component failures on a routine basis [5]. One of the

assumptions made in the design of GFS is to consider disk

faults, machine faults as well as network faults as being the

norm rather than the exception [8]. Large streaming reads and

small random reads are the two types of workloads the GFS

manages. Performance-conscious applications often batch and

sort their small reads to advance steadily through the file

rather than go back and forth [5]. In order to meet the goals of

high distribution, tolerance to high failure rates, fast-path

appends and huge files the designers provided their own API

to the GFS file system. In addition to read, write, open, and

create, close, delete operations, the API offers two more

specialized operations, snapshot and record append. The

former operation provides an efficient mechanism to make a

copy of a particular file or directory tree structure. The latter

supports the common access pattern whereby multiple clients

carry out concurrent appends to a given file [2]. Pathnames

are used to identify the various files that are organized

hierarchically in the directories.

3. INSIDE THE GOOGLE FILE SYSTEM
GFS is designed as a distributed file system to be run on

clusters up to thousands of machines. A cluster is simply a

network of computers with each cluster containing hundreds

or even thousands of machines. Multiple GFS clusters are

currently deployed for different purposes. The largest ones

have over 1000 storage nodes, over 300 TB of disk storage,

and are heavily accessed by hundreds of clients on distinct

machines on a continuous basis. A GFS cluster is of a

master/slave pattern which consists of a single master and

multiple chunk servers (slave machines where all the data is

stored) and is accessed by multiple clients executing

concurrently. All data is replicated into a number of

independent chunk servers on the data nodes for the purpose

of data protection from events such as software or hardware

failures, the default being three. These replicas are stored in

different racks and their location is stored by the master.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.9, October 2014

9

Now let’s learn the basic mechanism of this superlative file

system. To start with, files are split into number of fixed size

[64 MB] chunks. A file is formed by at least one chunk and

there is always a scope of allocating new chunks in case of

file expansion. The role of the master is to manage metadata

about the file system defining the namespace for files, access

control information, chunk version numbers and the mapping

of each particular file to the associated set of chunks [2]. The

metadata of a chunk is as small as 64 bytes and therefore all

the metadata is stored in the memory by the master. This

helps to ease the process of various data structures and

algorithms and ensures great performance. Handling the

system-wide activities such as chunk lease management,

garbage collection of orphaned chunks, and chunk migration

between chunk servers is also the job of the master. Clients

never read and write file data through the master. Instead, a

client asks the master which chunk servers it should contact. It

caches this information for a limited time and interacts with

the chunk servers directly for many subsequent operations.

This minimization of the involvement of the master helps to

avoid bottleneck condition caused by the master. The master

does not store the persistent information of which chunk

servers contain the replica of a given chunk. Instead all

information is queried from the chunk servers during the

startup which ensures frequent updating of location keeping it

in sync. When clients need to access data starting from a

particular byte offset within a file, the GFS client library will

first translate this to a file name and chunk index pair. Then, it

sends the master a request containing the file name and chunk

index. The master replies with the appropriate chunk identifier

and location of the replicas, and this information is cached in

the client and used subsequently to access the data to one of

the replicated chunk servers [2]. A request is then sent to the

nearest replica that specifies the chunk handle and a byte

range within that chunk. Further interaction of the client-

master is avoided of the same chunk until the cached

information is expired or the file is reopened. The next section

shall discuss the dynamics and the working of the GFS.

Figure 1: The GFS architecture

4. PIVOTAL OPERATIONS OF GFS
Given below is a quick overview of the working of key

operations in GFS- read, write and append.

4.1 Reading a Chunk
The GFS client library is used by the clients in order to read a

chunk from a file. This library then translates the request from

(filename, byte range) to (filename, chunk index) and sends it

to the master. The master, provided the file name and the

offset within the file, looks up the identifiers of affected

chunks in the metadata database and determines all chunk

servers [primary-where original data is stored, as well as

secondary-where the replica is stored][8] suitable to read

from. The client preferably chooses the nearest chunk server

and then this chunk server performs checksums (in order to

detect and prevent data corruption) on the data and then

transmits the requested data to the client. If a failure occurs

during checksum validation, then the chunk servers reports to

the master for a possible data corruption and returns an

appropriate failure to the client [8].

4.2 Writing to a Chunk [Modifying]
The important difference between read and write operation is

that while reading, the client reads only one chunk out of the

other replicas, while in writing the client has to write in both

the original as well as the replicas. In order to write to a

particular file, the application has to generate a request to the

client for permission to write. Once again utilizing the GFS

library, it translates request from (filename, data) to (filename,

chunk index), and sends it to master. If there are any other

applications trying to alter the same chunk/s, the master then

has to synchronize concurrent execution. The master then

responds with the chunk handle and the replica (primary and

secondary) locations to the client [3]. The client then sends a

write command to the primary which first determines serial

order for data instances stored in its buffer and writes the

instances in that order to the chunk [3]. The signal order is

forwarded to the other replicas commanding them to perform

the write operation. This is carried out in a pipelined fashion.

Whenever a chunk has been modified, its version number is

incremented. By versioning each chunk, replicas that have

missed certain modifications, [also known as stale replicas]

and thus provide outdated data, can be detected by the master

and appropriate action (e.g. re-replication) can be taken. If all

steps of the modification procedure have been completed

successfully, the requests are acknowledged [6] and success is

reported to the client [7]. In order to provide updating of data,

whenever a new client requests a read operation on a chunk

that is currently being modified, the master pipes the request

to the primary copy.

4.3 Record Append Operation
A unique feature that differentiates GFS from other

distributed file systems is the record append operation. For

better performance, this operation is optimized in a special

manner by the GFS. While trying to minimize locking, GFS

ensures that no race condition occurs between two concurrent

append operations, which is commonly encountered when two

applications try to append a write-shared file opened with

O_APPEND on a POSIX-compliant file system [8].

Record Append is a kind of mutation that changes the contents

of metadata of a chunk. When an application tries to append

data on a chunk by sending a request to the client, the client

pushes the data to all replicas of the last chunk of the file [5].

When the client forwards the request to the master, the

primary checks whether the appending the record to the

existing chunk would increase the size of the chunk more than

its limit [maximum size of a chunk is 64 MB]. If this happens,

then it pads the chunk to the maximum limit, commands the

secondary to do the same and requests the clients to try to

append to the next chunk. If the record fits within the

maximum size, the primary appends the data to its replica,

tells the secondary to write the data at the exact offset where it

has, and finally replies success to the client [5]. If failure

occurs while appending into any of the replicas, then the

client retries the operation. This is the reason why replicas of

the same chunk might contain duplicates of the same record or

even a part of it. Thus it can be said that the append operation

has At least One semantics.

International Journal of Computer Applications (0975 – 8887)

Volume 103 – No.9, October 2014

10

4.4 Checkpoints & Snapshot
The structure of GFS is centralized and hence the master can

prove to be a single point of failure. In order to ready restore

and resume functioning during such a failure, the operation

log is replicated over several remote machines. The master

recovers its file system state by replaying the operation log,

also known as the transaction log. An operation log contains

a persistent record of metadata and also serves as a logical

time line that defines the order of concurrent operations. It is

an important aspect since every file as well as chunk and their

versions are uniquely and externally identified by the logical

time in which they were created. Checkpoints are created by

the master when the log grows beyond a specific size. These

checkpoints help in faster recovery as the master loads only

the latest checkpoint from the local disk and replays only a

limited number of log records after that. Hence older

checkpoints are usually deleted but still some of them are

stored in case of catastrophic conditions.

There is difference between checkpoints and another unusual

operation that the GFS offers, i.e. snapshot. This feature

provides an efficient mechanism which enables to make a

copy of a file or a directory tree structure instantaneously

without interrupting any currently executing mutations. This

helps to branch two versions of the same data. When the

master receives a snapshot request, it first revokes any

outstanding leases on the chunks in the files it is about to

snapshot. This ensures that any subsequent writes to these

chunks will require an interaction with the master to find the

lease holder [5]. The master logs the operations to the disk as

soon as the leases are revoked or expired. It then stores the

new log record in the memory and the newly created snapshot

files point to the same chunk as the source file [5].

4.5 Handling Failure [Fault Tolerance]
What does one first do to learn the meaning of a new word, an

answer to a question that has a variety of opinions? GOOGLE

it. How does Google manage to handle such a large database

and provide with the best answers to all the queries? There are

thousands or maybe lakhs of people all around the world who

‘Google’ every second. The GFS has to handle their queries

and this has to be very quick. Google distributes dozens of

copies of web into multiple clusters all over the world. It is a

known fact that the Google File System is built and

completely relies on its inexpensive commodity hardware.

Hence, dealing with frequent failures such as application

bugs, OS bugs, human errors, and the failure of disks,

memory, connectors, networking, and power supplies is one

of the greatest challenges for GFS. Monitoring, error detection

and quick recovery become the key factors of fault tolerance.

The master’s role in restoring the data are as follows:

1. Replicate its own state in different machines across

different clusters just in case the master goes down.

2. Keeping a transaction log of the metadata.

3. Periodic checkpoints of the log and its replication

on different racks of machines.

Chunk replicas are also implemented in case one of the replica

goes down [3].

5. CONCLUSION
In the early 21st century, there were a number of search

engines like Yahoo which were being used all over the world.

This paper gives an answer as to how the Google search

engine was able to stand tall against its rivals and later on

become the most widely used search engine throughout the

globe. The ever growing use of technology in people’s daily

lives has bought the need to manage big data efficiently.

Google has put efforts to provide a distributed system also

allowing them to scale up their system when more data is to

be stored. Large scale data processing along with the ability to

cover up during critical situations and hardware failure, the

GFS is the reason for the success of Google and its other

services.

6. REFERENCES
[1] Distributed File System Design By Paul Krzyzanowski,

Rutgers University – CS 417: Distributed Systems.

[2] Distributed Systems.Concepts & Design by George

Coulouris, Jean Dollimore, Tim Kindberg and Gordon

Blair (ch. 21).

[3] Survey on Google File System by Naushad UzZaman,

Survey Paper for CSC 456 (Operating Systems),

University of Rochester, Fall 2007 Instructed By:

Sandhya Dwarkadas.

[4] Paper Trial: Computer Science, Distributed Algorithms

& Databases [The Google File System]. <the-paper-

trial.org/blog/the-google-file-system/>

[5] [Ghemawat, Gobioff and Leung 2003] Sanjay

Ghemawat, Howard Gobioff and Shun-Tak Leung,

Google File System, ACM SIGOPS Operating Systems

Review, 2003.

[6] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C.

Beame, M. Eisler, D. Noveck, Network File System

(NFS) version 4 Protocol, RFC 3530.

[7] J.H. Morris, M. Satyanarayanan, M.H. Conner, J.H.

Howard, D.S.H. Rosenthal, F.D. Smith, Andrew, a

Distributed Computing Environment, Communications

of the ACM 29, 03/1986.

[8] The Google File System and its Applications in

MapReduce-Johannes Passing, Seminar Software

Design, Winter term 2007/08, Hasso Plattner Institute for

Software Systems Engineering.

IJCATM : www.ijcaonline.org

