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ABSTRACT 

In the course of less than a decade, Graphics Processing Units 

(GPUs) have evolved from narrowly scoped application 

specific accelerators to general-purpose parallel machines 

capable of accommodating an ever-growing set of algorithms. 

At the same time, programming GPUs appears to have 

become trapped around an attractor characterised by ad-hoc 

practices, non-portable implementations and inexact, 

uninformative performance reporting. The purpose of this 

paper is two-fold, on one hand pursuing an in-depth look at 

GPU hardware and its characteristics, and on the other 

demonstrating that portable, generic, mathematically 

grounded programming of these machines is possible and 

desirable. An agent-based meta-heuristic, the Max-Min Ant 

System (MMAS), provides the context. The major 

contributions brought about by this article are the following: 

(1) an optimal, portable, generic-algorithm based MMAS 

implementation is derived; (2) an in-depth analysis of AMD's 

Graphics Core Next (GCN) GPU and the C++ AMP 

programming model is supplied; (3) a more robust approach 

to performance reporting is presented; (4) novel techniques 

for raising the abstraction level without sacrificing 

performance are employed. This represents the first 

implementation of an algorithm from the Ant Colony 

Optimisation (ACO) family using C++ AMP, whilst at the 

same time being one of the first uses of the latter 

programming environment.   
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Keywords 
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1. INTRODUCTION 
Combinatorial optimisation [1] is one of the key pillars of 

modern quantitative research, being present in some form or 

another numerous fields and having become one of the staples 

of robust scientific analysis in spite of its youth [2]. It is 

therefore unfortunate, that the computational demands 

typically encountered in the field are extensive and expansive, 

with the limit being represented by NP-completeness [3]. Two 

developments have sprung forth from this reality. First, 

researchers have moved from exact algorithms to 

approximating ones, with meta-heuristics being a noteworthy 

example in recent years. Second, the need for additional 

computational performance is never exhausted, with ever 

more intricate problems arising and requiring ever more 

processor cycles. Given the above, we can establish the broad 

context for our work, which focuses on accelerating a 

particular combinatorial, optimisation-centric meta-heuristic, 

by levering the GPU. 

The Max-Min Ant System (MMAS) [4]–[7], is part of the Ant 

Colony Optimisation (ACO) [8] family of agent-based meta-

heuristics. This class of algorithms uses simple agents, which 

individually traverse some search space and then indirectly 

exchange information through a shared fabric symbolically 

associated with the process of pheromone deposition included 

in the foraging behaviour of real-world ants. The latter steps 

act as a means of guiding the search towards potentially 

interesting optima, since the stochastic process that drives the 

choice of vertex traversal order is biased by the accumulation 

of pheromones. A recently published survey [9] shows that 

ACO algorithms have wide applicability in combinatorial 

optimisation. Out of all developments of ACO, MMAS 

appears to be the most robust and successful. Furthermore, 

literature about Graphics Processing Unit (GPU) based 

acceleration of MMAS is rather recent, thus providing us with 

insight into the state-of-the-art. The GPU has drawn notable 

attention in the scientific community, bringing the promise of 

extremely high performance at an accessible price. 

Frequently, the literature quotes orders of magnitude 

improvements. We, and by extension this paper, take a more 

cautious look, drawing from the school of thought represented 

by [10], [11], and therefore elect to focus on a challenging test 

scenario and on accurate and extensive reporting of 

performance. 

We initially detail the MMAS algorithm and focus on its 

application to the Travelling Salesman Problem (TSP). We 

then proceed to conduct an in-depth analysis of an advanced 

GPU architecture, the AMD Graphics Core Next (GCN) chip 

[12]. The C++ AMP [13] augmentation of the C++ language, 

which we have chosen as GPU programming environment, is 

described. Thus, it becomes possible to proceed with 

conducting an in-depth performance analysis in tandem with a 

description of our software architecture choices and their 

motivation. We demonstrate performance that is both much 

higher than the one presented in previous works and portable 

across GPUs.  

2. THE MAX-MIN ANT SYSTEM AND 

ITS APPLICATION TO THE TSP 
For self-containment of this work, we will detail the MMAS 

algorithm, as described in [6]. Whilst we will return to this 

point later on, we clarify ab initio that our implementation 

follows the canonical form laid out in the aforementioned 

reference, to ensure comparability with reference works in the 

field. MMAS came as an improvement upon the first ACO 

algorithm, the Ant System (AS) [8]. AS was introduced as a 

solver for the Travelling Salesman Problem (TSP) [14], one of 
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the most widely studied and accepted test-beds in 

combinatorial optimisation; results for larger instances were 

unsatisfactory, whilst performance requirements were high. 

MMAS proved significantly more robust, augmenting the 

exploitation of the search history phase to ensure more 

resilience in the face of early convergence to local optima. An 

ACO algorithm, and by extension MMAS, is an agent-based 

approach which relies on simplistic agents (ants) for 

conducting an oriented search through the solution space 

associated with a particular combinatorial optimisation 

problem. Ants are myopic in that they have no look ahead 

possibility, choosing the order of traversal based on 

realizations of a stochastic process. Once solutions are 

constructed, the option exists to rely on a separate 

optimisation algorithm to tune the resulting tours further. 

Irrespective of whether or not the “daemon” option is acted 

upon, an iteration concludes with an indirectly cooperative 

process that sees the ants updating a globally visible 

pheromone “map”. Pheromone values are adjusted based on 

solution quality, and are subsequently factored in the agents' 

choices in following iterations. This ensures the stochastic 

choice is biased towards particular components which are 

encountered in “better” solutions, where better is a problem 

dependent metric. Figure 1 schematically reproduces the 

algorithmic flow: 

Figure 1. Algorithmic flow for the ACO algorithms 

A TSP is fully defined by a complete, directed weighted 

graph           with           the set of vertices, 

                    the set of edges and        a 

weighing function that maps from the set of edges into a set of 

positive values  . It is usually the case that      , however 

we find this restriction unnecessary, as, in general, it suffices 

if   has a pseudo additive semi-group structure and allows for 

weak ordering of its elements. The optimisation problem, in 

this particular context, is to find the minimum weight 

Hamiltonian cycle attached to  , or, more intuitively stated, 

the path that uniquely includes all vertices in the graph and 

minimizes the sum of attached weights. There are two typical 

cases for the TSP, the symmetrical one (STSP), where 

               , and the asymmetrical one (ATSP), where 

        for some      . We shall focus on the STSP case. 

The solution to an STSP is expressible as a vector     , for 

which any two subsequent components form an edge in a 

complete cycle through the graph. Then, in an iteration  , the 

pheromone “map” contains a quantity       
 which represents 

the intensity of the pheromone associated with a particular 

edge. This value is adjusted at the end of each iteration. The 

algorithm proceeds as follows: 

1. construct_tour phase: a number     of ants are 

randomly assigned a starting node from  ; in 

        construction steps, each ant builds a 

cycle through the graph, by choosing the next vertex 

to move to, on the basis of a discrete probability 

distribution: 
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The feasible set is the set of unvisited nodes by rapport with 

any      i.e. there are   distinct sets at any time  . 
Interestingly, it can be observed that the probability mass 

function (PMF) is in effect a Cobb-Douglas [15] form. 

Furthermore, the     quantity (“heuristic” value in literature) is 

constant, thus the PMF is actually uni-variate, and α-

homogeneous. We are not aware, at the time of writing, of any 

analysis that has placed emphasis on these traits, and will seek 

to present one in a subsequent publication. 

2. daemon_action phase (optional): at this stage it is 

possible to for a number     ants to apply some 

form of local optimisation to the tours constructed 

in the prior phase, with common choices being the 

2-opt, 3-opt or Lin-Kernighan algorithms [16]. 

3. update_pheromones phase: as a last step in an 

iteration  , the pheromone values are updated, under 

the influence of a constant decay (“evaporation”) 

process and, respectively, an accumulation process: 
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The obvious exponential decay affecting edges that are not 

part of the cycle reduces the probability of the latter being 

chosen in future cycles. In MMAS, only edges that are 

contained in the iteration best or globally best tour are 

incremented, with the schedule for the choice between these 

two latter categories being detailed in [6], therefore in (2) the 

final sum simplifies to     
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Furthermore, unlike in the case of AS, the quantity        has 

a strict upper and lower bound: 

               
              

 

    

 

   

                

   
   

   
    

 

   
 

 

    
                                    

 

              
        

   
                

  

 
 
 
          

 
                  

                                                                   

This modification ensures that no edge is removed from the 

candidate set. Moreover, due to the upper bound the most 

frequently chosen edges never end up strongly dominating 

selection. The two effects' interaction leads to an avoidance of 

early convergence to suboptimal minima. 

The above, abridged, representation is sufficient for the 

following conjecture: MMAS does not naturally lend itself 

across the board to one of the classical models for parallel 

Initialize: set up invariants, seed pheromone “map”; 

Repeat:   construct_solutions; 

daemon_action; // Optional step. 

update_pheromones; 

Until: convergence achieved or termination criterion met. 
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computation, be it task-parallelism [17] or data-parallelism 

[18]. We contend that an optimal mapping probably adheres 

to the braided parallelism paradigm [19], in which data 

parallel bits (e.g. the construct_tour phase) are interwoven 

with serial or weakly parallel ones (i.e. the selection of the 

best tour in a particular iteration), with tasks acting as 

software units of scheduling. As is often the case with meta-

heuristics, there are no tight, proven, bounds on MMAS' 

convergence behaviour. [20] provides a rather generic proof 

of convergence in value. [21] shows notably tighter bounds on 

expected runtime for certain MMAS classes:          and 

      - this makes it clear that the algorithm is subject to the 

curse of dimensionality [5]. We now briefly sample the 

literature in the area of parallel MMAS implementations. We 

find investigations being conducted on multi-core and many-

core Central Processing Unit (CPU) [22]–[28], which are 

congruent in their observation that the primary bound on 

achievable parallel speed-ups is the data-movement / 

exchange. Consequently, the best results in these contexts, 

which tend to be characterized by slow and latency-affected 

inter-CPU exchanges, are achieved when multiple concurrent 

executions are undertaken or, at worse, minimal data is 

exchanged (e.g. only broadcasting the globally best tour). In 

ACO specific terminology, this maps into running either 

multiple independent algorithm executions in parallel or 

multiple colonies in parallel. 

In recent years, under the influence of increasing interest in 

GPUs as a research vehicle, a number of authors have 

published ACO / MMAS on GPU works [29]–[35]. In terms 

of exploited parallelism, we encounter varying degrees; some 

works only move tour-construction to the GPU, whereas by 

contrast [30] does only ancillary work on-CPU, claiming 

remarkable speed-ups versus the ACOTSP code provided 

with [36]. [37] provides a comprehensive overview of the 

field and is also the first text that uses the OpenCL [38] API, 

including a proposed implementation, although no 

performance evaluation is provided. We believe that, whilst 

these forays into the realm of GPU ACO / MMAS are very 

valuable data-points, there is ample room for improvement. 

With this clarification in place, we proceed to a discussion 

about GPU architecture in general, and AMD's Graphics Core 

Next (GCN) [12] in particular. 

3. AMD GCN ARCHITECTURE 
We first formulate the following general observations, given 

their relevance in context: 

1. in spite of the notable obfuscation affecting the 

field, GPUs are not new classes of processors, but 

rather multi-core processors that employ Single 

Instruction Multiple Data (SIMD) execution to 

increase computational density within a core; 

2. the frequently encountered Single Instruction 

Multiple Thread (SIMT) [39] or Single Program 

Multiple Data (SPMD) [40] descriptions associated 

with GPUs are primarily properties of the GPU 

programming model; 

3. from (1) and (2) it follows that it is adequate to 

describe modern GPUs as moderately many-core 

machines – highest end configurations enable at 32 

SIMD Cores for AMD's GCN [12] and 15 SIMD 

Cores for NVIDIA's Kepler [41]; the “thousands of 

cores” assessment is inaccurate, as those reflect the 

count of Arithmetic Logic Units (ALUs) / SIMD 

lanes available on a particular chip; 

4. the GPU memory hierarchy is different from that of 

CPUs in that register files are frequently larger than 

caches or scratch-pads, in order to support the 

concurrent execution of multiple batches, coupled 

with fast context switching used to hide high-

latency operations without stalling the processor. 

We shall now focus our analysis on the GCN architecture. A 

GCN processor includes a variable count of Compute Units 

(CUs). Each CU subsumes a Vector Unit (VU) and a Scalar 

Unit (SU). The former is implemented as four 16-wide SIMD 

units, whereas the latter is a general-purpose integer-only 

processor. The vector ALUs support a full complement of 

integer and IEEE-754 compliant floating-point operations, 

with throughput varying based on data-type [12]. 

Transcendental operations can be efficiently evaluated using 

microcode, as long as a sacrifice in precision is acceptable. 

The hardware unit of schedulin  (batch or “wavefront” in 

AMD terminology) is 64-wide, and all elements being 

operated on within a single cycle are guaranteed to be 

processed in lockstep. A 32 KB, four-way, L1 Instruction 

Cache services groups of four CUs, using 64 Byte lines and a 

Least Recently Used (LRU) replacement policy. Unless 

explicitly stated, assume these characteristics for all other 

caches. Instructions are fetched at a rate of 32 Bytes per cycle. 

The SU handles control flow at the CU level, de-centralizing 

its management across the chip. It incorporates two pipelines, 

one dedicated to handling conditional branches, as well as 

interrupts and CU-level synchronization. The other pipeline 

has the full integer processing capability, handling address 

generation and non-linear control flow. Hardware assisted 

predication is also handled at this level. GPUs hide their 

SIMD nature and allow the programmer the illusion of having 

independent control flow per SIMD lane by using multiple 

execution, masking and predication. In general, if lanes within 

the same unit of schedulin  “diver e”, all paths are executed 

and, upon reaching the first nearest dominator in the program, 

lanes are re-converged by predicated writes. GCN uses an 8 

KB register file divided into 512 32-bit entries for each 16-

wide SIMD, where the SU can write, for example, the results 

of a comparison for each element in a batch. The SU is 

serviced by a 16 KB read-only, 4-way associative, 4-banked, 

L1 scalar data cache. Up to 4 CUs can share a single scalar 

cache, each reading up to 16 Bytes per cycle. 

The VU is the primary locus of processing on a GCN GPU. It 

accesses a 256 KB register file, partitioned into four equal-

sized slices, each owned by one of the 16-wide SIMDs. 

Batches are scheduled to the SIMDs in one cycle, but take 4 

cycles to complete. Scheduling is done in a round robin 

fashion, the SU issuing one instruction to one SIMD per 

cycle. Each of the SIMDs has enough resources to track up to 

10 batches, as long as register and Local Data Share (LDS) 

requirements are met. Across four SIMDs, this leads to an 

upper bound of 40 batches resident per CU. The above 

translate into the ability of transparently hiding a dependency 

chain that is up to 40 cycles. 

The next fastest memory structure accessible to the VU is the 

LDS. The LDS is a heavily multi-banked array of SRAM (16 

or 32 banks); each bank is arranged as a 512 deep stack of un-

typed 32-bit entries. An all-to-all crossbar interface lies 

between the LDS and the VU, making it possible to access 

one entry from each bank per cycle, with conflicts 

automatically handled through serialization. Atomic 

operations are available at the same rate. LDS accesses do not 

occupy ALU resources, and there is efficient broadcast 

capability embedded in the hardware, making it possible for 

all SIMD lanes to access a single entry within a single cycle. 

If, for example, the data access patterns are difficult to predict 
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and thus hard to exploit via a software-managed cache, the 

VU is backed by a  hardware-controlled 16 KB Read / Write 

L1 Data cache, that implements a write-through / write-

allocate policy. Another innovation for GCN is that this cache 

can be made coherent with the L2 cache and, by extension, 

with the other L1s, following a relaxed consistency model 

aligned with the C++11 one, for which details can be found in 

Chapter 5 of [42]. For liner access patterns, up to 16 32 -bit 

values can be read from the cache per cycle. In terms of pure 

throughput, this is inferior to the LDS, albeit it is obviously 

more programmer friendly given that no explicit cache 

management is needed.  

The general chip-wide caching structure comes in the form of 

a distributed Read / Write L2 cache. The cache is physically 

split into   slices, where         memory controllers , 
                              and        returns the 

size of its argument in KBytes. Accessible through a crossbar 

fabric, the L2 is 16-way associative. Up to 16, conflict-free, 

atomic ops to the same cache-line can be resolved per cycle, 

thus allowing for the implementation of efficient global 

synchronization primitives. Acquire / Release semantics are 

used for maintaining coherence, in accordance with a relaxed 

consistency model.  

At the base of the memory hierarchy pyramid lies the main 

GPU RAM, accessed through   64-bit wide memory 

controllers,         . Each controller is wired into two 

independent 32-bit GDDR5 memory channels, albeit DDR3 

configurations are possible [12]. For top end configurations, 

much greater bandwidth than that available to a top-end CPU 

is provided. Optimal throughput is obtained when accesses 

use a stride that sees separate batches address different 

controllers / channels. It is very important to note that access 

to this memory level is a high latency, very low throughput 

operation when compared to all other levels. It is therefore 

important to exploit caching both explicitly (through register 

and LDS use) and implicitly (through cache-friendly access 

patterns).  

In closing, let us consider the chip-wide scheduling hardware, 

which encompasses the command processor (CP) and   

Asynchronous Compute Engines (ACE),     . The CP is a 

micro-controller using a RISC-like ISA, tasked with 

interfacing with the host machine. It issues DMA requests for 

fetching command buffers from host RAM through the PCI-

Express Bus. Furthermore, it maps the command stream to the 

hardware for execution. The ACE manages resource 

allocation and task scheduling for all GPU compute tasks, 

fetching commands through the memory hierarchy and 

establishing priority based work-queues. If resources are 

available and dependency chains allow it, it is possible for 

different tasks to execute concurrently. Execution is, 

potentially, out-of-order, and retirement is in-order, ordering 

being maintained by the ACE. Inter-ACE synchronization is 

possible through the memory hierarchy. Based on this 

analysis we can derive a series of observations: 

1. opportunities for data re-use across SIMD lanes 

must be identified and exploited by caching the 

LDS; 

2. optimal performance requires sizing work-units as 

integral multiples of 64, the size of the hardware 

unit of scheduling; 

3. accesses of unit stride equal to 32-bits yield efficient 

accesses in all the levels of the memory hierarchy; 

4. the frequently suggested strategy of dispatching as 

much work as possible is potentially sub-optimal. 

Progressing beyond hardware aspects, the next section focuses 

on introducing C++ AMP [13]. 

4. C++ AMP 
C++ AMP is a combination between a library and a minimal 

language extension, proposed as a productivity focused 

alternative to lower-level parallel compute APIs [38] or 

proprietary ones [39]. Its specification is open and publicly 

available. AMP can be layered on top of various lower-level 

APIs [43], which decouples it from any particular Operating 

System or tool-set and makes it portable. An aspect that is 

generally applicable to all GPU programming interfaces 

currently available is that they operate in an indirect model. 

This entails that command buffers generated on the CPU side 

and subsequently dispatched, with availability of work results 

being query-able in an asynchronous fashion, and no support 

for pre-empting or other, more advanced interfacing with the 

GPU. AMP is designed as a C++11 library, drawing 

inspiration from the Standard Template Library (STL) [44]. 

An ample subset of the language is supported, enabling, for 

example, the construction of Abstract Data Types (ADTs) or 

inheritance hierarchies, the use of lambda functions or 

templates [45]. The construct restrict(amp) acts as a 

decorator for function signatures, and is employed to enforce 

adherence to the supported set of language features and signal 

the pro rammer’s intent of executin  on an accelerator such 

as a GPU.  

AMP code is in-line C++, directly integrated with application 

code and compiled as such. The entry-point for accelerator 

execution is an overload of the function template 

parallel_for_each taking in: 

 a parameter of type accelerator_view, which 

abstracts the locus of execution; 

 a parameter of type extent<int>, which defines 

the rank and size of the space of execution; 

 a parameter that models the concept of a function 

which describes the computation to be performed 

for each element in the domain, and which receives 

as an argument the position within the space of 

execution. 

The execution domain is iterated across either in a linear, 

ungrouped fashion, case in which coordinate data is passed in 

the form of an index<int> object, or in a tiled, structured 

mode, case in which coordinate data is a tiled_index<…> 

object. The latter case adds additional dimensionality / 

structuring to the execution space in the form of tiles that 

offer finer grained control over per-element execution (e.g. 

synchronization) and can access the hardware scratchpad. 

Tiles are the software concept exposing the underlying SIMD 

nature of execution, being associated with the SIMD threads 

executing on the machine. An additional storage class, 

tile_static, has been added in order to denote data being 

cached in the scratchpad. The interested reader is directed to 

the more extended exposés in [13]. Let    be the set of CPU 

visible / accessible memory addresses and    the equivalent 

structure defined for the GPU. For current C++ AMP 

versions,        , and thus a conduit for marshalling 

data from one domain to the other is necessary. In our work, 

we employ the mechanism exposed by the class template 

array_view<typename T, int N> to pass data 

seamlessly across domains. In practice, array_view is a 

lightweight wrapper over a dense range of data, which offers 

implicit, runtime-controlled data-movement. The AMP 

programming model allows for explicit synchronization 

within any particular tile, exposing barrier objects, as well 
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as fences for cases in which merely ensuring weak ordering 

without requiring consistency suffices. Synchronization 

between tiles is guaranteed only at a parallel_for_each 

invocation boundary. Overall, this yields an interface to the 

GPU hardware that does not inhibit optimal exploitation, 

whilst being considerably less verbose and, in our experience, 

more productive. The ability to define ADTs, coupled with 

the generality brought by having access to the C++ template 

mechanism, has been extremely useful in practice. 

5. A HIGH-PERFORMANCE C++ AMP 

IMPLEMENTATION OF MMAS 
The hardware structure and nature suggest some generally 

desirable features. Let    be the set of all tiles. Then we can 

formulate the following general points about about optimal 

structuring of execution on GCN hardware: 

1. for maximising latency-hiding, a sufficient number 

of batches has to be in flight at any time, where 

sufficiency is defined as follows: 

             
         

                                                            

                                              

2. for optimally exploiting CU resources: 

a.                          ; 

b. 
              

    
      ytes; 

For the implementation, we focus on type properties and 

supported operations, and rely on self-designed ADTs, 

adhering to guidelines laid out in [46]. Three, progressively 

refined, approaches are investigated, each representing a 

refinement of the prior. We establish the following invariants: 

1. let    be the set of ants,       ,    the set of 

SIMD threads,          ; we choose to 

implement a non-injective mapping        , 

which associates ants with the lanes within a SIMD 

thread – this choice is not only supported by our 

analysis, but also by the literature [30], [31], [35]; 

this bounds the value of       ; 
2. we hold                       fixed, which 

allows us to implement size-aware barriers [47] and 

by way of consequence obtain barrier elision and 

thus lightweight synchronization; 

3. the canonical selection rule from Eq. (1) is 

substituted with I-roulette selection [30] in the 

construct_solutions phase; 

4. the prior points lead to developing an ADT that 

models the ant queen concept i.e. a class template 

Amp_max_min_as_queen<typename T, 
unsigned int colony_size, unsigned int 
tour_sz>, which coordinates the search, where: 

a. T is the type of the quantities used in I-

roulette selection, i.e. real numbers; 

b. colony_size =          ; 

c. tour_size =   – we use template meta-

programming to feed  , a runtime value, 

into a compile time constant; 

d. each Ant_queen_max_min_as object 

references two containers allocated in 

tile_static storage, an array that acts 

as scratch-space for intermediate 

computations and a bit set (similar to 

std::bitset [44]) which holds the list 

of visited nodes; 

e. PRN generation is done per lane, by way 

of a Ranlim32 generator [48] which we 

implemented in C++ AMP. 

5. for the daemon_action phase we chose to apply 2.5-

opt [49] by way of an optimized C++ AMP 

implementation that we derive starting from [16], 

[49]–[51].  

For implementing the MMAS solver concept, we develop a 

Max_min_as ADT, a class that hooks into our performance 

measurement harness and our problem specification loading 

one. Data representation is separated into a class 

template<typename T> Max_min_as_rep, which 

contains the physical buffers – we use std::vector – 

wrapped in array_views, which are accessed on the GPU. 

Our MMAS implementation uses the alternation between 

using the best tour in an iteration and the best tour across the 

entire execution in accordance with the schedule proposed in 

[6]. Given that our execution set up implies that      
      , we have to account for the situation in which there 

are less ant queens than potential starting nodes. In this case, 

starting nodes are assigned pseudo-randomly to ants, ensuring 

that no starting node is assigned more than once within a run. 

We also exploit the observation that an optimal tour can be 

found within a low-order sub-graph of   [4], [52]. Let 

      be a set of nodes, and     an arbitrary node. By 

imposing a weak, strictly non-increasing, ordering on     

based on        ,         , we obtain the set of  's 
      nearest neighbours. Based on the initial observation we 

assert that optimality or near optimality, i.e. the shortest tour, 

can be achieved whilst limiting the search for the next node to 

NNL. We set               , which simplifies processing, 

and generate the   sets upon initial data set-up, storing them 

in a matrix. I-roulette selection is used only when choosing 

from this set, after which we fall back to making a simple 

greedy choice amongst the non-visited nodes which are not in 

   . 

Table 1. Data containers and their characteristics 

Name Data-type Size Contents 

choice_info float       
     

 
 

choice_info_nn float         
   
     

 
 for  

      

costs 
unsigned 

int 
          

glob_best   

_tour 

unsigned 
int 

             

heuristics float        

nnlist 
unsigned 

int 
               

pheromones float        

temp_tours 
unsigned 

int 
       

Per iteration 

tours. 

The following approaches have been developed: 

A. in the construction phase, the full tour is stored in 

tile_static memory; the complete undergoes local 

optimisation and no candidate lists are used; the best tour 

is selected on the CPU, by identifying the minimum cost 

across all the tours generated within an iteration; 

B. nodes are cached in registers as they are added to the 

tour, and once          have been cached they are written 

out to temp_tours – this is repeated until tour completion; 

64-node sub-tours undergo local optimisation, using a 
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64-element candidate list; selection is remains on the 

CPU; 

C. same as B, with selection being moved to the GPU. 

Some features are common to all the solutions we have 

developed. We extract / provide as much information as 

possible at compile time, and then feed in through non-type 

template parameters. All implementations are flexible in what 

regards their configuration: MMAS parameters,  
        ,     ,      , data-types etc. We ensure coalesced 

accessing and conflict minimisation by using strides aligned 

that are integral multiples of  
         . In closing, let us consider the concrete, systematic 

execution of an iteration: 

1. the choice_info matrix is updated through a non-

tiled parallel_for_each across    elements; 

2. the choice_info_nn matrix is updated through a non-

tiled parallel_for_each across         
elements, reading the value found at nnlist 
                    and copying it into 

choice_info_nn 
     ; 

3. construct_solutions phase: 

a. through a tiled parallel_for_each 

across      tiles,      tours are 

constructed and written to temp_tours: 

i. first nnlist 
                         is 

checked for non-visited 

candidates, and apply I-Roulette 

selection; 

ii. if no non-visited candidates are 

found in nnlist, greedily choose 

the node with       
     

 
; 

iii. mark node as visited. 

b. through a tiled parallel_for_each  

with the same dispatch structure as (a), 

apply 2.5-opt; 

c. through a tiled parallel_for_each 

with the same dispatch structure as (a) 

compute and store costs for the new tours; 

4. identify the best tour for the iteration: 

i. for (A) and (B), read back costs 

to the CPU, extract the row in 

temp_tours that is associated 

with the minimum cost; 

ii. (C), tiled 

parallel_for_each 

invocation across one tile; 

iii. if the new minimum is a global 

minimum, update parameters 

and store in glob_best_tour; 

5. update pheromones matrix: 

a. through a non-tiled 

parallel_for_each across    

elements apply Eq. (2); 

b. through a non-tiled 

parallel_for_each across   elements  

apply Eq. (3) to the n edges of the best 

tour (iteration or global, in accordance 

with the schedule). 

6. PERFORMANCE EVALUATION 

6.1 Experimental Methodology 
We used the following platform: 

 CPU: 2 modules / 4 thread AMD A10-4600M 

running at 2300MHz (Turbo mode was disabled); 

 RAM: 8 GB 1600 MHz DDR3, 128-bit interface; 

 GPU: AMD Radeon 7730M, 8 CUs running at 575 

MHz, 2 GB 1800 MHz DDR3 RAM, 128-bit 

memory interface; 

 Environment: Microsoft Windows 8 Professional, 

Microsoft Visual Studio 2012 Update 2 + Visual 

Studio 2012 November 2012 CTP (v120) and AMD 

Catalyst 13.2 drivers for the GPU; for compilation, 

we use full optimization (/Ox), favour speed (/Ot), 

generate AVX code (/arch: AVX), enable whole 

program optimization (/GL). 

MMAS parameters are set in accordance with [52]:      
                             . We time execution 

and initialization separately, using the high-resolution timer 

exposed by the C++ standard library. We run 11 full solves, 

discarding the first and recording the subsequent 10, each 

solve iterating 2500 times. We focus our investigation on the 

TSPs shown in Table 2, available in the TSPLIB library [53]: 

Table 2. Candidate problems 

Name pcb1173 d1291 d2103 pr2392 pcb3038 

Size 1173 1291 2103 2392 3038 

We report exact timings as opposed to reporting speed-ups. 

Proper performance characterisations are crucial in allowing 

comparability between separate works. 

6.2 Performance measurements 

6.2.1 Analysis of proposed solutions 
Table 3 synthesizes the performance characteristics of the 

three approaches we have developed A, B and C, expressed as 

the median time per iteration in milliseconds: 

Table 3. Performance evaluation of variants 

* pcb1173 d1291 d2103 pr2392 pcb3038 

A* 

(ms) 
31 25 73 90 259 

B (ms) 16 16 27 32 43 

C (ms) 14 15 26 30 41 

*For A,         to avoid triggering TDR events [63]. 

The on-GPU execution model of is the fastest, due to 

lowering the pressure exerted on tile_static memory, 

moving to register caching and using bounded 

neighbourhoods during local optimisation. The primary 

performance gain is attributable to the candidate list 

optimization, caeteris paribus by rapport with A. The benefits 

of reduced coupling between execution set up and problem 

size is apparent in the weakening of the relationship between 

the latter and iteration time. We define quality as the 

percentile deviation from the known optimum tour: 

           
                        

        
. Alongside the best 

solution, we consider the sample's median value and its 

standard deviation (expressed as percentage of the best-known 

solution). The quality yielded by the three approaches when 

dealing with the largest TSPs is presented in Table 4: 

Table 4. Solution quality evaluation 

* pr2392 pcb3038 

         378032 137694 
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A (%) 1.60 1.87 0.29 1.63 2.25 0.30 

B, C (%) 2.71 3.31 0.42 2.94 3.31 0.20 

Obviously, the optimisations added to the local search phase 

have an unfavourable impact on solution quality. This is 

expected, as moving to a bounded neighbourhood means that 

potentially beneficial swaps are never considered. However, 

the maximum deviation registered with C is under 4%. The 

difficulty associated with partitioning a tour into sub-tours and 

optimising only to the latter is a known issue [54]. We are 

confident that we can diminish the adverse effects to the point 

of nullification by overhauling our simple partitioning scheme 

to match, for example, [55], and we shall investigate this. 

6.2.2 Comparative analysis versus the literature 
We compare C against other implementations from the 

literature. This is a difficult endeavour, because not all write-

ups provide absolute measurements, or a way of deriving 

them. The works that allow for comparability are listed in 

Table 5: 

Table 5. ACO / MMAS on GPU in the literature 

Paper Algorithm GPU 
Prog. 

Lang. 

A1: J. M. Cecilia, J. M. 

García, A. Nisbet, M. 

Amos, and M. Ujaldón, 

“Enhancin  data 

parallelism for Ant 

Colony Optimization on 

GP s” [30] 

AS 

NVIDIA 

Tesla 

C2050 

CUDA 

A2: A. Uchida, Y. Ito, and 

 . Nakano, “An Efficient 

GPU Implementation of 

Ant Colony Optimization 

for the Traveling 

Salesman Problem” [35] 

AS 

NVIDIA 

GeForce 

GTX 580 

CUDA 

A3:  . Tantawy, “Ant 

Colony Optimization 

Parallel Algorithm for 

GP ” [34] 

MMAS 

NVIDIA 

GeForce 

GTX 480 

CUDA 

All the above works use hardware that is significantly more 

powerful than our experimental setup, as well as a proprietary 

API that is optimised for the underlying GPU. This is made 

apparent in Table 6, which briefly compares some significant 

characteristics: 

Table 6. Metrics for GPUs used in the literature 

GPU Bandwidth int (ADD) float (MAD) 

A1: Tesla 

C2050 
~144 

GB/s 

~0.51 

TIOPS/s 

~1.03 

TFLOPS/s 

A2: 

GeForce 

GTX 580 

~192 ~0.79 ~1.58 

A3: 

GeForce 

GTX 480 

~177 ~0.67  ~1.35 

Since A1 and A2 do not implement MMAS but rather AS, we 

compare only tour-construction mean times, disabling local 

optimisation and setting        (C-AS in the tables). We 

exploit this opportunity to demonstrate portability, by 

including performance data from the following two 

configurations: 

1. AMD FX-8120 4 Modules / 8 Threads running at 

3.1  GHz, 8 GB of 1333MHz DDR3 RAM, AMD 

Radeon HD 7970 GPU, 32 CUs running at 

925MHz, 3GB of 6000 MHz GDDR5, 384-bit bus, 

all else being equal to the baseline; we use it to 

illustrate vertical scaling, i.e. from a low-end part to 

a high-end on the same architecture; 

2. as above, but the GPU is swapped for an NVIDIA 

GTX 480, using the latest public drivers; we use it 

to illustrate horizontal scaling, i.e. scaling across 

different architectures. 

Table 7. Performance evaluation versus the literature 

* lin318 pcb442 rat783 pr1002 d1291 

C - AS (ms) 3 7 20 34 * 

C (ms) 3 5 9 11 15 

C – AS 7970 

(ms) 
1 1 4 6 10 

C 7970 (ms) 1 2 4 5 7 

C – AS 

GTX480 

(ms) 

3 4 8 10 15 

C GTX480 

(ms) 
3 4 8 10 13 

A1 (ms) 15 38 207 391 * 

A2 (ms) 8 11 56 86 * 

A3 (ms) 30 60 310 * 1420 

We had to use other, smaller, TSPs in order to obtain 

alignment between our research and the literature. 

Improvements can range up to two orders of magnitude better, 

when comparing C with A3 and, respectively, one order of 

magnitude better when comparing C to A1. We posit that this 

is an important development, as it opens up ACO / MMAS 

experimentation to researchers who do not have access to 

expensive hardware, and does so in a portable way – our code 

runs anywhere where there is a DirectX 11 accelerator 

available. A caveat lies in the fact that vertical scaling from 

the 7730M to the 7970 is sub-linear when compared to the 

hardware differential. We shall investigate and correct this in 

the future. 

Assuming that the increases are due to some intrinsic benefit 

of GCN hardware is incorrect, as we can observe that C yields 

vastly superior performance when run on the GTX 480, which 

is close to the hardware used in the other works. We can only 

conclude that a mix of algorithmic and programming interface 

benefits is the cause. Since C++ AMP is unlikely to be better 

than CUDA in terms of extracting performance from NVIDIA 

hardware, we conjecture that our data structures and 

algorithms are superior. Extending the analysis beyond this 

conjecture is difficult, as we have no access to the source code 

of the other solutions. In closing, we will compare against 

ACOTSP 1.02 software package [36]. We employ the same 

parameterisation that we have used up to now for the 

ACOTSP runs. To ensure optimal execution on a modern 

CPU, we change compilation parameters to match those used 

for our code, and perform a series of transforms on the source-

code, which enable auto-vectorisation. 

Table 8. Performance evaluation versus ACOTSP 1.02 

* pcb1173 d1291 d2103 pr2392 Pcb3038 

C (ms) 14 15 26 30 41 
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ACOTSP 64 76 138 169 243 

ACOTSP 

optimised 
56 71 118 132 205 

For the purpose of fairness and clarity we emphasize that the 

CPU we are using is not a high-end one, and that that 

ACOTSP, whilst properly auto-vectorised after our 

modifications, is neither fine-tuned nor parallel. Moreover, it 

uses double-precision floating-point whereas we use single-

precision floating-point. At the same time, the GPU we are 

using is itself a low-end itself, with multiple optimisation 

opportunities still available. We do not expect the 

performance gap to be closed, albeit both solutions have room 

for growth. Before moving to conclusions, we must analyse 

the quality of the tours yielded by our MMAS 

implementation. We measure against the best tours generated 

by ACOTSP by way of the  
          quantity computed against the best tour: 

Table 9. Tour quality versus ACOTSP 

* d1291 d2103 pr2392 Pcb3038 

A (%) 1.13 1.15 1.60 1.63 

B, C (%) 2.1 2.34 2.71 2.94 

ACOTSP (%) 0.33 0.98 1.56 1.94 

Taking into account the penalty associated with using 

bounded neighbourhoods for local optimisation (B, C), it is 

clear that in the future we must strive to diminish the 

unfavourable effects. However, even with the current, sub-

optimal, 2.5-opt implementation, C provides results 

comparable with those of ACOTSP, whilst being much faster. 

Finally, note that the maximum deviation is under 3%, which 

is generally acceptable in most scenarios. 

7. CONCLUSIONS 
We have introduced a high-performance MMAS 

implementation that exploits C++ AMP to access GPUs. The 

code is written at a high-level of abstraction, focusing on re-

usability. Whilst it is not production ready, we believe that our 

implementation will prove useful to scientists interested in 

MMAS and ACO in particular and, more generally, on taking 

advantage of GPUs in their work. We demonstrate a 

performance level that establishes a new upper bound in the 

field of parallel ACO, supplanting the former state-of-the-art. 

We also provide in-depth analyses of the AMD GCN 

architecture and the C++ AMP, which hold general relevance. 

Our aims for the future are the following: 

1. exploiting the symmetry embedded in the TSP, 

which would allow us to lower both the 

computational complexity and the storage 

complexity by a constant factor of two; 

2. investigating improvements to the local 

optimisation tour partitioning scheme; 

3. in the local optimisation pass, after a swap, only the 

costs associated with the edges that get deleted and 

re-wired change, whereas the other costs remain 

invariant – we could cache in the scratchpad, and 

only updated to reflect the newly added edges; 

4. studying the behaviour of our solution when it is 

moved to higher-end hardware; 

5. studying how our solution generalizes to other 

problems that can be solved through MMAS. 

In a broader scope, we are primarily interested in opening up 

GPU computation to a wider sample of scientists. This goal 

can be reached by a lucid understanding of the hardware 

coupled with an emphasis on writing generic, portable code as 

opposed to problem specific patchwork. Another important 

question has to do with identifying the areas where GPUs can 

actually act as accelerators, as this is currently an 

incompletely explored topic. 
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