
International Journal of Computer Applications (0975 – 8887)

Volume 100– No.6, August 2014

21

Accelerated Combinatorial Optimization using Graphics

Processing Units and C++ AMP

 Alexandru Voicu

Beyond3D
45 Cambridge Place,

Cambridge
CB2 1NS, United Kingdom

ABSTRACT

In the course of less than a decade, Graphics Processing Units

(GPUs) have evolved from narrowly scoped application

specific accelerators to general-purpose parallel machines

capable of accommodating an ever-growing set of algorithms.

At the same time, programming GPUs appears to have

become trapped around an attractor characterised by ad-hoc

practices, non-portable implementations and inexact,

uninformative performance reporting. The purpose of this

paper is two-fold, on one hand pursuing an in-depth look at

GPU hardware and its characteristics, and on the other

demonstrating that portable, generic, mathematically

grounded programming of these machines is possible and

desirable. An agent-based meta-heuristic, the Max-Min Ant

System (MMAS), provides the context. The major

contributions brought about by this article are the following:

(1) an optimal, portable, generic-algorithm based MMAS

implementation is derived; (2) an in-depth analysis of AMD's

Graphics Core Next (GCN) GPU and the C++ AMP

programming model is supplied; (3) a more robust approach

to performance reporting is presented; (4) novel techniques

for raising the abstraction level without sacrificing

performance are employed. This represents the first

implementation of an algorithm from the Ant Colony

Optimisation (ACO) family using C++ AMP, whilst at the

same time being one of the first uses of the latter

programming environment.

General Terms

Algorithms, Optimization, Parallel Programming, GPGPU

Keywords

C++ AMP, Generic Programming, GPU Programming, MAX-

MIN Ant System, Parallel Meta-Heuristics

1. INTRODUCTION
Combinatorial optimisation [1] is one of the key pillars of

modern quantitative research, being present in some form or

another numerous fields and having become one of the staples

of robust scientific analysis in spite of its youth [2]. It is

therefore unfortunate, that the computational demands

typically encountered in the field are extensive and expansive,

with the limit being represented by NP-completeness [3]. Two

developments have sprung forth from this reality. First,

researchers have moved from exact algorithms to

approximating ones, with meta-heuristics being a noteworthy

example in recent years. Second, the need for additional

computational performance is never exhausted, with ever

more intricate problems arising and requiring ever more

processor cycles. Given the above, we can establish the broad

context for our work, which focuses on accelerating a

particular combinatorial, optimisation-centric meta-heuristic,

by levering the GPU.

The Max-Min Ant System (MMAS) [4]–[7], is part of the Ant

Colony Optimisation (ACO) [8] family of agent-based meta-

heuristics. This class of algorithms uses simple agents, which

individually traverse some search space and then indirectly

exchange information through a shared fabric symbolically

associated with the process of pheromone deposition included

in the foraging behaviour of real-world ants. The latter steps

act as a means of guiding the search towards potentially

interesting optima, since the stochastic process that drives the

choice of vertex traversal order is biased by the accumulation

of pheromones. A recently published survey [9] shows that

ACO algorithms have wide applicability in combinatorial

optimisation. Out of all developments of ACO, MMAS

appears to be the most robust and successful. Furthermore,

literature about Graphics Processing Unit (GPU) based

acceleration of MMAS is rather recent, thus providing us with

insight into the state-of-the-art. The GPU has drawn notable

attention in the scientific community, bringing the promise of

extremely high performance at an accessible price.

Frequently, the literature quotes orders of magnitude

improvements. We, and by extension this paper, take a more

cautious look, drawing from the school of thought represented

by [10], [11], and therefore elect to focus on a challenging test

scenario and on accurate and extensive reporting of

performance.

We initially detail the MMAS algorithm and focus on its

application to the Travelling Salesman Problem (TSP). We

then proceed to conduct an in-depth analysis of an advanced

GPU architecture, the AMD Graphics Core Next (GCN) chip

[12]. The C++ AMP [13] augmentation of the C++ language,

which we have chosen as GPU programming environment, is

described. Thus, it becomes possible to proceed with

conducting an in-depth performance analysis in tandem with a

description of our software architecture choices and their

motivation. We demonstrate performance that is both much

higher than the one presented in previous works and portable

across GPUs.

2. THE MAX-MIN ANT SYSTEM AND

ITS APPLICATION TO THE TSP
For self-containment of this work, we will detail the MMAS

algorithm, as described in [6]. Whilst we will return to this

point later on, we clarify ab initio that our implementation

follows the canonical form laid out in the aforementioned

reference, to ensure comparability with reference works in the

field. MMAS came as an improvement upon the first ACO

algorithm, the Ant System (AS) [8]. AS was introduced as a

solver for the Travelling Salesman Problem (TSP) [14], one of

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.6, August 2014

22

the most widely studied and accepted test-beds in

combinatorial optimisation; results for larger instances were

unsatisfactory, whilst performance requirements were high.

MMAS proved significantly more robust, augmenting the

exploitation of the search history phase to ensure more

resilience in the face of early convergence to local optima. An

ACO algorithm, and by extension MMAS, is an agent-based

approach which relies on simplistic agents (ants) for

conducting an oriented search through the solution space

associated with a particular combinatorial optimisation

problem. Ants are myopic in that they have no look ahead

possibility, choosing the order of traversal based on

realizations of a stochastic process. Once solutions are

constructed, the option exists to rely on a separate

optimisation algorithm to tune the resulting tours further.

Irrespective of whether or not the “daemon” option is acted

upon, an iteration concludes with an indirectly cooperative

process that sees the ants updating a globally visible

pheromone “map”. Pheromone values are adjusted based on

solution quality, and are subsequently factored in the agents'

choices in following iterations. This ensures the stochastic

choice is biased towards particular components which are

encountered in “better” solutions, where better is a problem

dependent metric. Figure 1 schematically reproduces the

algorithmic flow:

Figure 1. Algorithmic flow for the ACO algorithms

A TSP is fully defined by a complete, directed weighted

graph with the set of vertices,

 the set of edges and a

weighing function that maps from the set of edges into a set of

positive values . It is usually the case that , however

we find this restriction unnecessary, as, in general, it suffices

if has a pseudo additive semi-group structure and allows for

weak ordering of its elements. The optimisation problem, in

this particular context, is to find the minimum weight

Hamiltonian cycle attached to , or, more intuitively stated,

the path that uniquely includes all vertices in the graph and

minimizes the sum of attached weights. There are two typical

cases for the TSP, the symmetrical one (STSP), where

 , and the asymmetrical one (ATSP), where

 for some . We shall focus on the STSP case.

The solution to an STSP is expressible as a vector , for

which any two subsequent components form an edge in a

complete cycle through the graph. Then, in an iteration , the

pheromone “map” contains a quantity
 which represents

the intensity of the pheromone associated with a particular

edge. This value is adjusted at the end of each iteration. The

algorithm proceeds as follows:

1. construct_tour phase: a number of ants are

randomly assigned a starting node from ; in

 construction steps, each ant builds a

cycle through the graph, by choosing the next vertex

to move to, on the basis of a discrete probability

distribution:

 elasticities

The feasible set is the set of unvisited nodes by rapport with

any i.e. there are distinct sets at any time .
Interestingly, it can be observed that the probability mass

function (PMF) is in effect a Cobb-Douglas [15] form.

Furthermore, the quantity (“heuristic” value in literature) is

constant, thus the PMF is actually uni-variate, and α-

homogeneous. We are not aware, at the time of writing, of any

analysis that has placed emphasis on these traits, and will seek

to present one in a subsequent publication.

2. daemon_action phase (optional): at this stage it is

possible to for a number ants to apply some

form of local optimisation to the tours constructed

in the prior phase, with common choices being the

2-opt, 3-opt or Lin-Kernighan algorithms [16].

3. update_pheromones phase: as a last step in an

iteration , the pheromone values are updated, under

the influence of a constant decay (“evaporation”)

process and, respectively, an accumulation process:

 persistence

The obvious exponential decay affecting edges that are not

part of the cycle reduces the probability of the latter being

chosen in future cycles. In MMAS, only edges that are

contained in the iteration best or globally best tour are

incremented, with the schedule for the choice between these

two latter categories being detailed in [6], therefore in (2) the

final sum simplifies to

 , where:

 a cost function e. .

Furthermore, unlike in the case of AS, the quantity has

a strict upper and lower bound:

This modification ensures that no edge is removed from the

candidate set. Moreover, due to the upper bound the most

frequently chosen edges never end up strongly dominating

selection. The two effects' interaction leads to an avoidance of

early convergence to suboptimal minima.

The above, abridged, representation is sufficient for the

following conjecture: MMAS does not naturally lend itself

across the board to one of the classical models for parallel

Initialize: set up invariants, seed pheromone “map”;

Repeat: construct_solutions;

daemon_action; // Optional step.

update_pheromones;

Until: convergence achieved or termination criterion met.

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.6, August 2014

23

computation, be it task-parallelism [17] or data-parallelism

[18]. We contend that an optimal mapping probably adheres

to the braided parallelism paradigm [19], in which data

parallel bits (e.g. the construct_tour phase) are interwoven

with serial or weakly parallel ones (i.e. the selection of the

best tour in a particular iteration), with tasks acting as

software units of scheduling. As is often the case with meta-

heuristics, there are no tight, proven, bounds on MMAS'

convergence behaviour. [20] provides a rather generic proof

of convergence in value. [21] shows notably tighter bounds on

expected runtime for certain MMAS classes: and

 - this makes it clear that the algorithm is subject to the

curse of dimensionality [5]. We now briefly sample the

literature in the area of parallel MMAS implementations. We

find investigations being conducted on multi-core and many-

core Central Processing Unit (CPU) [22]–[28], which are

congruent in their observation that the primary bound on

achievable parallel speed-ups is the data-movement /

exchange. Consequently, the best results in these contexts,

which tend to be characterized by slow and latency-affected

inter-CPU exchanges, are achieved when multiple concurrent

executions are undertaken or, at worse, minimal data is

exchanged (e.g. only broadcasting the globally best tour). In

ACO specific terminology, this maps into running either

multiple independent algorithm executions in parallel or

multiple colonies in parallel.

In recent years, under the influence of increasing interest in

GPUs as a research vehicle, a number of authors have

published ACO / MMAS on GPU works [29]–[35]. In terms

of exploited parallelism, we encounter varying degrees; some

works only move tour-construction to the GPU, whereas by

contrast [30] does only ancillary work on-CPU, claiming

remarkable speed-ups versus the ACOTSP code provided

with [36]. [37] provides a comprehensive overview of the

field and is also the first text that uses the OpenCL [38] API,

including a proposed implementation, although no

performance evaluation is provided. We believe that, whilst

these forays into the realm of GPU ACO / MMAS are very

valuable data-points, there is ample room for improvement.

With this clarification in place, we proceed to a discussion

about GPU architecture in general, and AMD's Graphics Core

Next (GCN) [12] in particular.

3. AMD GCN ARCHITECTURE
We first formulate the following general observations, given

their relevance in context:

1. in spite of the notable obfuscation affecting the

field, GPUs are not new classes of processors, but

rather multi-core processors that employ Single

Instruction Multiple Data (SIMD) execution to

increase computational density within a core;

2. the frequently encountered Single Instruction

Multiple Thread (SIMT) [39] or Single Program

Multiple Data (SPMD) [40] descriptions associated

with GPUs are primarily properties of the GPU

programming model;

3. from (1) and (2) it follows that it is adequate to

describe modern GPUs as moderately many-core

machines – highest end configurations enable at 32

SIMD Cores for AMD's GCN [12] and 15 SIMD

Cores for NVIDIA's Kepler [41]; the “thousands of

cores” assessment is inaccurate, as those reflect the

count of Arithmetic Logic Units (ALUs) / SIMD

lanes available on a particular chip;

4. the GPU memory hierarchy is different from that of

CPUs in that register files are frequently larger than

caches or scratch-pads, in order to support the

concurrent execution of multiple batches, coupled

with fast context switching used to hide high-

latency operations without stalling the processor.

We shall now focus our analysis on the GCN architecture. A

GCN processor includes a variable count of Compute Units

(CUs). Each CU subsumes a Vector Unit (VU) and a Scalar

Unit (SU). The former is implemented as four 16-wide SIMD

units, whereas the latter is a general-purpose integer-only

processor. The vector ALUs support a full complement of

integer and IEEE-754 compliant floating-point operations,

with throughput varying based on data-type [12].

Transcendental operations can be efficiently evaluated using

microcode, as long as a sacrifice in precision is acceptable.

The hardware unit of schedulin (batch or “wavefront” in

AMD terminology) is 64-wide, and all elements being

operated on within a single cycle are guaranteed to be

processed in lockstep. A 32 KB, four-way, L1 Instruction

Cache services groups of four CUs, using 64 Byte lines and a

Least Recently Used (LRU) replacement policy. Unless

explicitly stated, assume these characteristics for all other

caches. Instructions are fetched at a rate of 32 Bytes per cycle.

The SU handles control flow at the CU level, de-centralizing

its management across the chip. It incorporates two pipelines,

one dedicated to handling conditional branches, as well as

interrupts and CU-level synchronization. The other pipeline

has the full integer processing capability, handling address

generation and non-linear control flow. Hardware assisted

predication is also handled at this level. GPUs hide their

SIMD nature and allow the programmer the illusion of having

independent control flow per SIMD lane by using multiple

execution, masking and predication. In general, if lanes within

the same unit of schedulin “diver e”, all paths are executed

and, upon reaching the first nearest dominator in the program,

lanes are re-converged by predicated writes. GCN uses an 8

KB register file divided into 512 32-bit entries for each 16-

wide SIMD, where the SU can write, for example, the results

of a comparison for each element in a batch. The SU is

serviced by a 16 KB read-only, 4-way associative, 4-banked,

L1 scalar data cache. Up to 4 CUs can share a single scalar

cache, each reading up to 16 Bytes per cycle.

The VU is the primary locus of processing on a GCN GPU. It

accesses a 256 KB register file, partitioned into four equal-

sized slices, each owned by one of the 16-wide SIMDs.

Batches are scheduled to the SIMDs in one cycle, but take 4

cycles to complete. Scheduling is done in a round robin

fashion, the SU issuing one instruction to one SIMD per

cycle. Each of the SIMDs has enough resources to track up to

10 batches, as long as register and Local Data Share (LDS)

requirements are met. Across four SIMDs, this leads to an

upper bound of 40 batches resident per CU. The above

translate into the ability of transparently hiding a dependency

chain that is up to 40 cycles.

The next fastest memory structure accessible to the VU is the

LDS. The LDS is a heavily multi-banked array of SRAM (16

or 32 banks); each bank is arranged as a 512 deep stack of un-

typed 32-bit entries. An all-to-all crossbar interface lies

between the LDS and the VU, making it possible to access

one entry from each bank per cycle, with conflicts

automatically handled through serialization. Atomic

operations are available at the same rate. LDS accesses do not

occupy ALU resources, and there is efficient broadcast

capability embedded in the hardware, making it possible for

all SIMD lanes to access a single entry within a single cycle.

If, for example, the data access patterns are difficult to predict

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.6, August 2014

24

and thus hard to exploit via a software-managed cache, the

VU is backed by a hardware-controlled 16 KB Read / Write

L1 Data cache, that implements a write-through / write-

allocate policy. Another innovation for GCN is that this cache

can be made coherent with the L2 cache and, by extension,

with the other L1s, following a relaxed consistency model

aligned with the C++11 one, for which details can be found in

Chapter 5 of [42]. For liner access patterns, up to 16 32 -bit

values can be read from the cache per cycle. In terms of pure

throughput, this is inferior to the LDS, albeit it is obviously

more programmer friendly given that no explicit cache

management is needed.

The general chip-wide caching structure comes in the form of

a distributed Read / Write L2 cache. The cache is physically

split into slices, where memory controllers ,
 and returns the

size of its argument in KBytes. Accessible through a crossbar

fabric, the L2 is 16-way associative. Up to 16, conflict-free,

atomic ops to the same cache-line can be resolved per cycle,

thus allowing for the implementation of efficient global

synchronization primitives. Acquire / Release semantics are

used for maintaining coherence, in accordance with a relaxed

consistency model.

At the base of the memory hierarchy pyramid lies the main

GPU RAM, accessed through 64-bit wide memory

controllers, . Each controller is wired into two

independent 32-bit GDDR5 memory channels, albeit DDR3

configurations are possible [12]. For top end configurations,

much greater bandwidth than that available to a top-end CPU

is provided. Optimal throughput is obtained when accesses

use a stride that sees separate batches address different

controllers / channels. It is very important to note that access

to this memory level is a high latency, very low throughput

operation when compared to all other levels. It is therefore

important to exploit caching both explicitly (through register

and LDS use) and implicitly (through cache-friendly access

patterns).

In closing, let us consider the chip-wide scheduling hardware,

which encompasses the command processor (CP) and

Asynchronous Compute Engines (ACE), . The CP is a

micro-controller using a RISC-like ISA, tasked with

interfacing with the host machine. It issues DMA requests for

fetching command buffers from host RAM through the PCI-

Express Bus. Furthermore, it maps the command stream to the

hardware for execution. The ACE manages resource

allocation and task scheduling for all GPU compute tasks,

fetching commands through the memory hierarchy and

establishing priority based work-queues. If resources are

available and dependency chains allow it, it is possible for

different tasks to execute concurrently. Execution is,

potentially, out-of-order, and retirement is in-order, ordering

being maintained by the ACE. Inter-ACE synchronization is

possible through the memory hierarchy. Based on this

analysis we can derive a series of observations:

1. opportunities for data re-use across SIMD lanes

must be identified and exploited by caching the

LDS;

2. optimal performance requires sizing work-units as

integral multiples of 64, the size of the hardware

unit of scheduling;

3. accesses of unit stride equal to 32-bits yield efficient

accesses in all the levels of the memory hierarchy;

4. the frequently suggested strategy of dispatching as

much work as possible is potentially sub-optimal.

Progressing beyond hardware aspects, the next section focuses

on introducing C++ AMP [13].

4. C++ AMP
C++ AMP is a combination between a library and a minimal

language extension, proposed as a productivity focused

alternative to lower-level parallel compute APIs [38] or

proprietary ones [39]. Its specification is open and publicly

available. AMP can be layered on top of various lower-level

APIs [43], which decouples it from any particular Operating

System or tool-set and makes it portable. An aspect that is

generally applicable to all GPU programming interfaces

currently available is that they operate in an indirect model.

This entails that command buffers generated on the CPU side

and subsequently dispatched, with availability of work results

being query-able in an asynchronous fashion, and no support

for pre-empting or other, more advanced interfacing with the

GPU. AMP is designed as a C++11 library, drawing

inspiration from the Standard Template Library (STL) [44].

An ample subset of the language is supported, enabling, for

example, the construction of Abstract Data Types (ADTs) or

inheritance hierarchies, the use of lambda functions or

templates [45]. The construct restrict(amp) acts as a

decorator for function signatures, and is employed to enforce

adherence to the supported set of language features and signal

the pro rammer’s intent of executin on an accelerator such

as a GPU.

AMP code is in-line C++, directly integrated with application

code and compiled as such. The entry-point for accelerator

execution is an overload of the function template

parallel_for_each taking in:

 a parameter of type accelerator_view, which

abstracts the locus of execution;

 a parameter of type extent<int>, which defines

the rank and size of the space of execution;

 a parameter that models the concept of a function

which describes the computation to be performed

for each element in the domain, and which receives

as an argument the position within the space of

execution.

The execution domain is iterated across either in a linear,

ungrouped fashion, case in which coordinate data is passed in

the form of an index<int> object, or in a tiled, structured

mode, case in which coordinate data is a tiled_index<…>

object. The latter case adds additional dimensionality /

structuring to the execution space in the form of tiles that

offer finer grained control over per-element execution (e.g.

synchronization) and can access the hardware scratchpad.

Tiles are the software concept exposing the underlying SIMD

nature of execution, being associated with the SIMD threads

executing on the machine. An additional storage class,

tile_static, has been added in order to denote data being

cached in the scratchpad. The interested reader is directed to

the more extended exposés in [13]. Let be the set of CPU

visible / accessible memory addresses and the equivalent

structure defined for the GPU. For current C++ AMP

versions, , and thus a conduit for marshalling

data from one domain to the other is necessary. In our work,

we employ the mechanism exposed by the class template

array_view<typename T, int N> to pass data

seamlessly across domains. In practice, array_view is a

lightweight wrapper over a dense range of data, which offers

implicit, runtime-controlled data-movement. The AMP

programming model allows for explicit synchronization

within any particular tile, exposing barrier objects, as well

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.6, August 2014

25

as fences for cases in which merely ensuring weak ordering

without requiring consistency suffices. Synchronization

between tiles is guaranteed only at a parallel_for_each

invocation boundary. Overall, this yields an interface to the

GPU hardware that does not inhibit optimal exploitation,

whilst being considerably less verbose and, in our experience,

more productive. The ability to define ADTs, coupled with

the generality brought by having access to the C++ template

mechanism, has been extremely useful in practice.

5. A HIGH-PERFORMANCE C++ AMP

IMPLEMENTATION OF MMAS
The hardware structure and nature suggest some generally

desirable features. Let be the set of all tiles. Then we can

formulate the following general points about about optimal

structuring of execution on GCN hardware:

1. for maximising latency-hiding, a sufficient number

of batches has to be in flight at any time, where

sufficiency is defined as follows:

2. for optimally exploiting CU resources:

a. ;

b.

 ytes;

For the implementation, we focus on type properties and

supported operations, and rely on self-designed ADTs,

adhering to guidelines laid out in [46]. Three, progressively

refined, approaches are investigated, each representing a

refinement of the prior. We establish the following invariants:

1. let be the set of ants, , the set of

SIMD threads, ; we choose to

implement a non-injective mapping ,

which associates ants with the lanes within a SIMD

thread – this choice is not only supported by our

analysis, but also by the literature [30], [31], [35];

this bounds the value of ;
2. we hold fixed, which

allows us to implement size-aware barriers [47] and

by way of consequence obtain barrier elision and

thus lightweight synchronization;

3. the canonical selection rule from Eq. (1) is

substituted with I-roulette selection [30] in the

construct_solutions phase;

4. the prior points lead to developing an ADT that

models the ant queen concept i.e. a class template

Amp_max_min_as_queen<typename T,
unsigned int colony_size, unsigned int
tour_sz>, which coordinates the search, where:

a. T is the type of the quantities used in I-

roulette selection, i.e. real numbers;

b. colony_size = ;

c. tour_size = – we use template meta-

programming to feed , a runtime value,

into a compile time constant;

d. each Ant_queen_max_min_as object

references two containers allocated in

tile_static storage, an array that acts

as scratch-space for intermediate

computations and a bit set (similar to

std::bitset [44]) which holds the list

of visited nodes;

e. PRN generation is done per lane, by way

of a Ranlim32 generator [48] which we

implemented in C++ AMP.

5. for the daemon_action phase we chose to apply 2.5-

opt [49] by way of an optimized C++ AMP

implementation that we derive starting from [16],

[49]–[51].

For implementing the MMAS solver concept, we develop a

Max_min_as ADT, a class that hooks into our performance

measurement harness and our problem specification loading

one. Data representation is separated into a class

template<typename T> Max_min_as_rep, which

contains the physical buffers – we use std::vector –

wrapped in array_views, which are accessed on the GPU.

Our MMAS implementation uses the alternation between

using the best tour in an iteration and the best tour across the

entire execution in accordance with the schedule proposed in

[6]. Given that our execution set up implies that
 , we have to account for the situation in which there

are less ant queens than potential starting nodes. In this case,

starting nodes are assigned pseudo-randomly to ants, ensuring

that no starting node is assigned more than once within a run.

We also exploit the observation that an optimal tour can be

found within a low-order sub-graph of [4], [52]. Let

 be a set of nodes, and an arbitrary node. By

imposing a weak, strictly non-increasing, ordering on

based on , , we obtain the set of 's
 nearest neighbours. Based on the initial observation we

assert that optimality or near optimality, i.e. the shortest tour,

can be achieved whilst limiting the search for the next node to

NNL. We set , which simplifies processing,

and generate the sets upon initial data set-up, storing them

in a matrix. I-roulette selection is used only when choosing

from this set, after which we fall back to making a simple

greedy choice amongst the non-visited nodes which are not in

 .

Table 1. Data containers and their characteristics

Name Data-type Size Contents

choice_info float

choice_info_nn float

 for

costs
unsigned

int

glob_best

_tour

unsigned
int

heuristics float

nnlist
unsigned

int

pheromones float

temp_tours
unsigned

int

Per iteration

tours.

The following approaches have been developed:

A. in the construction phase, the full tour is stored in

tile_static memory; the complete undergoes local

optimisation and no candidate lists are used; the best tour

is selected on the CPU, by identifying the minimum cost

across all the tours generated within an iteration;

B. nodes are cached in registers as they are added to the

tour, and once have been cached they are written

out to temp_tours – this is repeated until tour completion;

64-node sub-tours undergo local optimisation, using a

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.6, August 2014

26

64-element candidate list; selection is remains on the

CPU;

C. same as B, with selection being moved to the GPU.

Some features are common to all the solutions we have

developed. We extract / provide as much information as

possible at compile time, and then feed in through non-type

template parameters. All implementations are flexible in what

regards their configuration: MMAS parameters,
 , , , data-types etc. We ensure coalesced

accessing and conflict minimisation by using strides aligned

that are integral multiples of
 . In closing, let us consider the concrete, systematic

execution of an iteration:

1. the choice_info matrix is updated through a non-

tiled parallel_for_each across elements;

2. the choice_info_nn matrix is updated through a non-

tiled parallel_for_each across
elements, reading the value found at nnlist
 and copying it into

choice_info_nn
 ;

3. construct_solutions phase:

a. through a tiled parallel_for_each

across tiles, tours are

constructed and written to temp_tours:

i. first nnlist
 is

checked for non-visited

candidates, and apply I-Roulette

selection;

ii. if no non-visited candidates are

found in nnlist, greedily choose

the node with

;

iii. mark node as visited.

b. through a tiled parallel_for_each

with the same dispatch structure as (a),

apply 2.5-opt;

c. through a tiled parallel_for_each

with the same dispatch structure as (a)

compute and store costs for the new tours;

4. identify the best tour for the iteration:

i. for (A) and (B), read back costs

to the CPU, extract the row in

temp_tours that is associated

with the minimum cost;

ii. (C), tiled

parallel_for_each

invocation across one tile;

iii. if the new minimum is a global

minimum, update parameters

and store in glob_best_tour;

5. update pheromones matrix:

a. through a non-tiled

parallel_for_each across

elements apply Eq. (2);

b. through a non-tiled

parallel_for_each across elements

apply Eq. (3) to the n edges of the best

tour (iteration or global, in accordance

with the schedule).

6. PERFORMANCE EVALUATION

6.1 Experimental Methodology
We used the following platform:

 CPU: 2 modules / 4 thread AMD A10-4600M

running at 2300MHz (Turbo mode was disabled);

 RAM: 8 GB 1600 MHz DDR3, 128-bit interface;

 GPU: AMD Radeon 7730M, 8 CUs running at 575

MHz, 2 GB 1800 MHz DDR3 RAM, 128-bit

memory interface;

 Environment: Microsoft Windows 8 Professional,

Microsoft Visual Studio 2012 Update 2 + Visual

Studio 2012 November 2012 CTP (v120) and AMD

Catalyst 13.2 drivers for the GPU; for compilation,

we use full optimization (/Ox), favour speed (/Ot),

generate AVX code (/arch: AVX), enable whole

program optimization (/GL).

MMAS parameters are set in accordance with [52]:
 . We time execution

and initialization separately, using the high-resolution timer

exposed by the C++ standard library. We run 11 full solves,

discarding the first and recording the subsequent 10, each

solve iterating 2500 times. We focus our investigation on the

TSPs shown in Table 2, available in the TSPLIB library [53]:

Table 2. Candidate problems

Name pcb1173 d1291 d2103 pr2392 pcb3038

Size 1173 1291 2103 2392 3038

We report exact timings as opposed to reporting speed-ups.

Proper performance characterisations are crucial in allowing

comparability between separate works.

6.2 Performance measurements

6.2.1 Analysis of proposed solutions
Table 3 synthesizes the performance characteristics of the

three approaches we have developed A, B and C, expressed as

the median time per iteration in milliseconds:

Table 3. Performance evaluation of variants

* pcb1173 d1291 d2103 pr2392 pcb3038

A*

(ms)
31 25 73 90 259

B (ms) 16 16 27 32 43

C (ms) 14 15 26 30 41

*For A, to avoid triggering TDR events [63].

The on-GPU execution model of is the fastest, due to

lowering the pressure exerted on tile_static memory,

moving to register caching and using bounded

neighbourhoods during local optimisation. The primary

performance gain is attributable to the candidate list

optimization, caeteris paribus by rapport with A. The benefits

of reduced coupling between execution set up and problem

size is apparent in the weakening of the relationship between

the latter and iteration time. We define quality as the

percentile deviation from the known optimum tour:

. Alongside the best

solution, we consider the sample's median value and its

standard deviation (expressed as percentage of the best-known

solution). The quality yielded by the three approaches when

dealing with the largest TSPs is presented in Table 4:

Table 4. Solution quality evaluation

* pr2392 pcb3038

 378032 137694

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.6, August 2014

27

A (%) 1.60 1.87 0.29 1.63 2.25 0.30

B, C (%) 2.71 3.31 0.42 2.94 3.31 0.20

Obviously, the optimisations added to the local search phase

have an unfavourable impact on solution quality. This is

expected, as moving to a bounded neighbourhood means that

potentially beneficial swaps are never considered. However,

the maximum deviation registered with C is under 4%. The

difficulty associated with partitioning a tour into sub-tours and

optimising only to the latter is a known issue [54]. We are

confident that we can diminish the adverse effects to the point

of nullification by overhauling our simple partitioning scheme

to match, for example, [55], and we shall investigate this.

6.2.2 Comparative analysis versus the literature
We compare C against other implementations from the

literature. This is a difficult endeavour, because not all write-

ups provide absolute measurements, or a way of deriving

them. The works that allow for comparability are listed in

Table 5:

Table 5. ACO / MMAS on GPU in the literature

Paper Algorithm GPU
Prog.

Lang.

A1: J. M. Cecilia, J. M.

García, A. Nisbet, M.

Amos, and M. Ujaldón,

“Enhancin data

parallelism for Ant

Colony Optimization on

GP s” [30]

AS

NVIDIA

Tesla

C2050

CUDA

A2: A. Uchida, Y. Ito, and

 . Nakano, “An Efficient

GPU Implementation of

Ant Colony Optimization

for the Traveling

Salesman Problem” [35]

AS

NVIDIA

GeForce

GTX 580

CUDA

A3: . Tantawy, “Ant

Colony Optimization

Parallel Algorithm for

GP ” [34]

MMAS

NVIDIA

GeForce

GTX 480

CUDA

All the above works use hardware that is significantly more

powerful than our experimental setup, as well as a proprietary

API that is optimised for the underlying GPU. This is made

apparent in Table 6, which briefly compares some significant

characteristics:

Table 6. Metrics for GPUs used in the literature

GPU Bandwidth int (ADD) float (MAD)

A1: Tesla

C2050
~144

GB/s

~0.51

TIOPS/s

~1.03

TFLOPS/s

A2:

GeForce

GTX 580

~192 ~0.79 ~1.58

A3:

GeForce

GTX 480

~177 ~0.67 ~1.35

Since A1 and A2 do not implement MMAS but rather AS, we

compare only tour-construction mean times, disabling local

optimisation and setting (C-AS in the tables). We

exploit this opportunity to demonstrate portability, by

including performance data from the following two

configurations:

1. AMD FX-8120 4 Modules / 8 Threads running at

3.1 GHz, 8 GB of 1333MHz DDR3 RAM, AMD

Radeon HD 7970 GPU, 32 CUs running at

925MHz, 3GB of 6000 MHz GDDR5, 384-bit bus,

all else being equal to the baseline; we use it to

illustrate vertical scaling, i.e. from a low-end part to

a high-end on the same architecture;

2. as above, but the GPU is swapped for an NVIDIA

GTX 480, using the latest public drivers; we use it

to illustrate horizontal scaling, i.e. scaling across

different architectures.

Table 7. Performance evaluation versus the literature

* lin318 pcb442 rat783 pr1002 d1291

C - AS (ms) 3 7 20 34 *

C (ms) 3 5 9 11 15

C – AS 7970

(ms)
1 1 4 6 10

C 7970 (ms) 1 2 4 5 7

C – AS

GTX480

(ms)

3 4 8 10 15

C GTX480

(ms)
3 4 8 10 13

A1 (ms) 15 38 207 391 *

A2 (ms) 8 11 56 86 *

A3 (ms) 30 60 310 * 1420

We had to use other, smaller, TSPs in order to obtain

alignment between our research and the literature.

Improvements can range up to two orders of magnitude better,

when comparing C with A3 and, respectively, one order of

magnitude better when comparing C to A1. We posit that this

is an important development, as it opens up ACO / MMAS

experimentation to researchers who do not have access to

expensive hardware, and does so in a portable way – our code

runs anywhere where there is a DirectX 11 accelerator

available. A caveat lies in the fact that vertical scaling from

the 7730M to the 7970 is sub-linear when compared to the

hardware differential. We shall investigate and correct this in

the future.

Assuming that the increases are due to some intrinsic benefit

of GCN hardware is incorrect, as we can observe that C yields

vastly superior performance when run on the GTX 480, which

is close to the hardware used in the other works. We can only

conclude that a mix of algorithmic and programming interface

benefits is the cause. Since C++ AMP is unlikely to be better

than CUDA in terms of extracting performance from NVIDIA

hardware, we conjecture that our data structures and

algorithms are superior. Extending the analysis beyond this

conjecture is difficult, as we have no access to the source code

of the other solutions. In closing, we will compare against

ACOTSP 1.02 software package [36]. We employ the same

parameterisation that we have used up to now for the

ACOTSP runs. To ensure optimal execution on a modern

CPU, we change compilation parameters to match those used

for our code, and perform a series of transforms on the source-

code, which enable auto-vectorisation.

Table 8. Performance evaluation versus ACOTSP 1.02

* pcb1173 d1291 d2103 pr2392 Pcb3038

C (ms) 14 15 26 30 41

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.6, August 2014

28

ACOTSP 64 76 138 169 243

ACOTSP

optimised
56 71 118 132 205

For the purpose of fairness and clarity we emphasize that the

CPU we are using is not a high-end one, and that that

ACOTSP, whilst properly auto-vectorised after our

modifications, is neither fine-tuned nor parallel. Moreover, it

uses double-precision floating-point whereas we use single-

precision floating-point. At the same time, the GPU we are

using is itself a low-end itself, with multiple optimisation

opportunities still available. We do not expect the

performance gap to be closed, albeit both solutions have room

for growth. Before moving to conclusions, we must analyse

the quality of the tours yielded by our MMAS

implementation. We measure against the best tours generated

by ACOTSP by way of the
 quantity computed against the best tour:

Table 9. Tour quality versus ACOTSP

* d1291 d2103 pr2392 Pcb3038

A (%) 1.13 1.15 1.60 1.63

B, C (%) 2.1 2.34 2.71 2.94

ACOTSP (%) 0.33 0.98 1.56 1.94

Taking into account the penalty associated with using

bounded neighbourhoods for local optimisation (B, C), it is

clear that in the future we must strive to diminish the

unfavourable effects. However, even with the current, sub-

optimal, 2.5-opt implementation, C provides results

comparable with those of ACOTSP, whilst being much faster.

Finally, note that the maximum deviation is under 3%, which

is generally acceptable in most scenarios.

7. CONCLUSIONS
We have introduced a high-performance MMAS

implementation that exploits C++ AMP to access GPUs. The

code is written at a high-level of abstraction, focusing on re-

usability. Whilst it is not production ready, we believe that our

implementation will prove useful to scientists interested in

MMAS and ACO in particular and, more generally, on taking

advantage of GPUs in their work. We demonstrate a

performance level that establishes a new upper bound in the

field of parallel ACO, supplanting the former state-of-the-art.

We also provide in-depth analyses of the AMD GCN

architecture and the C++ AMP, which hold general relevance.

Our aims for the future are the following:

1. exploiting the symmetry embedded in the TSP,

which would allow us to lower both the

computational complexity and the storage

complexity by a constant factor of two;

2. investigating improvements to the local

optimisation tour partitioning scheme;

3. in the local optimisation pass, after a swap, only the

costs associated with the edges that get deleted and

re-wired change, whereas the other costs remain

invariant – we could cache in the scratchpad, and

only updated to reflect the newly added edges;

4. studying the behaviour of our solution when it is

moved to higher-end hardware;

5. studying how our solution generalizes to other

problems that can be solved through MMAS.

In a broader scope, we are primarily interested in opening up

GPU computation to a wider sample of scientists. This goal

can be reached by a lucid understanding of the hardware

coupled with an emphasis on writing generic, portable code as

opposed to problem specific patchwork. Another important

question has to do with identifying the areas where GPUs can

actually act as accelerators, as this is currently an

incompletely explored topic.

8. ACKNOWLEDGMENTS
The author would like to thank the following individuals for

their kindness and insight, without which this work would

likely have been far worse: Amit Agarwal, Alex Goh, Cristina

Galalae, Boby George, Michael Houston, Lee Howes,

Konstantinos Kaparis, Maria Sabrina Preda, James Prior,

William Stumpf, Ryszard Sommefeldt and Lingli Zhang.

Whilst they have gone above and beyond the call of duty in

pointing out errors and failures with the text, it is possible that

some remain, all of them the sole responsibility of the author

9. REFERENCES
[1] B. Simeone, Ed., Combinatorial optimization: lectures

given at the 3rd session of the Centro internazionale

matematico estivo (C.I.M.E.) held at Como, Italy,

August 25-September 2, 1986. erlin ; New York:

Springer-Verlag, 1989.

[2] A. Schrijver, “On the history of combinatorial

optimization (till 1960),” in Handbooks in Operations

Research and Management Science Discrete

Optimization., K. Aardal, G. L. Nemhauser, and R.

Weismantel, Eds. Burlington: Elsevier, 2005, pp. 1–68.

[3] M. R. Garey and D. S. Johnson, Computers and

intractability: a guide to the theory of NP-completeness.

San Francisco: W.H. Freeman, 1979.

[4] T. Stützle and H. Hoos, “MAX-MIN Ant System and

local search for the travelin salesman problem,” 1997,

pp. 309–314.

[5] T. Stützle and H. Hoos, “Improvin the Ant System: A

detailed report on the MAX-MIN Ant System,” 1996.

[6] [6] T. Stützle and H. H. Hoos, “MAX-MIN Ant

System,” Future Gener omput Syst, vol. 16, no. 9, pp.

889–914, Jun. 2000.

[7] T. Stützle and H. H. Hoos, “Improvements on the Ant-

System: Introducing the MAX-MIN Ant System,” in

Artificial Neural Nets and Genetic Algorithms, Vienna:

Springer Vienna, 1998, pp. 245–249.

[8] M. Dori o, V. Maniezzo, and A. olorni, “Ant system:

optimization by a colony of cooperatin a ents,” IEEE

Trans. Syst. Man Cybern. Part B Cybern., vol. 26, no. 1,

pp. 29–41, Feb. 1996.

[9] T. Stützle, M. López-Ibáñez, and M. Dori o, “A oncise

Overview of Applications of Ant olony Optimization,”

Wiley Encyclopedia of Operations Research and

Management Science. John Wiley & Sons, Inc.,

Hoboken, NJ, USA, 15-Jun-2010.

[10] R. Vuduc, A. Chandramowlishwaran, J. Choi, M. Guney,

and A. Shrin arpure, “On the Limits of GP

Acceleration,” in Proceedin s of the 2Nd SENIX

Conference on Hot Topics in Parallelism, Berkeley, CA,

USA, 2010, pp. 13–13.

[11] V. W. Lee, P. Hammarlund, R. Singhal, P. Dubey, C.

Kim, J. Chhugani, M. Deisher, D. Kim, A. D. Nguyen,

N. Satish, M. Smelyanskiy, and S. Chennupaty,

“Debunkin the 100X GP vs. P myth: an evaluation

of throu hput computin on P and GP ,” 2010, p.

451.

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.6, August 2014

29

[12] M. Mantor and M. Houston, “AMD Graphic ore Next:

Low Power High Performance Graphics & Parallel

Compute,” presented at the Hi h-Performance Graphics

2011, Vancouver, Canada, 07-Aug-2011.

[13] K. Gregory and A. Miller, C++ AMP: accelerated

massive parallelism with Microsoft Visual C++.

Sebastopol, alifornia: O’Reilly Media, 2012.

[14] D. B. Shmoys, J. K. Lenstra, A. H. G. R. Kan, and E. L.

Lawler, Eds., The Traveling salesman problem: a guided

tour of combinatorial optimization. Chichester [West

Sussex] ; New York: Wiley, 1985.

[15] P. H. Dou las, “The obb-Douglas Production Function

Once Again: Its History, Its Testing, and Some New

Empirical Values,” J. Polit. Econ., vol. 84, no. 5, pp.

903–15, 1976.

[16] D. S. Johnson and L. A. McGeoch, “Experimental

Analysis of Heuristics for the STSP,” in The Travelin

Salesman Problem and Its Variations, vol. 12, G. Gutin

and A. P. Punnen, Eds. Boston, MA: Springer US, 2007.

[17] J. . Don arra and D. . Sorensen, “A portable environment

for developin parallel FORTRAN pro rams,” Parallel

Comput., vol. 5, no. 1–2, pp. 175–186, Jul. 1987.

[18] W. D. Hillis and G. L. Steele, “Data parallel al orithms,”

Commun. ACM, vol. 29, no. 12, pp. 1170–1183, Dec.

1986.

[19] . R. Gaster and L. Howes, “ an GPGP Pro rammin

Be Liberated from the Data-Parallel ottleneck?,”

Computer, vol. 45, no. 8, pp. 42–52, Aug. 2012.

[20] T. Stützle and M. Dori o, “A short conver ence proof

for a class of ant colony optimization al orithms,” IEEE

Trans. Evol. Comput., vol. 6, no. 4, pp. 358–365, Aug.

2002.

[21] W. J. Gutjahr, “Mathematical runtime analysis of A O

al orithms: survey on an emer in issue,” Swarm Intell.,

vol. 1, no. 1, pp. 59–79, Oct. 2007.

[22] B. Bullnheimer, G. Kotsis, and C. Strauß,

“Parallelization Strate ies for the Ant System,” in Hi h

Performance Algorithms and Software in Nonlinear

Optimization, vol. 24, R. Leone, A. Murli, P. M.

Pardalos, and G. Toraldo, Eds. Boston, MA: Springer

US, 1999.

[23] P. Delisle, M. Gravel, M. Krajecki, C. Gagné, and W. L.

Price, “ omparin parallelization of an A O: messa e

passin vs. shared memory,” in Hybrid Metaheuristics,

vol. 3636, M. J. Blesa, C. Blum, A. Roli, and M.

Sampels, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2005, pp. 1–11.

[24] I. Ellabib, P. alamai, and O. asir, “Exchan e strate ies

for multiple Ant olony System,” Inf. Sci., vol. 177, no.

5, pp. 1248–1264, Mar. 2007.

[25] [25] M. Manfrin, M. Birattari, T. Stützle, and M. Dorigo,

“Parallel Ant Colony Optimization for the Traveling

Salesman Problem,” in Proceedin s of the 5th

International Conference on Ant Colony Optimization

and Swarm Intelligence, Berlin, Heidelberg, 2006, pp.

224–234.

[26] J. Jun Ouyang and G.-R. Gui-Ron Yan, “A multi-group

ant colony system al orithm for TSP,” in Machine

Learning and Cybernetics, 2004. Proceedings of 2004

International Conference on, 2004, vol. 1, pp. 117–121.

[27] M. Pedemonte, S. Nesmachnow, and H. ancela, “A

survey on parallel ant colony optimization,” Appl. Soft

Comput., vol. 11, no. 8, pp. 5181–5197, Dec. 2011.

[28] T. Stützle, “Parallelization strate ies for Ant olony
Optimization,” in Parallel Problem Solvin from Nature

— PPSN V, vol. 1498, A. E. Eiben, T. Bäck, M.

Schoenauer, and H.-P. Schwefel, Eds. Berlin/Heidelberg:

Springer-Verlag, 1998, pp. 722–731.

[29] H. ai, D. Ouyan , X. Li, L. He, and H. Yu, “MAX-

MIN Ant System on GP with DA,” in 2009 Fourth

International Conference on Innovative Computing,

Information and Control (ICICIC), 2009, pp. 801–804.

[30] J. M. Cecilia, J. M. García, A. Nisbet, M. Amos, and M.

 jaldón, “Enhancin data parallelism for Ant olony

Optimization on GP s,” J. Parallel Distrib. omput.,

vol. 73, no. 1, pp. 42–51, Jan. 2013.

[31] A. Delévacq, P. Delisle, M. Gravel, and M. Krajecki,

“Parallel Ant Colony Optimization on Graphics

Processin nits,” J. Parallel Distrib. omput., vol. 73,

no. 1, pp. 52–61, Jan. 2013.

[32] K. Kobashi, A. Fujii, T. Tanaka, and K. Miyoshi,

“Acceleration of Ant olony Optimization for the

Traveling Salesman Problem on a GP ,” 2011.

[33] O. Nitica, “A Parallel Ant olony Optimization

Algorithm for the Travelling Salesman Problem:

Improvin Performance sin DA,” achelor thesis,

University of Delaware, 2011.

[34] . Tantawy, “Ant olony Optimization Parallel

Algorithm for GPU,” arleton niversity, Honours

Project COMP 4905, Apr. 2011.

[35] A. chida, Y. Ito, and . Nakano, “An Efficient GP

Implementation of Ant Colony Optimization for the

Travelin Salesman Problem,” in 2012 Third

International Conference on Networking and Computing

(ICNC), 2012, pp. 94–102.

[36] M. Dorigo, Ant colony optimization. Cambridge, Mass:

MIT Press, 2004.

[37] J. S. Angelo, D. A. Augusto, and H. J. C. Barbosa,

“Strate ies for Parallel Ant olony Optimization on

Graphics Processin nits,” in Ant olony Optimization

- Techniques and Applications, H. J. C. Barbosa, Ed.

InTech, 2013.

[38] A. Munshi, Ed., OpenCL programming guide. Upper

Saddle River, NJ: Addison-Wesley, 2012.

[39] J. Nickolls, I. Buck, M. Garland, and K. Skadron,

“Scalable parallel pro rammin with DA,” Queue,

vol. 6, no. 2, p. 40, Mar. 2008.

[40] F. Darema, D. A. George, V. A. Norton, and G. F.

Pfister, “A sin le-program-multiple-data computational

model for EPEX/FORTRAN,” Parallel omput., vol. 7,

no. 1, pp. 11–24, Apr. 1988.

[41] “NVIDIA’s Next Generation DA ompute

Architecture: epler G 110.” NVIDIA, 2012.

[42] A. Williams, C++ concurrency in action. Shelter Island,

N.Y: Manning, 2012.

[43] “multicoreware / cppamp-driver-ng / wiki / Home —

 itbucket.” [Online]. Available:

https://bitbucket.org/multicoreware/cppamp-driver-

ng/wiki/Home. [Accessed: 29-Jun-2014].

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.6, August 2014

30

[44] N. M. Josuttis, The C++ standard library: a tutorial and

reference, 2nd ed. Upper Saddle River, NJ: Addison-

Wesley, 2012.

[45] D. Vandevoorde, C++ templates: the complete guide.

Boston, MA: Addison-Wesley, 2003.

[46] A. A. Stepanov, Elements of programming. Upper

Saddle River, NJ: Addison-Wesley, 2009.

[47] . R. Gaster and L. Howes, “Open L ++,” in

Proceedings of the 6th Workshop on General Purpose

Processor Using Graphics Processing Units, New York,

NY, USA, 2013, pp. 86–95.

[48] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery, Numerical recipes: the art of scientific

computin , 3rd ed. ambrid e,  ; New York:

Cambridge University Press, 2007.

[49] J. J. entley, “Fast Algorithms for Geometric Traveling

Salesman Problems,” ORSA J. omput., vol. 4, no. 4,

pp. 387–411, Nov. 1992.

[50] A. lazinskas and A. Misevicius, “ ombinin 2-opt, 3-

opt and 4-opt with K-swap-kick Perturbations for the

Travelin Salesman Problem,” in Proceedings of the 17th

International Conference on Information and Software

Technologies, IT 2011, Kaunas, Lithuania, 2011.

[51] M. L. Fredman, D. S. Johnson, L. A. Mcgeoch, and G.

Ostheimer, “Data Structures for Travelin Salesmen,” J.

Algorithms, vol. 18, no. 3, pp. 432–479, May 1995.

[52] G. Reinelt, The traveling salesman: computational

solutions for TSP applications. erlin ; New York:

Springer-Verlag, 1994.

[53] “TSPLI .” [Online]. Available: http://comopt.ifi.uni-

heidelberg.de/software/TSPLIB95/. [Accessed: 07-Mar-

2013].

[54] D. S. Johnson and L. A. McGeoch, “The travelin

salesman problem: a case study,” in Local search in

combinatorial optimization, E. H. L. Aarts and J. K.

Lenstra, Eds. Princeton: Princeton University Press,

2003, pp. 215–310.

[55] M. G. A. Verhoeven, E. H. L. Aarts, and P. C. J.

Swinkels, “A parallel 2-opt algorithm for the Traveling

Salesman Problem,” Future Gener. omput. Syst., vol.

11, no. 2, pp. 175–182, 1995.

IJCATM : www.ijcaonline.org

