
International Journal of Computer Applications (0975 – 8887)

Volume 100– No.5, August 2014

16

A Small Domain Specific Language for Cryptographic

Algorithms

Jaimandeep Singh

Brijendra Kumar Joshi
Professor

MCTE

ABSTRACT

This paper establishes the need for a small Domain Specific

Language to support rapid testing and diagnosis of

cryptographic algorithm. Such a language will require built-in

support for modulo arithmetic, which is used for creating

mathematical locks in modern crypto systems.

The paper also provides a framework/prototype for such a

language. It can further be used as a building block for

broader set of language specific features.

General Terms

Cryptographic Algorithms, Domain Specific Language,

Compiler, Parser, Lexer.

Keywords

cryptography, flex, bison, lex, yacc, ply, parser, grammar,

tokenizer, compiler, lexer, llvm, llvmpy.

1. INTRODUCTION
Presently, cryptographic applications are coded in

conventional general purpose programming languages like

C/C++. These languages do not have built-in features that

support testing and diagnosis of cryptographic algorithms.

Other languages that support cryptographic applications like

MATLAB are very resource heavy, proprietary and require

licenses to work.

Also, the existing general purpose languages have turned into

a goliath of language specific features. The beginner in

programming languages find it very difficult to write even a

simple looping construct because of ten different ways of

doing the same thing. They are lost in the mire of features

rather than working on the application logic/business model.

Therefore, there is a need for a small domain specific

programming language targeting cryptographic applications.

This paper describes a prototype for a small programming

language which has built in support for modular arithmetic.

Most of the modern cryptographic algorithms are based on

modular arithmetic as it can be used to create mathematical

locks that are easy in one direction but hard in another, this is

also known as discrete logarithm problem.

The Python Language because of its flexibility has been used

for quick prototyping. The llvm compiler infrastructure

project is modular and easily understandable and has therefore

been chosen over gcc.

2. STAGES OF A COMPILER
A compiler is a large and complex piece of code and for

simplicity has been divides into various modules/stages. A

simple compiler consists of four stages as shown in the Fig

1[1].

Fig 1: Stages of a compiler

The tokenizer takes the input string and breaks it into tokens.

An input string of '5 * 7 + 3' is split into tokens 5, *,
7, +, 3. The Syntax Analysis Stage or the parser checks the

validity of the expressions based on context-free-grammar

rules. Semantic analysis stage detects errors like type

mismatch, redefinition, parameters mismatch etc. Code

Generation stage converts the Abstract Syntax Tree (AST)

into target machine code.

In our prototype, we are using PLY Python package. PLY

package consists of lex and yacc modules. Lex performs the

function of a Tokenizer in a conventional compiler. It

tokenizes the input stream based on regular expression rules.

yacc performs the functionality of Syntax Analysis in a

conventional compiler. It checks language syntax validity

based on context free grammar rules.

llvm is a Compiler Infrastructure Project, which is used for

backend code generation and optimization.

3. LEXER
There are two options for a lexer: either we can handcraft a

lexer or use existing toolsets like Lex/Flex. Handcrafting a

lexer could be buggy and result in unforeseen errors in later

stages of our compilation process. Therefore, in our prototype

we will be using standard utility call Lex which stands for A

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.5, August 2014

17

Lexical Analyzer Generator originally written by Mike Lesk

and Eric Schmidt[2].

Lex is a program generator for lexical processing of input

streams. Simply stated, it is used to split the input string into

tokens or lexemes.

Python has PLY (Python Lex-Yacc) package for lexing and

parsing[3]. Our prototype uses lex.py module from this

package for tokenizing or lexing the input stream.

The output of a typical tokenizer is given below in Fig 2. It

produces tokens along with their associated values. The object

returned by the PLY lexer has attributes (type, value, lineno,

lexpos)[4].

Fig 2: Output of a Typical Lexer

4. PARSER
The input string is first tokenized with the help of lexer, these

tokens are then given as input to the parser which then

produces the Abstract Syntax Tree (AST) based on the

context-free grammar rules.

There are two major techniques of parsing known as top-down

parsing and bottom-up parsing. These techniques differ in the

way in which they build up the parse tree. The top-down

parsers build the parse tree starting from the root node and

work down to the leaves whereas bottom-up parsers start form

the leaves and go all the way up to root node.

LR (Left to right, Rightmost Derivation) is a bottom-up

parser. Here “L” is for left to right scanning of input and “R”

is for constructing rightmost derivation in reverse [5].

yacc.py module of PLY package uses LALR(1) parsing and

is based on unix utility of yacc[3]. LALR parser or Look-

Ahead LR parser is a variant of LR parser.

4.1 Abstract Syntax Tree
The prototype uses simple operator grammar for parsing

standard arithmetic operators. This is given as docstings in the

Listing 1 below. Operator precedence and associativity is used

to remove any kind of ambiguity in grammar.

class Expr is the base class. BinOp and Number are the

derived classes of the base class Expr. Whenever reduction

rule is applied a new object of the respective class gets

instantiated and becomes part of the parse tree.

Once the parse tree is built and we are at the root node,

Codegen method of respective classes gets called

recursively.

Listing 1. Parser for Printing AST for Simple Arithmetic

Operations

Precedence rules for the arithmetic
operators

precedence = (

 ('left','PLUS','MINUS'),

 ('left','TIMES','DIVIDE'),

)

class Expr: pass

class BinOp(Expr):

 def __init__(self,left,operator,right):

 self.type = "binop"

 self.left = left

 self.right = right

 self.operator = operator

 def CodeGen(self):

 left = self.left.CodeGen()

 right = self.right.CodeGen()

 if self.operator == '+':

 return (left, right, 'addtmp')

 elif self.operator == '-':

 return (left, right, 'subtmp')

 elif self.operator == '*':

 return (left, right, 'multmp')

class Number(Expr):

 def __init__(self,value):

 self.type = "number"

 self.value = value

 def CodeGen(self):

 return (self.type, self.value)

def p_statement_expr(p):

 """statement : expression"""

 print (p[1].CodeGen())

def p_expression_binop(p):

 """expression : expression PLUS expression

 | expression MINUS expression

 | expression TIMES expression

 | expression DIVIDE expression
 """

 p[0] = BinOp(p[1],p[2],p[3])

def p_expression_number(p):

 """expression : NUMBER"""

 p[0] = Number(p[1])

The above code would spit out a tree data structure, as in Fig

3, taking into consideration the operator precedence and

context-free grammar rules defined inside the code.

Fig 3: Output of Parser as Abstract Syntax Tree

4.2 Extension of Grammar for Modular

Arithmetic
The typical arithmetic grammar was extended to support

modulo operations. The extended grammar is given as

docstrings in Lisitng 2. Here, Modulo class extends the base

class Expr given in Listing 1. A new instance of Modulo
class is created whenever the reduction rule is applied.

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.5, August 2014

18

Listing 2. Grammar for Modular Arithmetic

def p_expression_modulo(p):

 """expression : LPAREN expression RPAREN
MODULO LPAREN expression RPAREN"""

 p[0] = Modulo(p[2], p[6])

5. CODE GENERATION
llvm compiler infrastructure was chosen over GCC for

prototyping because of its modularity and ease of usage. Also,

GCC is built as a monolithic static compiler, which makes it

extremely difficult to use as an API and integrate into other

tools. Further, its historic design and current policy makes it

difficult to decouple the front-end from the rest of the

compiler[6].

5.1 Adding a Function
The block diagram for adding a function to llvm is given in

Fig 4.

The first step in adding a function to llvm is to create a new

module. Modules are top level containers which contain

functions, global variables, and symbol table entries[7]. After

creating a new function we provide it with arguments.

Functions do not have free-standing and are therefore added

to the modules.

Instructions are now added to functions in form of Basic

Blocks.

Fig 4: Block Diagram for Adding a Function to llvm

5.2 Compiling and Running Code
The steps involved in compiling and running the prototype is

given in terms of a block diagram in Fig 5.

Firstly, we create an object of Execution engine and then add

the module to the execution engine. Thereafter, we provide

arguments to the functions inside the module.

Fig 5: Block diagram for Running Code

5.3 Code Generation for Modular

Arithmetic
Modular arithmetic is also known as clock arithmetic where

the numbers wrap around on reaching a certain value also

called as modulus.

Let us take two examples, firstly when both the operands are

positive such as 13 mod 5 = 3. Now, let us consider case of a

negative operand such as -5 mod 3 = 1.

The class Modulo given in Listing 3 takes into account both

the cases when the operands are positive and when they are

negative.

Listing 3. Class for Modulo Arithmetic

class Modulo(Expr):

 def __init__(self, left, right):

 self.type = "modulo"

 self.left = left

 self.right = right

 def CodeGen(self):

 global g_llvm_builder

 left = self.left.CodeGen()

 right = self.right.CodeGen()

 mod_result=g_llvm_builder.srem(left, right,
'modtmp')

 # Convert condition to a bool by comparing
'greater than equal to' 0

 condition_bool=g_llvm_builder.icmp(ICMP_SGE
, mod_result, Constant.int(Type.int(), 0),
'modcond')

 function=g_llvm_builder.basic_block.functio
n

 # Create blocks for the +ve and -ve result
cases.

 positive_block=function.append_basic_block(
'positive')

 negative_block=function.append_basic_block(
'negative')

 merge_block=function.append_basic_block('mo
dcond')

 g_llvm_builder.cbranch(condition_bool,
positive_block, negative_block)

 # Block for positive mod value.

 g_llvm_builder.position_at_end(positive_blo
ck)

 positive_value = mod_result

 g_llvm_builder.branch(merge_block)

 positive_block = g_llvm_builder.basic_block

 # Block for negative mod value.

 g_llvm_builder.position_at_end(negative_blo
ck)

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.5, August 2014

19

 negative_value=g_llvm_builder.add(mod_resul
t, right, 'addbase')

 g_llvm_builder.branch(merge_block)

 negative_block = g_llvm_builder.basic_block

 # Emit merge block.

 g_llvm_builder.position_at_end(merge_block)

 phi=g_llvm_builder.phi(Type.int(), 'iftmp')

 phi.add_incoming(positive_value,
positive_block)

 phi.add_incoming(negative_value,
negative_block)

 return phi

The output of the code generated by the class Modulo is given

in Fig 6.

Fig 6: Output Code Generation of Modular Arithmetic

6. CONCLUSION
There is a kind of race in providing more and more advanced

features in any leading general purpose programming

language. An entry level programmer is overawed by the

feature list and the so called the best practices of doing even a

simple thing.

Also, the current generation general purpose programming

languages like C/C++ do not have built-in support for modulo

arithmetic. The languages like MATLAB that do support

modulo arithmetic are resource heavy and proprietary.

Therefore, there is a niche area for a small domain specific

language that has built-in support for modulo arithmetic and

which provides useful support in testing and diagnosis of

cryptographic algorithms. This paper addresses this very area

and builds a prototype for such a language.

7. REFERENCES
[1] V Raghavan; 2010; “Principles of Compiler Design”;

1st edition, Tata McGraw Hill Education Private

Limited, New Delhi, p 7, 70-80.

[2] John R. Levine, Tony Mason and Doug Brown; 1992;

“lex & yacc”; 2nd Edition, O'Reilly, p 1–2.

[3] https://pypi.python.org/pypi/ply/3.1 (accessed on June

24, 2014).

[4] http://www.dabeaz.com/ply/ply.html#ply_nn9 (accessed

on June 24, 2014).

[5] Alfred V. Aho, Ravi Sethi and Jeffery D. Ullman; 2002;

“Compilers: Principles, Techniques and Tools”; 9th

Indian edition, Pearson Education (Singapore) Pte. Ltd.,

Indian Branch, Delhi, p 215.

[6] http://clang.llvm.org/comparison.html (accessed on June

24, 2014).

[7] http://llvm.org/docs/ (accessed on July 12, 2014).

[8] http://www.llvmpy.org/ (accessed on June 25, 2014).

[9] Andrew W. Appel; 2001; “Modern Compiler

Implementation in C”; Special Edition for Sale in South

asia; Cambridge University Press.

[10] Jean Paul Tremblay and Paul G.Sorenson; 1985; “The

Theory and Practice of Compiler Writing”; McGraw-

Hill Book Company, USA.

[11] S. C. Johnson; 1975; “YACC: Yet Another Compiler

Compiler”; Computing Science Technical Report no 32,

Bell Laboratories, Murray Hills, New Jersey.

[12] http://flex.sourceforge.net/ (accessed on July 12, 2014).

[13] Brain W. Kernighan and Rob Pike, 1995, “The UNIX

Programming Environment”; 9th Indian edition,

Prentice-Hall of India Private Limited, New Delhi, p

233-260.

IJCATM : www.ijcaonline.org

