A Novel Algorithm for Efficient Channel Estimation using MMSE-Kalman Estimator and Median Filtering

Naincy Valdaya
M-Tech Research Scholar
Department of ECE
NRI Institute of Research and Technology, Bhopal, Bhopal

Mukesh Kumawat
Research Guide
NRI Institute of Research and Technology, Bhopal, Bhopal

Sachin Murarka
Co-Guide
Department of ECE
NRI Institute of Research and Technology, Bhopal, Bhopal

ABSTRACT

Wireless communication is a emerging field of evolution in modern era of technology, and every day it is giving new technology to facilitate human being. The new facilities always need a QoS i.e. directly user satisfaction. For satisfaction of wireless users is to give efficient and reliable technology, so that sharing of information is made easier. In the same context the channel of wireless communication system need extra attention for efficient delivery of information from one place to another wirelessly. In this paper we are trying to estimate the channel using MMSE-Kalman Estimator in OFDM system with median filtering to enhance the performance of the system. The proposed methodology is implemented and figure of merits are calculated as BER and MSE, and we have found that the use of median filter with MMSE-Kalman estimator is good.

Keyword
MMSE, Kalman Estimator, Median Filter, BER and MSE

1. INTRODUCTION

A central issue in the wireless communications setting is the signal fading and inter symbol interference (ISI) introduced by the channel [1]. Due to multipath propagation, many copies of the transmitted signal arrive at the receiver antenna, every with a given attenuation and delay. When these delays are separated by more than the symbol duration, inter symbol interference (ISI) results. Whereas, when the receiver antenna is set in motion, as is usually the case in such applications such as cellular telephony, signal fading results as the received power level fluctuates because the multipath components add constructively or destructively. Therefore as a result of these distortions, wireless fading channels show dramatically poorer bit-error performance than traditional additive white Gaussian noise channels when using uncoded transmissions.

The idea behind this sort of precoding is to temporally distribute the energy of each and every symbol, and effectively recombine these transmissions, to achieve the average effect of the channel rather than the instantaneous fade. A key element of the receiver is an equalizer that partially compensates for the instantaneous ISI and fading effects of the channel, and constructing the equalizer requires some information of the fading channel impulse response. In a real wireless system, particularly when the receiver is mobile, information of the fading characteristics must be obtained through adaptive channel estimation, either blind or trained, taking into account a model for the channel. The impact of estimation errors must then be incorporated into the performance analysis of the communication system. Various techniques for estimating the channel must be compared based on their bit-error rate probability and computational complexity.

Types of Fading:

- Flat fading
- Frequency selective fading

Due to Doppler spread
- Fast fading
- Slow fading

If the bandwidth of the channel is less than range of frequency over which the channel has constant gain and linear phase, then the signal undergoes flat fading. This type of fading is common in literature as this is analogous to a low pass filter. After passing the spectral characteristics of the channel remains unchanged but the gain changes with time.

2. ESTIMATING THE CHANNEL

The mobile radio channel sharply influences the performance of wireless communication system and needs rigorous analysis before modeling any system. The transmission path between the transmitter and the receiver can be a simple line of sight to a severely faded by trees, buildings and mountains. Radio channels are random and time varying in nature, so don’t offer a
smooth analysis. So modeling the radio channel taking all the influencing parameters into account is a tough task. So estimating the channel by using its response to a known data and repeating this process time and again, there by using channel statistics. Various estimation techniques are used in literature, here we have exploited the use of LS, MMSE and Modified MMSE estimator.

Minimum Mean Square Error (MMSE) Estimation:

If the g is uncorrelated with W then the time domain MMSE estimator is given by [22]

$$\hat{g}_{\text{MMSE}} = R_{Yg}R_{YY}^{-1}Y$$

where

- R_{Yg}: cross-covariance matrix of Y and g
- R_{YY}: auto-covariance matrix of Y

For MMSE estimator is given by

$$Q_{\text{MMSE}} = R_{gg}^{-1}$$

Kalman Filter for Channel Estimation:

The Kalman filter is an efficient recursive algorithm which estimates the state of a dynamic system from a series of noisy measurements [25, 26]. Kalman filter has been applied in communication systems since 1970s [18–19]. Lawrence and Kaufman [18] first applied Kalman filter in the equalization of digital communication systems. The proposed algorithmic [18] do not exploit any prior information about the channel state, and it can only be applied in time invariant channel. The state equation is made based on the information symbol, with the driving noise as the information symbol. The state equation said nothing more than that each succeeding component at time i is equal to the previous component at time i with known channel state, the state variables shall be estimated based on the observation. When the channel state is not known, the state model needs to be expanded in which all the unknown parameter, the adding information symbol and the channel state, are included.

Kalman filter could also be applied to track the states of time varying channels [21–24]. The state variable is defined as the channel states, which can be modeled in an AR model [21]. The state equation is then built based on the AR model, which reflects the statistics of time varying channel. Ilit is [21] proposed a Kalman filter to track multi-path channel in a direct-sequence, the spread-spectrum communication systems. Ilit and Fuxjaegera [21, 22] modeled the time-varying tap coefficients as autoregressive (AR) processes with respect to time, and then employed an extended Kalman filter to adaptively estimate them. Their methods take advantage of the channel’s time domain statistics, but no method is provided to estimate the AR model parameters. Additionally, the assumption of uncorrelated tap coefficients further limits the applicability of the method.

The contribution of this work is a Kalman filter based framework of channel equalizer in a time-frequency-fading environment. The gains of the sub-channels are defined as the state variables, and an AR process is used to model the dynamics of the channel. Then Kalman filter could be applied to estimate the channel from the received OFDM signals when pilot symbols are available. This Kalman filter is of a dimension equal to the product of the number of sub-carriers and the order of the AR model, which can be very large. To reduce its complexity, per-subcarrier Kalman filter scheme is proposed, which is the Kalman filter channel estimator is applied to obtain the gain of each sub-carrier independently, and then a minimum mean-square-error (MMSE) combiner is used to refine the estimates. The per-subcarrier Kalman estimator investigates the time-domain correlation of the channel, while the MMSE combiner investigates the frequency domain correlation. This two-step solution provides a performance comparable to the much more complicated Kalman joint estimator.

The Kalman filter method is also extended to give a blind channel estimation algorithm based on the mixture Kalman filter (MKF). The MKF uses Monte Carlo simulations to do filtering. By simulating the transmitted symbol sequences according to their a posteriori probabilities, so this is called importance sampling, and feeding them to the Kalman filter channel estimator, a Bayesian estimate of the channel can be obtained through averaging the Kalman filter output of every simulation. The MKF technique applies to the joint estimation of all sub-carriers and also works in the per-subcarrier fashion with a much reduced complexity. In addition to the channel estimate, the MKF could directly give symbol detection.

3. PROPOSED METHODOLOGY

Wireless communication is needed to reduce the effects of error introduced by the wireless channel by changing its nature varies frequently. For this there should be a method to detect and estimate the channel characteristics so that system can change the nature of it to compensate the noises. In this section the proposed methodology is explained in detail. The Block diagram and flow chart of the proposed methodology is given in below figures.

The block diagram shows the Proposed Methodology for wireless system with QAM-64 modulation and Median Filtration Methodology in Fig. In the proposed methodology QAM-64 modulation with Median Filter has been used to minimize the Bit Error Rate is calculated with SNR. In the transmitter section firstly the data is modulated by 64-QAM modulator and then Pilot Insertion is done after this IFFT is applied for multiplexing then after addition of cyclic prefix is done with data signal through the Rayleigh Fading Channel the noise is mixed. In the receiver section then cyclic prefix is removed FFT is applied for de-multiplexing then Pilot Removal & Demodulator has been used then after MMSE Kalman Estimator and Median Filter is adopted to reduce the BER.
As the above flow graph shows the simulation flow, in this the environmental variables are initialized the then signal is generated, 64-QAM Modulator is adopted after that OFDM Pilot Insertion is done after a OFDM the signal is transmitted through Rayleigh Fading Channel & Adding Noise then OFDM DEMUX Technique is used after that the MMSE with Kalman Estimation is implemented then 64-QAM modulation and then Median Filter is adopted for minimizing the BER.

4. SIMULATION RESULTS

In wireless communication channel estimation is the need to enhance the reliability and performance of the system. Here we have calculated the two parameters bit error rate(BER) and mean square error(MSE). In Fig. 4.1 BER performance of proposed methodology is shown for MMSE Kalman Estimator with and without filter. BER vs SNR curve shows the performance of the system as the value of BER reduces the performance of the system increases. It can be said that in other aspects that of the value of BER is for lower values of SNR that means the systems is good even on the longer distances. In Fig. 4.1 we have calculated the values of BER vs SNR for MMSE-Kalman Estimator with Median Filter and without Median Filter and from the results it is clear that the values(i.e. performance of the system is better for MMSE-Kalman Estimator with median filter.

Fig. 4.1 BER performance of OFDM system using MMSE-Kalman Estimator and Median Filter
5. CONCLUSION AND FUTURE SCOPE

The proposed methodology is implemented and the result is extracted which is shown in previous section. Now for the proper estimation and better performance proposed methodology is giving better results than previous methods. From the simulation results we can say that the use of MMSE-Kalman Estimator followed by median filtering giving better than MMSE-Kalman Estimator alone. After studying the methodology and the outcomes i.e. BER and MSE, we can say that if we can use the better estimator with median filter we can achieve better results or instead of median filter.

6. REFERENCES

7. AUTHOR'S PROFILE
Naincy Valdarya is a research Scholar at NRI Institute of Science and Technology, under Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal. She is pursuing her Master of Technology in Digital Communication. She has keen interest in OFDM technology in wireless communication system.