
International Journal of Computer Applications (0975 – 8887)

Volume 100– No.11, August 2014

42

A Fuzzy Controller for TCP Improvement over Mobile

Networks

 Sara Raad Qasim Zainab T. Alisa, phD
 Computer and Control- Electrical Department Baghdad University

 University Of Baghdad Iraq, IEEE member

ABSTRACT

The Transmission Control Protocol (TCP) is used for reliable

delivery of data over unreliable networks. Practically, most

TCP mechanisms have been carefully designed for wired

networks. Neglecting the characteristics of wireless

environments can lead to TCP implementations with poor

performance. In order to use TCP in mobile networks,

improvements have been proposed in this paper to enhance

TCP algorithm to distinguish between the different types of

loss events. In mobile or static wireless environments, losses

are not always due to network congestion, as in the case of

wired networks. In this paper, a modified algorithm is

presented using fuzzy controller to differentiate the loss

events (error loss from congestion loss) that intend at adapting

TCP to mobile and static wireless environments with better

performance. Simulation results were performed using

OMNET simulator and have showed that the new proposal

has better throughput than other TCP schemes.

Keywords
ssthresh, cwnd, westwood, FLC, RTT, fwestwood

1. INTRODUCTION
Wireless Networks are complex systems that may contain

mobile or static nodes that can organize themselves freely and

dynamically. In this way they form randomly, and temporary

wireless networks topologies, allowing devices to seamlessly

interconnect in areas with no pre-existing infrastructure.

Recently, many research efforts have been put on the new

challenging wireless environment.

TCP (Transmission Control Protocol) [1] was designed to

provide reliable end-to-end data delivery over unreliable

networks. In theory, TCP should be independent of the

technology of the underlying environment infrastructure. In

particular, TCP should not care whether the Internet Protocol

(IP) is running over wired or wireless connections. In practice,

it does matter because most TCP algorithms have been

designed based on assumptions that are in the context of wired

networks. Neglecting the properties of wireless transmission

lead to poor performance of TCP implementations.

In wireless networks, the principal problem of TCP lies in

performing congestion control in case of losses that are not

induced by network congestion. Since bit error rates are very

low in wired networks, nearly all TCP versions nowadays

(Tahoe, Reno, NewReno, and Vegas) assume that packets

losses are due to congestion. Consequently, when a packet is

found to be lost, either by timeout or by multiple duplicated

ACKs, TCP slows down the sending rate by adjusting its

congestion window. Unfortunately, wireless networks suffer

from several types of losses that are not related to congestion,

making TCP not adapted to this environment. Numerous

improvements and optimizations have been proposed over the

last few years to enhance TCP performance over wireless

networks. TCP versions: Tahoe, Reno, NewReno, and Vegas

perform differently in wireless networks [2]. However, all

these versions suffer from the same problem of inability to

distinguish between packet losses due to congestion from

losses due to the specific features of Ad hoc networks. While

TCP Westwood was basically designed to perform in wireless

environments but it fails to achieve high performance at high

error rate.

2. TRANSMISSION CONTROL

PROTOCOL
TCP is a window-based acknowledgement-flow control

protocol [3]. It uses additive-increase multiplicative decrease

strategy for changing its window as a function of network

conditions. Packets of a TCP connection are sent with

increasing consecutive sequence numbers. In the simplest

operation of TCP, at each arrival of a packet at the

destination, an ACK is sent back to the source with the

information of the next sequence number that is expected.

Thus if all packets up to packet n-1 have reached the

destination, then the last arrival will trigger an ACK with

sequence number n. If a packet n is lost in the network and

packet n + i, i = 1; 2; 3; arrives at the destination, then each of

these packets will trigger an Acknowledgement indicating that

the destination is expecting packet n. These are called

duplicated ACKs. In the absence of losses, starting from one

packet or from a larger value, the window is increased

exponentially by one packet every non-duplicate ACK until

the source estimate of network capacity is reached. This is the

Slow Start (SS) phase, and the capacity estimate is called the

slow start threshold (ssthresh). In most versions of TCP

(Tahoe, Reno and New Reno) once ssthresh is reached, the

source switches to a slower increase in the window by one

packet for every window’s worth of ACKs. This phase is

called Congestion Avoidance (CA) phase [4]. The window

increase is interrupted when a loss is detected. Two

mechanisms are available for the detection of losses: the

expiration of a retransmission timer (timeout), or the receipt

of three duplicate ACKs (the latter is called the fast retransmit

(FRXT) phase. The source then sets its estimation of the

capacity to half the current window; this action is due to the

fact that when these TCP versions have been developed,

losses were indication of congestion as TCP was then

deployed only over wireline networks.

3. OVERVIEW OF TCP VERSIONS
Tahoe [5], the first version of TCP to implement congestion

control, at this point sets the window to one packet and enter

the slow start phase to reach the new sstresh. Slow starting

after every loss detection deteriorates the performance given

the low bandwidth utilization during SS. When the loss is

detected via timeout a more drastic reaction is taken as a more

drastic congestion is understood to occur, since the ACK

stream has stopped. In the FRXT case, ACKs still arrive at the

source, and losses are recovered without SS. This is the

behavior of the newer versions of TCP (Reno, NewReno,

SACK, etc.) that call a Fast Recovery (FRCV) algorithm to

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.11, August 2014

43

retransmit the losses while maintaining enough packets in the

newtork to preserve the ACK clock. Once the losses are

recovered, this algorithm ends and normal CA is called. If

FRCV fails (to recover the losses), the ACK stream stops, a

timeout occurs, and the source resorts to SS as with Tahoe.

Among the TCP versions that use the FRCV, the difference is

in the estimation of the number of packets in the flight during

FRCV.

Reno version [6] considers every duplicate ACK a signal that

a packet has left the network. The problem of Reno is that it

leaves FRCV when an ACK for the first loss window is

received. This prohibits the source from detecting the other

losses with FRXT. A long timeout is required to detect the

other losses.

NewReno version [7] has been proposed to overcome Reno’s

problem. The idea is to stay in FRCV until all the losses in the

same window are recovered. Another problem of Reno and

NewReno is that they rely on ACKs to estimate the number of

packets in flight. ACKs can be lost on the return path, which

results in an underestimation of the number of packets that

have left the network. More information is needed to estimate

more precisely the number of packets in the pipe. This

information is provided by the selective ACK (SACK) [68], a

TCP option containing the three blocks of contiguous data

most recently received at the destination.

Vegas version [8] aims to decouple congestion detection from

losses. In TCP Vegas, the RTT of the connection and the

window size are used to compute the number of packets in the

network buffers. The window is decreased when this number

exceeds a certain threshold and is increased when it is below

some threshold. In other words, Vegas also use delay as a

congestion indication and then reacts to reduce its throughput.

Westwood version [9] improves the behavior of TCP Reno in

wired and wireless networks. The enhancement is

significantly occurred in wireless networks with lossy links.

In fact, TCP Westwood performance is not very aggressive to

random errors, while TCP Reno is equally sensitive to error

loss and congestion loss and cannot differentiate them. Hence;

the tendency of TCP Reno is to overreact to errors. The key

innovative idea is to keep measure at the TCP sender side the

bandwidth used by the connection by checking the returning

ACKs rates. The estimate is then used to update congestion

window (cwnd) and slow start threshold (ssthresh) after

congestion detection, that is, after three duplicate

acknowledgments or after a timeout. This mechanism avoids

the blind halving of the sending rate of TCP Reno after packet

losses and enables TCP Westwood to select ssthresh and

cwnd which is consistent with the estimated bandwidth used

at the time congestion is experienced. This mechanism is

called faster recovery.

4. RELATED WORKS
FLC (Fuzzy Logic Controller) has many applications to

control network congestion since 1990. In early stage, it was

used to do rate control in ATM network, e.g., [10], [11], to

guarantee the QoS (Quality of Service). These control

algorithms are explicit in nature, and they depend on absolute

queue length (the maximum buffer size) to adjust the allowed

sending rate. Nevertheless, these early designs have various

shortcomings including cell loss (even though cell loss is used

as a congestion signal to compute the rate factor, e.g., [12]),

queue size fluctuations, poor network latency, stability and

low utilization. Later, FLC was used in Random Early

Detection (RED) algorithm in TCP/IP networks, e.g., [13],

[14], to reduce packet loss rate and improve utilization.

However, they are still providing implicit or imprecise

congestion signaling, and therefore cannot overcome the

throughput fluctuations and conservative behavior of TCP

sources.

5. THE PROPOSED TCP CONGESTION

CONTROL ALGORITHM
In this paper, a brief description on the proposed functional

fuzzy system is presented. More details on it can be shown in

our previous work [16]. In [16]; a fuzzy controller for

Westwood version is implemented and used for wire network.

This proposal is tested in this work for mobile network.

It consists of three inputs, two outputs and nine rules that

aggregated in a disjunctive manner.

5.1 Inputs of fuzzy system
The inputs of fuzzy controller are:

i. Delay or RTT (Round Trip Time)

This is the first input, it is the time required for a packet to go

from a source to a destination and then back again in the form

of acknowledgement. It is compared with RTT_MIN

(minimum value of RTT) and RTT_MAX (maximum value of

RTT) to get the state of the network overloaded or has error.

The value of RTT_MIN and RTT_MAX are read during the

execution of the program. The membership function for this

input is shown in Figure 2.

Fig. 2: Fuzzy set for fuzzy variable delay or RTT

ii. The ratio of the number of timeouts to the number of

3dupacks (ratio)

This is the second input, if the ratio is very small (in between

0.01 to 0.2), the observation shows that this event has been

caused by a bit error event, not by congestion. If the ratio is

high (e.g. greater than 0.5) then the event is more likely due to

congestion. The membership function for this input is shown

in Figure 3.

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.11, August 2014

44

Fig. 3: Fuzzy set for fuzzy variable ratio

5.2 Rules of Fuzzy System
The proposed system includes 9 rules that are aggregated in a

disjunctive manner, as in the Table 1. These rules were

obtained after tuning the two inputs (RTT and ratio) to get the

best results.

Table 1 Rules of the Fuzzy System [16]

Delay Ratio Outputs Phase

Small Small Same State

Small Medium Same State

Small High Congestion Avoidance

Medium Small Same State

Medium Medium Congestion Avoidance

Medium High Slow Start

High Small Same State

High Medium Congestion Avoidance

High High Slow Start

5.3 Outputs of Fuzzy System
Takagi-Sugeno Fuzzy System is used in this paper, which

used two output functions that do not have an associated

membership function. The outputs are ssthresh and cwnd

which specify the new phase of TCP to trigger after the packet

loss event. These outputs are computed by the defuzzification

method “center average” and the Eq. (1) for two outputs will

be:

 (1)

Where r represent the output number (r=1 for ssthresh and r=2

for cwnd), i represents the on rule (the rule that represents the

current situation), R is the number of rules, bᵢᵣ represent the

output equations (explained in [16]) and ᵢ represents the

certainty of a premise of a rule and thereby represents the

degree of the membership function for the on rule.

6. PERFORMANCE EVALUATION OF

TCP FWESTWOOD
OMNET++ simulation IDE [17], [18], [19] is used to evaluate

the performance of the proposed system in terms of the

number of unique segments transmitted by the sender and the

throughput of a connection. Two scenarios were built to prove

TCP proposal and compare the results with various kinds of

TCP as TCP Reno, TCP Tahoe and TCP Westwood.

6.1 Scenario 1/Wireless Network (with

static nodes)
Figure 5 shows the network used for the simulation. The link

has 10Mbps data rate and 45ms delay.

Fig.5: Network setup of scenario 1

The following applications are generated:

• TCP application between server and d2.

• UDP application between d1 and server.

• UDP application between d3 and d2.

• TCP application between n1 and server.

• TCP application between n3and d3.

The simulation has run separately for FWestwood and other

TCP scheme (Tahoe, Reno and Westwood) for 100s for

different error rates (packet error rate are changed between

1%-10%). Figure 6 show the number of transmitted segments

of FWestwood, Westwood, Reno and Tahoe while Figure 7

present the throughput comparisons among all TCPs.

Fig. 6: The number of transmitted segments of scenario 1

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.11, August 2014

45

Fig. 7: Throughput comparison of scenario 1

6.2 Scenario 2/Mobile Network
In this scenario, FWestwood is used as the main algorithm in

all related nodes so that to control the congestion and packet

loss. Also the node’s movements are chosen to be random

with random speed. Figure 8 show the connected network.

Fig. 8: Network of Scenario 2

All the links have data rate=10Mbps. The simulation is run for

100s for FWestwood, Westwood, Reno and Tahoe separately

and the transmitted segments with the throughput are

measured and for each TCP. The applications used in this

scenario are:

• TCP Application between n1 and a1.

• TCP Application between n2 and v4.

• TCP Application between n3 and a3.

• TCP Application between n4 and f3.

• TCP Application between f3 and n4.

• TCP Application between a1 and v5.

• TCP Application between a3 and f1.

 • UDP Application between n1 and a3.

• UDP Application between n3 and v1.

• UDP Application between f1 and a2.

The speed of the mobile nodes are chosen randomly between

(20mps, 50mps) where mps=meter per second and the moving

environment is (400mx600m). The results are shown in

Figure 9 and Figure 10.

Fig. 9: The number of transmitted Segments of Scenario 2

Fig. 10: Throughput Comparison of Scenario 2

6.3 Simulation Results and Analysis
Figures 6 presents the number of transmitted segments for

scenario 1. As the error rate increases, TCP FWestwood

transmits significantly more segments than Reno, Tahoe, and

Westwood. This behavior of FWestwood showed that it is less

aggressive than other TCP schemes when the random wireless

link error rate is increased. The numerical results of the

transmitted segments are listed in Table 2. In Figure 7, the

throughput among different TCP schemes is presented. Since

FWestwood is based on a precise and stable reaction upon

loss events then it will make use of resources more than other

TCPs and thus transmit more data and achieve higher

throughput.

Table 2 Numerical values of the transmitted segments

number of scenario 1

Error Rate

(%)

Reno Tahoe Westwood FWestwood

0 22286 22286 22286 22286

1 9589 7111 11589 12339

5 3363 2622 4713 5225

10 1326 1351 3602 4316

Values obtained in Table 2 shows the priority of FWestwood

over other TCP variants. This conclusion have confirmed that

the proposed schemes have resulted in significant

performance improvement over other TCP standards since it

retain congestion window as near as possible to the value

when loss event occurs.

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.11, August 2014

46

In mobile network, there is possible causes of packet losses,

Other than congestion, include wireless link errors, channel

contention, and link breakages due to node mobility. For all

these reason there was no expansion in this field other than

this scenario since it needs to take many parameters into

account, for instance network partition, multipath routing and

all MAC layer problems.

The results in Figure 9 and Figure 10 show that all TCP

scheme perform closely to each other at small error rate but

the difference in behavior among FWestwood and the other

standards is increased as error rate become 1% and upper.

This result is due to FWestwood ability to take the best

decision (by the help of fuzzy controller) and check the reason

of the loss event and then react. As a result FWestwood sends

more data and achieve higher throughput as shown clearly in

Table 3.

Table 3 Numerical values of transmitted segments of

scenario 2

Error Rate

(%)

Reno Tahoe Westwood FWestwood

1 13670 13670 14139 15930

5 4059 3230 3148 4275

10 1305 1537 670 2222

The results in the table above ensure that FWestwood detects

segment losses due to bit error with better precision and keeps

a steady flow of segments towards the destination to ensure a

good throughput. Again in real congestion erroneous

environment, FWestwood does not behave aggressively and

hence do not worsen the congestion in the network. This

behavior is very significant feature in FWestwood.

7. CONCLUSIONS
In this paper, technique has been adapted and applied to

increase TCP performance in mobile networks. Through

simulation evaluation it has been demonstrated, under widely

differing operating conditions and environments, that the

FWestwood algorithm is better than all other TCP variants for

mobile network in addition to immobile network.

The new novel traffic management scheme, FWestwood , has

proved its ability to manage the Internet congestion and to

assure the use of resources efficiently for different

applications. The controller is designed by paying attention to

the disadvantages as well as the advantages of the existing

congestion control protocols. As a distributed operation in

networks, the fuzzy controller uses the available parameters in

the network (delay or RTT, the number of timeout and the

number of 3dupack) to effectively throttle the source sending

rate with better stabilized reaction. Unlike the existing explicit

traffic control protocols that potentially suffer from

performance problems or random degradation in the

transmission rate, FWestwood overcomes those fundamental

deficiencies and check the reason of the packet loss before

take any action. To verify the effectiveness and superiority of

FWestwood, extensive experiments have been conducted in

OMNET simulator. In addition to the feature of the FLC

being able to intelligently tackle the nonlinearity of the traffic

control systems, the success of this controller is also attributed

to the careful design of the fuzzy logic elements which

occurred obviously in the simulation results.

As a future work two TCP schemes may be taken in

cooperation with fuzzy controller in order to improve their

algorithm in high speed networks.

8. REFERENCES
[1] Postel, J. 1981.Transmission control protocol, RFC793.

[2] Xu, S. and Saadawi, T. 2002. Performance evaluation of

TCP algorithms in multi-hop wireless packet networks,

Journal of Wireless Communications and Mobile

Computing, Vol. 2, no. 1, pp. 85–100,.

[3] Wikipedia organization, [Online] Available from:

http://en.wikipedia.org/wiki/Sliding_window_protocol,

[Accessed: April 2014].

[4] TCP Congestion avoidance algorithm [Online] Available

from: http://en.wikipedia.org/wiki/TCP_congestion-

avoidance-algorithm, [Accessed: April 2014].

[5] Jacobson, V. 1988. Congestion avoidance and control, in

Proc. of ACM SIGCOMM, Vancouver, Canada.

[6] Fall, K. and Floyd, S. 1996. Simulation based comparisons

of Tahoe, Reno, and Sack TCP, in Computer

Communications review.

 [7] Floyd, S., Henderson, T and Gurtov, A. 2012. The New

Reno Modification to TCP's Fast Recovery Algorithm,

RFC 3782.

[8] Brakmo, L. S. & Peterson, L. L., 1995. TCP Vegas: End to

End Congestion Avoidance on a Global Internet, IEEE

Journal on Selected Areas in Communication, Vol. 13,

no. 8.

[9] Casetti, C., Gerla, M. and Mascolo, S. 2002. TCP

Westwood: End-to-End Congestion Control for

Wired/Wireless Networks, Kluwer Academic Publishers,

Wireless Networks, pp. 467–479.

[10] Chang, C. and Cheng, R. 1994. Traffic control in an

ATM network using fuzzy set theory, in Proc. IEEE

INFOCOM, vol. 3. pp. 1200–1207.

[11] Harju, J. and Pulakka, K. 1999. Optimization of the

performance of a rate based congestion control system by

using fuzzy controllers, in Proc. IEEE IPCCC, pp. 192–

198.

[12] Chang, R. and Cheng, C. 1996. Design of fuzzy traffic

controller for ATM networks, IEEE/ACM Trans. Netw.,

vol. 4, no. 3, pp. 460–469.

[13] Aoul, H,. Nafaa, A., Negru, D. and Mehaoua, A. 2004.

FAFC: fast adaptive fuzzy AQM controller for TCP/IP

networks, in Proc. IEEE GLOBECOM, vol. 3, pp. 1319–

1323.

[14] Chrysostomou, C., Pitsillides, A. and Hadjipollas, G.

2003. Fuzzy explicit marking for congestion control in

differentiated services networks, in Proc. IEEE Int.

Symp. Computers Commun., vol. 1, pp. 312–319.

[15] Passino, K. M. and Yurkovich, S. 1998. Fuzzy Control,

Addison Wesley Longman Inc.

[16] Qasim, S. R., and Alisa, Z. T., 2014. A Fuzzy based TCP

Congestion Control for Wired Networks, International

Journal of Computer Applications (0975 – 8887) Vol. 89,

no.4.

[17] Varga, A., and OpenSim Ltd., 2011. OMNeT++, User

Manual, Version 4.3.

[18] Varga, A., and OpenSim Ltd., 2011. OMNeT++, User

Guide, Version 4.3.

International Journal of Computer Applications (0975 – 8887)

Volume 100– No.11, August 2014

47

[19] www.omnetpp.org.

9. List of Abbreviation
cwnd Congestion Window

dupack Duplicate Acknowledgement

FWestwood Fuzzy controller with Westwood

Mbps Megabits per second

mss Maximum Segment Size

QoS Quality of Service

RTT Round Trip Time

RTT_MAX Round Trip Time Maximum

RTT_MIN Round Trip Time Minimum

ssthresh Slow Start Threshold

TCP Transmission Control Protocol

UDP User Datagram Protocol

IJCATM : www.ijcaonline.org

