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ABSTRACT 

The Transmission Control Protocol (TCP) is used for reliable 

delivery of data over unreliable networks. Practically, most 

TCP mechanisms have been carefully designed for wired 

networks. Neglecting the characteristics of wireless 

environments can lead to TCP implementations with poor 

performance. In order to use TCP in mobile networks, 

improvements have been proposed in this paper to enhance 

TCP algorithm to distinguish between the different types of 

loss events. In mobile or static wireless environments, losses 

are not always due to network congestion, as in the case of 

wired networks. In this paper, a modified algorithm is 

presented using fuzzy controller to differentiate the loss 

events (error loss from congestion loss) that intend at adapting 

TCP to mobile and static wireless environments with better 

performance. Simulation results were performed using 

OMNET simulator and have showed that the new proposal 

has better throughput than other TCP schemes. 
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1. INTRODUCTION 
Wireless Networks are complex systems that may contain 

mobile or static nodes that can organize themselves freely and 

dynamically. In this way they form randomly, and temporary 

wireless networks topologies, allowing devices to seamlessly 

interconnect in areas with no pre-existing infrastructure. 

Recently, many research efforts have been put on the new 

challenging wireless environment. 

TCP (Transmission Control Protocol) [1] was designed to 

provide reliable end-to-end data delivery over unreliable 

networks. In theory, TCP should be independent of the 

technology of the underlying environment infrastructure. In 

particular, TCP should not care whether the Internet Protocol 

(IP) is running over wired or wireless connections. In practice, 

it does matter because most TCP algorithms have been 

designed based on assumptions that are in the context of wired 

networks. Neglecting the properties of wireless transmission 

lead to poor performance of TCP implementations. 

In wireless networks, the principal problem of TCP lies in 

performing congestion control in case of losses that are not 

induced by network congestion. Since bit error rates are very 

low in wired networks, nearly all TCP versions nowadays 

(Tahoe, Reno, NewReno, and Vegas) assume that packets 

losses are due to congestion. Consequently, when a packet is 

found to be lost, either by timeout or by multiple duplicated 

ACKs, TCP slows down the sending rate by adjusting its 

congestion window. Unfortunately, wireless networks suffer 

from several types of losses that are not related to congestion, 

making TCP not adapted to this environment. Numerous 

improvements and optimizations have been proposed over the 

last few years to enhance TCP performance over wireless 

networks. TCP versions: Tahoe, Reno, NewReno, and Vegas 

perform differently in wireless networks [2]. However, all 

these versions suffer from the same problem of inability to 

distinguish between packet losses due to congestion from 

losses due to the specific features of Ad hoc networks. While 

TCP Westwood was basically designed to perform in wireless 

environments but it fails to achieve high performance at high 

error rate. 

2. TRANSMISSION CONTROL 

PROTOCOL 
TCP is a window-based acknowledgement-flow control 

protocol [3]. It uses additive-increase multiplicative decrease 

strategy for changing its window as a function of network 

conditions. Packets of a TCP connection are sent with 

increasing consecutive sequence numbers. In the simplest 

operation of TCP, at each arrival of a packet at the 

destination, an ACK is sent back to the source with the 

information of the next sequence number that is expected. 

Thus if all packets up to packet n-1 have reached the 

destination, then the last arrival will trigger an ACK with 

sequence number n. If a packet n is lost in the network and 

packet n + i, i = 1; 2; 3; arrives at the destination, then each of 

these packets will trigger an Acknowledgement indicating that 

the destination is expecting packet n. These are called 

duplicated ACKs. In the absence of losses, starting from one 

packet or from a larger value, the window is increased 

exponentially by one packet every non-duplicate ACK until 

the source estimate of network capacity is reached. This is the 

Slow Start (SS) phase, and the capacity estimate is called the 

slow start threshold (ssthresh). In most versions of TCP 

(Tahoe, Reno and New Reno) once ssthresh is reached, the 

source switches to a slower increase in the window by one 

packet for every window’s worth of ACKs. This phase is 

called Congestion Avoidance (CA) phase [4]. The window 

increase is interrupted when a loss is detected. Two 

mechanisms are available for the detection of losses: the 

expiration of a retransmission timer (timeout), or the receipt 

of three duplicate ACKs (the latter is called the fast retransmit 

(FRXT) phase. The source then sets its estimation of the 

capacity to half the current window; this action is due to the 

fact that when these TCP versions have been developed, 

losses were indication of congestion as TCP was then 

deployed only over wireline networks. 

3. OVERVIEW OF TCP VERSIONS 
Tahoe [5], the first version of TCP to implement congestion 

control, at this point sets the window to one packet and enter 

the slow start phase to reach the new sstresh. Slow starting 

after every loss detection deteriorates the performance given 

the low bandwidth utilization during SS. When the loss is 

detected via timeout a more drastic reaction is taken as a more 

drastic congestion is understood to occur, since the ACK 

stream has stopped. In the FRXT case, ACKs still arrive at the 

source, and losses are recovered without SS. This is the 

behavior of the newer versions of TCP (Reno, NewReno, 

SACK, etc.) that call a Fast Recovery (FRCV) algorithm to 
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retransmit the losses while maintaining enough packets in the 

newtork to preserve the ACK clock. Once the losses are 

recovered, this algorithm ends and normal CA is called. If 

FRCV fails (to recover the losses), the ACK stream stops, a 

timeout occurs, and the source resorts to SS as with Tahoe. 

Among the TCP versions that use the FRCV, the difference is 

in the estimation of the number of packets in the flight during 

FRCV.  

Reno version [6] considers every duplicate ACK a signal that 

a packet has left the network. The problem of Reno is that it 

leaves FRCV when an ACK for the first loss window is 

received. This prohibits the source from detecting the other 

losses with FRXT. A long timeout is required to detect the 

other losses.  

NewReno version [7] has been proposed to overcome Reno’s 

problem. The idea is to stay in FRCV until all the losses in the 

same window are recovered. Another problem of Reno and 

NewReno is that they rely on ACKs to estimate the number of 

packets in flight. ACKs can be lost on the return path, which 

results in an underestimation of the number of packets that 

have left the network. More information is needed to estimate 

more precisely the number of packets in the pipe. This 

information is provided by the selective ACK (SACK) [68], a 

TCP option containing the three blocks of contiguous data 

most recently received at the destination.  

Vegas version [8] aims to decouple congestion detection from 

losses. In TCP Vegas, the RTT of the connection and the 

window size are used to compute the number of packets in the 

network buffers. The window is decreased when this number 

exceeds a certain threshold and is increased when it is below 

some threshold. In other words, Vegas also use delay as a 

congestion indication and then reacts to reduce its throughput. 

Westwood version [9] improves the behavior of TCP Reno in 

wired and wireless networks. The enhancement is 

significantly occurred in wireless networks with lossy links. 

In fact, TCP Westwood performance is not very aggressive to 

random errors, while TCP Reno is equally sensitive to error 

loss and congestion loss and cannot differentiate them. Hence; 

the tendency of TCP Reno is to overreact to errors. The key 

innovative idea is to keep measure at the TCP sender side the 

bandwidth used by the connection by checking the returning 

ACKs rates. The estimate is then used to update congestion 

window (cwnd) and slow start threshold (ssthresh) after 

congestion detection, that is, after three duplicate 

acknowledgments or after a timeout. This mechanism avoids 

the blind halving of the sending rate of TCP Reno after packet 

losses and enables TCP Westwood to select ssthresh and 

cwnd which is consistent with the estimated bandwidth used 

at the time congestion is experienced. This mechanism is 

called faster recovery. 

4. RELATED WORKS 
FLC (Fuzzy Logic Controller) has many applications to 

control network congestion since 1990. In early stage, it was 

used to do rate control in ATM network, e.g., [10], [11], to 

guarantee the QoS (Quality of Service). These control 

algorithms are explicit in nature, and they depend on absolute 

queue length (the maximum buffer size) to adjust the allowed 

sending rate. Nevertheless, these early designs have various 

shortcomings including cell loss (even though cell loss is used 

as a congestion signal to compute the rate factor, e.g., [12]), 

queue size fluctuations, poor network latency, stability and 

low utilization. Later, FLC was used in Random Early 

Detection (RED) algorithm in TCP/IP networks, e.g., [13], 

[14], to reduce packet loss rate and improve utilization. 

However, they are still providing implicit or imprecise 

congestion signaling, and therefore cannot overcome the 

throughput fluctuations and conservative behavior of TCP 

sources. 

 

5. THE PROPOSED TCP CONGESTION 

CONTROL ALGORITHM 
In this paper, a brief description on the proposed functional 

fuzzy system is presented. More details on it can be shown in 

our previous work [16]. In [16]; a fuzzy controller for 

Westwood version is implemented and used for wire network. 

This proposal is tested in this work for mobile network. 

It consists of three inputs, two outputs and nine rules that 

aggregated in a disjunctive manner. 

 

5.1 Inputs of fuzzy system  
The inputs of fuzzy controller are: 

i. Delay or RTT (Round Trip Time) 

This is the first input, it is the time required for a packet to go 

from a source to a destination and then back again in the form 

of acknowledgement. It is compared with RTT_MIN 

(minimum value of RTT) and RTT_MAX (maximum value of 

RTT) to get the state of the network overloaded or has error. 

The value of RTT_MIN and RTT_MAX are read during the 

execution of the program. The membership function for this 

input is shown in Figure 2. 

 
Fig. 2: Fuzzy set for fuzzy variable delay or RTT 

 

ii. The ratio of the number of timeouts to the number of 

3dupacks (ratio) 

This is the second input, if the ratio is very small (in between 

0.01 to 0.2), the observation shows that this event has been 

caused by a bit error event, not by congestion. If the ratio is 

high (e.g. greater than 0.5) then the event is more likely due to 

congestion. The membership function for this input is shown 

in Figure 3. 
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Fig. 3: Fuzzy set for fuzzy variable ratio 

 

5.2 Rules of Fuzzy System 
The proposed system includes 9 rules that are aggregated in a 

disjunctive manner, as in the Table 1. These rules were 

obtained after tuning the two inputs (RTT and ratio) to get the 

best results. 

 

Table 1 Rules of the Fuzzy System [16] 

Delay Ratio Outputs Phase 

Small Small Same State 

Small Medium Same State 

Small High Congestion Avoidance 

Medium Small Same State 

Medium Medium Congestion Avoidance 

Medium High Slow Start 

High Small Same State 

High Medium Congestion Avoidance 

High High Slow Start 

 

5.3 Outputs of Fuzzy System 
Takagi-Sugeno Fuzzy System is used in this paper, which 

used two output functions that do not have an associated 

membership function. The outputs are ssthresh and cwnd 

which specify the new phase of TCP to trigger after the packet 

loss event. These outputs are computed by the defuzzification 

method “center average” and the Eq. (1) for two outputs will 

be: 

                                            (1) 

Where r represent the output number (r=1 for ssthresh and r=2 

for cwnd), i represents the on rule (the rule that represents the 

current situation), R is the number of rules, bᵢᵣ represent the 

output equations (explained in [16]) and  ᵢ represents the 

certainty of a premise of a rule and thereby represents the 

degree of the membership function for the on rule. 

 

6. PERFORMANCE EVALUATION OF 

TCP FWESTWOOD 
OMNET++ simulation IDE [17], [18], [19] is used to evaluate 

the performance of the proposed system in terms of the 

number of unique segments transmitted by the sender and the 

throughput of a connection. Two scenarios were built to prove 

TCP proposal and compare the results with various kinds of 

TCP as TCP Reno, TCP Tahoe and TCP Westwood. 

 

6.1 Scenario 1/Wireless Network (with 

static nodes) 
Figure 5 shows the network used for the simulation. The link 

has 10Mbps data rate and 45ms delay. 

 
Fig.5: Network setup of scenario 1 

The following applications are generated: 

• TCP application between server and d2. 

• UDP application between d1 and server. 

• UDP application between d3 and d2. 

• TCP application between n1 and server. 

• TCP application between n3and d3. 

The simulation has run separately for FWestwood and other 

TCP scheme (Tahoe, Reno and Westwood) for 100s for 

different error rates (packet error rate are changed between 

1%-10%). Figure 6 show the number of transmitted segments 

of FWestwood, Westwood, Reno and Tahoe while Figure 7 

present the throughput comparisons among all TCPs. 

 
Fig. 6: The number of transmitted segments of scenario 1  
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Fig. 7: Throughput comparison of scenario 1 

 

6.2 Scenario 2/Mobile Network 
In this scenario, FWestwood is used as the main algorithm in 

all related nodes so that to control the congestion and packet 

loss. Also the node’s movements are chosen to be random 

with random speed. Figure 8 show the connected network. 

 
Fig. 8: Network of Scenario 2 

All the links have data rate=10Mbps. The simulation is run for 

100s for FWestwood, Westwood, Reno and Tahoe separately 

and the transmitted segments with the throughput are 

measured and for each TCP. The applications used in this 

scenario are: 

• TCP Application between n1 and a1. 

• TCP Application between n2 and v4. 

• TCP Application between n3 and a3. 

• TCP Application between n4 and f3. 

• TCP Application between f3 and n4. 

• TCP Application between a1 and v5. 

• TCP Application between a3 and f1. 

 • UDP Application between n1 and a3. 

• UDP Application between n3 and v1. 

• UDP Application between f1 and a2. 

The speed of the mobile nodes are chosen randomly between 

(20mps, 50mps) where mps=meter per second and the moving 

environment is (400mx600m). The results are shown in 

Figure 9 and Figure 10. 

 
Fig. 9: The number of transmitted Segments of Scenario 2 

 
Fig. 10: Throughput Comparison of Scenario 2 

6.3 Simulation Results and Analysis 
Figures 6 presents the number of transmitted segments for 

scenario 1. As the error rate increases, TCP FWestwood 

transmits significantly more segments than Reno, Tahoe, and 

Westwood. This behavior of FWestwood showed that it is less 

aggressive than other TCP schemes when the random wireless 

link error rate is increased. The numerical results of the 

transmitted segments are listed in Table 2. In Figure 7, the 

throughput among different TCP schemes is presented. Since 

FWestwood is based on a precise and stable reaction upon 

loss events then it will make use of resources more than other 

TCPs and thus transmit more data and achieve higher 

throughput. 

Table 2 Numerical values of the transmitted segments 

number of scenario 1 

Error Rate 

(%) 

Reno Tahoe Westwood FWestwood 

0 22286 22286 22286 22286 

1 9589 7111 11589 12339 

5 3363 2622 4713 5225 

10 1326 1351 3602 4316 

 

Values obtained in Table 2 shows the priority of FWestwood 

over other TCP variants. This conclusion have confirmed that 

the proposed schemes have resulted in significant 

performance improvement over other TCP standards since it 

retain congestion window as near as possible to the value 

when loss event occurs. 
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In mobile network, there is possible causes of packet losses, 

Other than congestion, include wireless link errors, channel 

contention, and link breakages due to node mobility. For all 

these reason there was no expansion in this field other than 

this scenario since it needs to take many parameters into 

account, for instance network partition, multipath routing and 

all MAC layer problems. 

The results in Figure 9 and Figure 10 show that all TCP 

scheme perform closely to each other at small error rate but 

the difference in behavior among FWestwood and the other 

standards is increased as error rate become 1% and upper. 

This result is due to FWestwood ability to take the best 

decision (by the help of fuzzy controller) and check the reason 

of the loss event and then react. As a result FWestwood sends 

more data and achieve higher throughput as shown clearly in 

Table 3. 

Table 3 Numerical values of transmitted segments of 

scenario 2 

Error Rate 

(%) 

Reno Tahoe Westwood FWestwood 

1 13670 13670 14139 15930 

5 4059 3230 3148 4275 

10 1305 1537 670 2222 

 

The results in the table above ensure that FWestwood detects 

segment losses due to bit error with better precision and keeps 

a steady flow of   segments towards the destination to ensure a 

good throughput. Again in real congestion erroneous 

environment, FWestwood does not behave aggressively and 

hence do not worsen the congestion in the network. This 

behavior is very significant feature in FWestwood. 

 

7. CONCLUSIONS 
In this paper, technique has been adapted and applied to 

increase TCP performance in mobile networks. Through 

simulation evaluation it has been demonstrated, under widely 

differing operating conditions and environments, that the 

FWestwood algorithm is better than all other TCP variants for 

mobile network in addition to immobile network. 

The new novel traffic management scheme, FWestwood , has 

proved its ability to manage the Internet congestion and to 

assure the use of resources efficiently for different 

applications. The controller is designed by paying attention to 

the disadvantages as well as the advantages of the existing 

congestion control protocols. As a distributed operation in 

networks, the fuzzy controller uses the available parameters in 

the network (delay or RTT, the number of timeout and the 

number of 3dupack) to effectively throttle the source sending 

rate with better stabilized reaction. Unlike the existing explicit 

traffic control protocols that potentially suffer from 

performance problems or random degradation in the 

transmission rate, FWestwood overcomes those fundamental 

deficiencies and check the reason of the packet loss before 

take any action. To verify the effectiveness and superiority of 

FWestwood, extensive experiments have been conducted in 

OMNET simulator. In addition to the feature of the FLC 

being able to intelligently tackle the nonlinearity of the traffic 

control systems, the success of this controller is also attributed 

to the careful design of the fuzzy logic elements which 

occurred obviously in the simulation results.  

As a future work two TCP schemes may be taken in 

cooperation with fuzzy controller in order to improve their 

algorithm in high speed networks. 
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9. List of Abbreviation 
cwnd                        Congestion Window 

dupack                     Duplicate Acknowledgement 

FWestwood              Fuzzy controller with Westwood 

Mbps                       Megabits per second 

mss                          Maximum Segment Size 

QoS                         Quality of Service 

RTT                         Round Trip Time 

RTT_MAX               Round Trip Time Maximum 

RTT_MIN                Round Trip Time Minimum 

ssthresh                    Slow Start Threshold 

TCP                  Transmission Control Protocol 

UDP                         User Datagram Protocol 
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