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ABSTRACT 

In this paper, we discuss a Markov Random Field (MR) 

modeling for multisource and multitemporal remotely sensed 

image fusion and classification. Satellite images provided by 

individual sensor are incomplete, inconsistent or imprecise. 

Additional sources may provide complementary information 

and the fusion of multisource data can create a more 

consistent interpretation of the scene in which the associated 

uncertainty is decreased and the reliability of analysis results 

is increased. Also, a temporal data from a single sensor can be 

considered as separate information sources. The combination 

of multitemporal data over the same scene enhances 

information on changes that might have occurred in the area 

observed over time. Using these available data through a 

fusion and classification process, our objective is to extract 

more information to achieve greater accuracy in assigning 

pixels to thematic classes. The best methodological 

framework which allows the realization of this process is a 

Markov Random Field (MRF). 

Keywords 
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1. INTRODUCTION 
Extraction of land-cover information is usually achieved 

through a classification process which is one of the most 

powerful tools in digital image processing. Its objective is to 

use the data contained in remotely sensed images 

(multispectral, multisource, or multitemporal) we are 

analyzing to extract information and identify targets into a 

defined number of thematic classes. Multispectral, 
multisource and multitemporal classification techniques are 

relevant to contextual data fusion domain [3], [15]. Based 

upon the works of Schistad Solberg [12], [13], three kinds of 

context have been defined: 1) spectral context, 2) spatial 

context and 3) temporal context. The spectral context refers to 

different bands of the electromagnetic spectrum of the same 

sensor or of two or more different sensors. Using 

multispectral or multisource image frequently improves the 

separation between various ground cover classes compared to 

a single band image analysis. The spatial context is defined by 

the correlation between spatially adjacent pixels in a spatial 

neighborhood. The temporal context is considered between 

multiple images of the same area taken at different instants. 

Temporal contextual information deals with the consideration 

of the change of class identity over time. Accordingly, 

contextual information is important for the interpretation of a 

scene [10]. When a pixel is considered in isolation, it may 

provide incomplete information about the desired 

characteristics. However, the consideration of the pixel in its 

context, more complete information might be derived. By 

merging multisource and multitemporal data with spatial 

information, the classification accuracy is improved. The best 

methodological framework which allows the realization of 

this contextual fusion process is a Markov Random Field 

(MRF) [7], [10] [13]. MRF is able to model and capture the 

three kinds of context. This paper is organized as follows. In 

section 2, we present basic elements of MRF contextual single 

source classification, while sections 3 and 4 describe 

respectively MRF multisource classifier and MRF 

multitemporal classifier. Developed Markovian process is 

applied on two satellite images (HRV/SPOT and 

ETM+/Landsat) covering both the north-eastern part o Algiers 

(Algeria). Experimental results are presented and discussed in 

section 5. Finally, section 6 concludes this paper. 

2. MRF SINGLE SOURCE 

CLASSIFICATION 
We assume that a classified image X and observed data Y are 

realizations of stochastic processes X and Y, respectively. 

Multispectral data Yp = { Y1, Y2, …, Yk } which are observed 

through K spectral bands of specified sensor p, are supposed 

to be acquired on a finite lattice W = {s = (i, j) : 1 <= s <= S 

}, s is the site of the ijth pixel and S lattice's area.. The set Yk 

= {ys
k, …., yS

k} where k = 1, 2, …K, denotes the data taken at 

the kth wavelength, where ys
k  { 1, 2,…NG-1 } and NG is the 

number of observable gray levels. It is also possible to 

describe the multispectral data with Y = { ys, 1 <= s <= S } 

where ys = { ys
1, ys

2, …, ys
k } is a feature vector observed on 

the site s called also a spectral signature on site s. Our goal is 

to find the optimal classified image X* = { xs, …., xS } based 

on the observed data Y. Each site of the segmented image is 

to assigned into one of M classes; that is, x*
s = { 1, 2, …, M } 

where M is the number of classes and assumed to be known in 

supervised classification process. This optimization is 

executed from the view point of the maximum a posterior 

(MAP) estimation [2] as follows: 

  YXPargmaxXX
X

MAP /
*



 
Following Bayes theorem, equation (1) becomes: 
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Modeling of both class conditional distribution P(Y/X) and 

prior distribution P(X) becomes an essential task. P(Y) is the 

probability distribution of the observed data and doesn't 

depend on the labeling X. Note that the estimate (2) becomes 

the pixel–wise non–contextual classifier if the prior 

probability doesn't have any consequence in formulating (2). 

P(Y/X) is the conditional probability distribution of the 

observation Y given the labeling X. It's usually assumed that 

this probability at each site is independent of its neighbors: 
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A commonly used model for P(Y/X) is that the feature vector 

observed Ys is drawn from a Gaussian distribution which 

gives: 
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Where µxm and Σxm are respectively the mean vector and the 

covariance matrix of each class xm with m = 1, 2,….M. For a 

Markov random field X, the conditional distribution of a point 

in the field given the all other points is only dependent on its 

neighbors: 

   sxxPxxP NssSs //   
Where S-s denotes a set of points in S excluding s and Ns is 

neighboring points of pixel s. The first order of neighborhood 

system is usually defined as the four pixels surrounding a 

given pixel, and higher orders are defined by adding corner 

pixels to a lower order neighborhood system. According to the 

Hammerslay-Clifford theory, P(xs / xNs) can be expressed as a 

Gibbs distribution: 
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Where Z is a normalizing constant, Q is the set of all cliques q 

in the neighborhood of the site s and Vq (xs / xNs) is the 

potential function whose value depends on clique q and xs. 

Our objective is to estimate the class label of a pixel on site s 

given the estimates of class labels for all other pixels inside 

the lattice S. Then, the optimization problem of equation (1) 

becomes: 

  **

s  ,/ sSs

s

xYxP
x
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Applying the Bayes rule and considering the Markov property 

of equation (5), the argument of (7) becomes: 
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By virtue of equation (3), the first term of the right hand of (8) 

becomes: 
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Since the class assignment of all other pixels excepted xs 

inside the lattice are already made, the probability P(yS-s / x
*

S-s) 

is not a factor affecting the optimization. Therefore, (7) in 

connection with (8) and (9) becomes: 

    *
Nsssss xxPxyPx  / . /maxarg

*
  

Let be U(ys/xs) = -logP(ys/xs) the negative of the log-

likelihood of the class conditional distribution and U(xs/x
*

Ns) 

= -logP(xs/xNs) = -logP(xs/x
*

Ns) the positive energy function 

which corresponds to the transition probability inside a clique 

including point s. Applying the negative logarithm both to 

equation (4) and (6), substituting into (10), the MAP estimate 

of the true class label as given by equation (1) is equivalent to 

the minimization of the a posterior energy function: 
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The first term on the right hand of (12) is considered as 

energies of cliques of order 1 and is often used to provide an 

initial configuration for the contextual classification process. 

The second term through which the spatial context is 

introduced, defines energies of cliques of higher order and 

corresponds to the transition probability inside a clique 

including point s. Ising and Potts models are frequently used 

as energy function model for image segmentation problem. In 

the last few years, some more complex models have been 

proposed. One of these models using recent developments in 

statistics is "chien model" [5]. In our case we have chosen the 

followed Potts model variant [7]: 
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q
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The parameter βspa, a user specified is a weight emphasizing 

the significance of interactions among adjacent pixels inside 

the clique. I ( , ) is a potential function given by: 
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This model corresponds to counting the total number of 

neighboring points of different value in s in a clique q. 

Substituting equation (13) into equation (12), the energy 

function to minimize becomes: 
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To solve equation (15), much literature exists on optimization 

algorithms [9]. Simulated Annealing (SA) [6] can be used to 

find an iterative solution, but its computational demands are 

well known. A computationally feasible alternative to the SA 

algorithm is Besag's Iterated Conditional Modes (ICM) 

algorithm [1] which converges to a local minimum of the 

energy function. Only the ICM algorithm was used in tests 

reported here and is presented in four steps [7], [8]: 

Step1: Estimate statistic parameters set (µxm , Σxm) from the 

training samples of each class m of the observed data; 

Step2: Estimate an initial classification using the non-

contextual pixel-wise maximum likelihood decision rule 

(equation 4); 

Step3: Perform the local minimization defined by equation 

(15) at each pixel in specified order: update x*
s by the class xs 

that minimizes equation (15); 

Step4: Repeat step (2) until convergence. Iterative algorithms 

often pose convergence problem. Convergence criterion 

which we have adopted in this study is a zero number of 

pixels changing classes between two consecutive iterations. 

This number of pixels is calculated on the whole image and 

thus for all classes. We have thought of a local criterion 

convergence which can be regarded as a zero number of 

pixels which change state on each class, other classes being 

masked. This procedure can be seen as the decomposition of 

ICM process on a number of under-processes. Each under-

process relates to one class and is slow or fast according to the 

heterogeneity of this class. 

3. MRF MULTISOURCE 

CLASSIFICATION 
Multisource classification performs fusion on a pixel level by 

merging the posterior probabilities from sensor-specific 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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classifier, taking into account the reliability factor of each 

sensor. This factor can be defined as the overall accuracy for 

each single source classifier. Let the set (Y1, Y2, …, Yn) be the 

observed data acquired respectively by sensors 1, 2, …n, and 

P(Y1, Y2, …, Yn/X) the conditional probability density of the 

set (Y1, Y2, …, Yn) given the scene labels X. The task is to 

assign each pixel to the class that maximizes the posterior 

probability P(X/Y1, Y2, …, Yn). In a Bayesian formulation, the 

relationship between the measurements and the prior 

information is given by [7], [12], [13]: 

 
   

 n21

n21
n21

Y ..., ,Y ,YP

X.P/XY ..., ,Y ,YP
Y ..., ,Y ,X/YP 

 
To simplify the mathematical analysis and computations, we 

assume that the measurements from different sensors are 

conditionally independent. Thus, we seek to maximize the 

likelihood function: 

       XP/XYP . . . /XYPY ..., ,Y ,X/Yh
n1

n1n21 .



 

Where 0 <= αp <= 1, and p=1, 2, …n is defined as the 

reliability factor of source p. The MRF multisource 

classification algorithm consists of maximizing h(X/Y1, Y2, …, 

Yn), which is equivalent to minimizing the energy function: 

      


n
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Nspssppn21 sx /xU /xyUY ..., ,Y ,X/YU 

 
Specification of the sensor class conditional energy function 

Up(ys / xs) is given by the first term of equation (4) in section 

2. However, the prior energy function is given by equation 

(13). Note that the multisource data set needs to be co-

registered. 

4. MRF MULTITEMPORAL 

CLASSIFICATION 
The change of class identity over time can be due to an actual 

change of information class itself or just due to the change of 

spectral classes within the same information class. Therefore, 

by permitting these class changes over time, it is not 

necessary, in the training stage, to consider all given temporal 

data sets simultaneously and define additional spectral classes 

for each information class. Instead, training can be performed 

separately for each temporal data set. This significantly 

simplifies the training process. The changes of class identities 

over time may be modeled by class transition probabilities [3], 

[11], [14]. Temporal contextual information from temporal 

neighbors is conveyed to the current classification process via 

class transition probabilities. So, the multitemporal 

multisource and contextual classification model is presented 

as follows: 
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Energy function Up(x
t
s / x

t-1
Ns ) is defined as follows for sensor 

p: 
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Where Pr(xt
s / x

t-1
Ns ) is the transition probability for a change 

from class xt-1
Ns to class xt

s between time t-1 and t. βtemp  is 

user specified parameter. Thus, the multitemporal multisource 

and contextual classification is based on minimizing: 
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5. EXPERIMENTAL RESULTS AND 

DISCUSSION 
The described MRF contextual fusion and classification 

model is applied to classify a region of interest. Multispectral, 

multisource and multitemporal images are available upon the 

north-eastern part of Algiers (Algeria). They are two images 

of 256X256 pixels. The first one is acquired on June 1997 by 

HRV-1 sensor of Spot-1 satellite. The second one is acquired 

on June 2001 by ETM+ sensor of Landsat-7 satellite. To be 

used in the proposed MRF process, these two images require a 

pretreatment step (radiometric and geometric corrections). 

The geographic location of the study area is given on Figure 

1. The RGB compositions of the two pretreated images are 

given on Figure 2 and Figure 3. Four thematic classes 

dominate the study site: Dense Urban (DU), Bare Soil (BS), 

Less Dense Urban (LDU) and Vegetation (V). Using a 2-D 

scatterogram of ENVI software, data samples are selected 

automatically from each image and from each class for 

training and testing the proposed classifiers. Statistical 

assessment of obtained results relatively to the considered test 

data is performed by using a confusion matrix and two 

statistical parameters: overall accuracy (OA) and “Kappa” 

parameter which is computed as follows [4]: 
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Where Xij are the confusion matrix elements, Xi+ is the total 
sum of elements in lines, Xj+ is the total sum of elements in 

columns, Xii are the diagonal elements, N is the total number 

of pixels of the matrix and M is the number of considered 

classes. On the other figures are presented respectively single 

source and multisource non contextual and contextual 

classification results, followed by contextual multitemporal 

results. 
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Fig 4: Non contextual classification 

of HRV image (βspa=0) 

Fig 5: Non contextual classification 

of ETM+ image (βspa=0) 

Fig 6: Non contextual multisource fusion and 

classification (HRV and ETM+) (βspa=0) 

DU 

BS 

LDU 

V 

Fig 7: Contextual classification of 

HRV image (βspa=0.02) 

Fig 8: Contextual classification of 

ETM+ image (βspa=0.08) 

Fig 9: Contextual multisource fusion and 

classification (HRV and ETM+) (βspa=0.06) 

Fig 10: Contextual multitemporal 

classification (βtemp=0.02) 

Fig 11: Contextual multitemporal 

classification (βtemp=0.9) 
Fig 12: Contextual multitemporal 

classification (βtemp=1) 

  

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 1: Geographic location of the study 

area (Eastern part of Algiers, Algeria) 
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Fig 3: RGB composition of ETM+ 

image (2001) 
 

Fig 2: RGB composition of HRV 

image (1997) 
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Fig 13: Evolution of classification accuracy according to 

Βtemp 

Statistical assessment of the above obtained results is given on 

the following Table 1. Notice that the multisource and 

multitemporal results are evaluated according to a control data 

base that contains only invariant sites between the two 

considered dates (1997 and 2001). 

 

Table 1. Statistical assessment of obtained results 

Classification result OA (%) Kappa 

Non contextual HRV (βspa=0) 79.51 0.77 

Contextual HRV (βspa=0) 84.27 0.80 

Non contextual ETM+ (βspa=0.02) 75.32 0.70 

Contextual ETM+ (βspa=0.08) 80.10 0.76 

Non contextual multisource (βspa=0) 88.50 0.85 

Contextual multisource (βspa=0.06) 92.13 0.89 

Contextual multitemporal (βtemp=0.02) 81.12 0.78 

Contextual multitemporal (βtemp=0.9) 78.23 0.75 

Contextual multitemporal (βtemp=1) 70.04 0.68 

 
Markovian contextual process seems to "clean up" 

significantly the non contextual (or punctual) classification 

results. It can be seen that many small isolated pixels are 

eliminated or reclassified on a correct class, and that each area 

is much more homogenous. Also, boundaries remain correctly 

placed. This correct assignment means that each pixel on 

HRV or ETM+ image, considered in its neighborhood is 

assigned more accurately. Overall accuracy classification is 

passed from 79.51% to 84.27% for HRV image, and from 

75.32% to 80.10% for ETM+ image. To apply the developed 

MRF multisource classifier, the reliability factors are 

statistically estimated as the overall classification accuracy 

(OA) of each sensor. These factors αHRV=0.69 and αETM=0.62 

are evaluated according to a control data base of invariant 

sites. For this classifier, only invariant sites (roads, airport 

lands, etc.) are analyzed because the two images are not 

acquired on the same time. The BS class is discriminated 

better by the ETM+ sensor, whereas the LDU class is 

discriminated better by the HRV sensor. The fusion of the 

spectral information brought by the high spectral resolution of 

the ETM+ sensor, and the spatial information brought by the 

high spatial resolution of the HRV sensor, improve 

considerably the precision of the classes, in particular the BS 

and LDU classes. The classification accuracy is better by the 

integration of the spatial context. The changes occurred 

during the period between 1997 and 2001 are modeled 

through the matrix of global changes that we established and 

that is represented by the following table: 

 

Table 2. Global changes matrix (1997, 2001) 

 

Reference Image 

(Classification ICM-HRV) 

DU BS LDU V 

R
e
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Im
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ss
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IC
M
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T

M
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) DU 0.25 0.09 0.39 0.27 

BS 0.03 0.46 0.17 0.34 

LDU 0.16 0.17 0.53 0.14 

V 0.01 0.25 0.12 0.62 

 

This matrix is not diagonal what indicates an important 

dynamic of the landscape between the two considered dates. 

The class that underwent the more of changes is the LDU with 

a rate of 39% toward the DU class. On the other hand, the V 

class knew fewer changes with a rate of stability of 62%. This 

global variation is in concordance with the real changes 

occurred in this region. The MRF multitemporel classifier that 

we developed requires the specification of the local change 

matrix mainly to the level of each pixel took in its spatio-

temporal context. The weight assigned to this probability of 

transition is pondered by the parameter βtemp. To show the 

interest of this model, we only considered the multitemporal 

energy. We have therefore, adopted the spatio-temporal 

neighborhood 08-connexity (to have a better evaluation of the 

matrix of local changes) and made vary the parameter βtemp. 

For each value of βtemp, a thematic map is generated and 

evaluated statistically according respectively to the ETM+ 

control data base, the HRV control data base, and the 

invariant sites data base. The curves of the following figure 

illustrate the evolution of the OA parameter according to each 

data base. 

 

 

 

 

 

 

 

 

 

The obtained curves can be distinguished by three types of 

variations: 

1). For 0 < Βtemp < 0.025, the evolution is increasing linearly 

and becomes monotone for all curves. It means that the 

changes occurred between 1997 and 2001 are not significant. 

Therefore, the temporal energy plays a role of a regularization 

term of the recent classification. Thus, the spatio-temporal 

context of the HRV image contributed considerably for the 

improvement of the classification of the ETM+ image (see 

Fig. 10). 

2). For 0.03 < Βtemp < 0.9, the evolution is increasing linearly 

for three curves only. The curve drawn relatively to ETM+ 

control data base is weakly decreasing. This evolution means 

that the changes occurred between 1997 and 2001 begin to be 

meaningful. In this case, the transition probabilities pondered 

by the parameter Βtemp and added to the data attachment term, 

encourage the classes of change, what entails the deterioration 

of the precision of the recent ETM+ classification image. This 

deterioration touched the DU class that passes to the LDU 

class mainly, confirming the gradual evolution toward the old 

classification of 1997 (see Fig. 11).  

2). For Βtemp > 1, the evolution is the same that the previous 

but with a more elevated speed. It means that all pixels of the 

classified ETM+ image change their original classes toward 

the classes of HRV image, including the class V that begins to 

pass in transit to other classes. The multitemporal 

classification for Βtemp = 1 is given by Fig. 12. The rate of 

likelihood of this map with the classified HRV image is of 

64.11%, and reaches 81.91% for Βtemp = 20. 

Thus, while making vary the parameter Βtemp, we can adjust 

the weight to assign to the changes occurred between two 

ETM control data Base 

HRV control data base 

Invariant sites control base 

HRV classified image 
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different acquirement dates. A more deepened analysis of the 

obtained results and the realization of other tests by using 

other types of images, will allow us to establish a relation 

between the value of the parameter Βtemp and an included 

acquirement date between the two initial dates (for our case, 

between 1997 and 2001). Of this fact, it is possible to generate 

maps of land cover at any date included between the two 

initial dates. 

6. CONCLUSION 
The purpose of this work is to present a robust model for 

remotely sensed fusion and classification images. Our 

experience confirms that context information (spectral, spatial 

and temporal) plays an important role in the task of scene 

interpretation. At the pixel level, context information provides 

neighborhood (spectral, spatial, spatio-temporal) information 

around a pixel, and helps to increase the reliability of each 

detected object. Discrete random fields, especially the Gibbs 

Random Fields (GRF) and Markov Random Fields (MRF) 

provide a methodological framework which allows the 

integration of context information in satellite data fusion and 

classification. A power of these models is that the prior 

probability density function modeled by the use of the 

contextual information and the class conditional probability 

density function modeled by the use of the observed data from 

one or more sensors, can be easily combined through the use 

of suitable energy function. Once the posterior energy model 

and the associated parameters have been defined, pixel 

labeling is found out by using the MAP estimate which is 

equivalent to a minimum energy function in terms of GRF-

MRF modeling. For a non-convex energy function, the 

solution space may contain several local minims. To find a 

global minimum which is a truly MAP estimate, the solution 

is to use an optimization algorithm among which ICM is the 

most know and used. The ICM algorithm is sub-optimal and 

converges only to a local minimum of the energy function. 

However, classification result of such algorithm is acceptable 

and shows that the incorporation of contextual information 

successfully improves classifier performances by more than 

10% in terms of global accuracy. Also, by including the 

temporal context of data, the model is suitable for detecting 

class changes over time. However, algorithms and methods to 

construct more complex models and to efficiently integrate 

context (spectral, spatial, and temporal) in order to achieve 

higher classification accuracy, are still significant issues 

worthy of further investigation. 
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