
Special Issue of International Journal of Computer Applications (0975 – 8887)

on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012

23

Agent Communication and Migration for
Distributed Applications in Mobile-C

Khaoula Addakiri
Department of Mathematics and Computer

Science,
Université Hassan 1

er
, FSTS, LABO LITEN

Settat, Morocco

Mohamed Bahaj
Department of Mathematics and Computer

Science,
Université Hassan 1

er
, FSTS, LABO LITEN

Settat, Morocco

ABSTRACT

In this paper we present the design and implementation of

Mobile-C. This research is based on distributed application and

the goal is to access an XML file in order to find some

information and guaranteed that the data of mobile agent is only

accessed by one agent on time by using the synchronization.

Keywords: Mobile agent; Agent communication;

Distributed applications;synchronization.

1.INTRODUCTION

A distributed system is a set of autonomous machines

connected through a network and composed of distinct

software dedicated to the coordination of system activities,

and leverage the availability of several distributed

resources to provide better scalability.

Mobile agent is an autonomous software entity responsible
for executing a programmatic process, which is able to
migrate across a network. An agent migrates in a
distributed environment between agencies. When an agent
migrates, its execution is suspended at the original agency,
the agent is transported to another agency in the distributed
environment, and, after being re-instantiated at the new
agency, the agent resumes execution.

The majority of mobile agent platforms in use are Java-
oriented. Multiple mobile agent platforms supporting Java
mobile agent code include Mole [1], Aglets [2], Concordia
[3], JADE [4], and Agents [5]. Using a standard language
like the mobile agent code language that provides both
high-level and low-level functionalities is a good choice to
treat with the large number of distributed applications. The
choice of C/C++ is a proper for a mobile agent code
language because it’s provides powerful functions in terms
of memory access. A several number of C/C++programs
can be used as mobile agent code. Furthermore, C is a
language which can easily interface with a variety of low-
level hardware devices. Ara [6, 7] and TACOMA [8] are
two mobile agent platforms supporting C mobile agent
code, while Ara also supports C++. Mobile agent code is
compiled as byte code [9] and machine code [10] for
execution in both Ara and TACOMA, respectively.

Mobile-C [11–14] was developed as a standalone mobile
agent platform in order to support C/C++ mobile agent
code. Mobile-C chose an embeddable C/C++ interpreter—
Ch [15–17] to run C/C++ mobile agent source code. This
approach can stave off some potential problems, such as

the implementation of the system which could be issued by
the compiling approach, the execution security and the
portability of the platform. Mobile agent migration in
Mobile-C is achieved through the Foundation for
Intelligent Physical Agents (FIPA) agent communication
language (ACL) messages. Using FIPA ACL messages for
agent migration in FIPA compliant agent systems
simplifies agent platform, reduces development effort and
easily achieves inter-platform migration through well-
designed communication mechanisms provided in the
agent platform. Messages for agent communication and
migration are expressed in FIPA ACL and encoded in
XML.

This article presents an exploration of using XML to

represent different types of information in mobile agent

system information and ensuring that the data of mobile

agent is only accessed by one agent on time by using the

mutex as synchronization. The system not only uses XML

to represent agent communication messages and mobile

agent messages, and processes these XML messages in

binary agent system space, but also allows mobile agents

to process XML data interpretively to avoid the need of an

interface layer between script mobile agents and system

data represented in XML Mobile-C uses IEEE FIPA ACL

messages for inter-agent communication and inter-

platform mobile agent migration. The remainder of the

article is structured as follows. Section 2 introduces the

architecture of Mobile-C. Section 3 shows two types of

messages in Mobile-C, agent communication messages

and mobile agent messages and presents how mobile

agent migrate from multiple hosts. Section 4 gives an

example of mobile agent that access to XML data and

illustrates the synchronization support in Mobile-C.

2.THE ARCHITECTURE OF MOBILE-C

The system of mobile-C is shown in Fig.1. Agencies are

the major building blocks of the system and abode in each

node of a network system in order to support Stationary

Agents (SA) and Mobile Agents (MA) at runtime. They

serve for locating and messaging agents, moving mobile

agents, collecting knowledge about other agents and

providing several places where the agent can be run. The

core of an agency provides local service for agents and

proxies remote agencies. The principle of an agency and

their functionalities can be summarized as follows [18]:

 Agent Management system (AMS): The AMS
manages the life cycle of agents in the system. It
relates the creation, authentication, registration,

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012

24

deletion, execution, migration and persistence of
agents. AMS is also responsible for receiving and
dispatching mobile agents .Each agent must
register with an AMS in order to get a valid AID.

 Agent Communication Channel (ACC): The ACC
forwards messages between local and remote
entities. The interaction and coordination of
mobile agents and host systems can be performed
through agent communication language (ACL).

 Agent Security Manager (ASM): The ASM is
responsible for protection of access for platform
and infrastructure.

 Directory Facilitator: DF serves yellow page
services. Agents in the system can register their
services with DF for providing to the community.
They can also look up required services with DF.

 Agent Execution Engine (AEE): AEE serves as
the workhorse for mobile agents. Mobile agents
must reside inside an engine to execute. AEE has
to be platform independent in order to support a
mobile agent executing in a heterogeneous
network.

Figure1.The architecture of agencies in Mobile-C.

3.MESSAGES AND MIGRATION OF

MOBILE AGENT IN MOBILE-C

A. Messages in Mobile-C

In Mobile-C there are two types of messages, agent

communication messages, and mobile agent messages. A

sample agent communication message is from agent-a to

agent-b as shown in Fig.2. The message is encoded in

XML. In Fig.2, the sender and recipient of the message are

identified by their identifiers. For the sample message, the

sender and receiver agent names are X and Y, respectively.

The sender and receiver agent addresses are

http://1.fsts.ac.ma:5120 and http://2.fsts.ac.ma: 5120,

respectively.

<?xml version="1.0" ?>

<sender>

 < identifier>

 <name>X </name>

 <adresse>

 <url> http://1.fsts.ac.ma:5120</url>

 </adresse>

 </ identifier>

</sender>

<receiver>

 < identifier>

 <name>Y</name>

 <adresse>

 <url> http://2.fsts.ac.ma:5120</url>

 </adresse>

 </ identifier>

</receiver>

Figure2.An ACL message represented in XML

A mobile agent message contains general information

about the mobile agent and the tasks performed by the

agent in a remote host. The general information of mobile

agent includes the name, the owner and the home agent

where the mobile agent is created. The task information

contains number of tasks, description of tasks and code of

each task as shown in figure3. During the migration, the

task performed by the mobile agent will be encapsulated

into agent messages. At the end of the migration, all results

of tasks must be sending back to the home agency.

 Message type: Mobile_Agent

 Sender: Agent ID

 Receiver: Agent ID

 Content

 name

 owner

 home

 tasks:

 task1

 task2

 .

 task n

Figure 3.A mobile message

B. The migration of mobile agent in Mobile-C

Mobile agent is a software agent who is able to migrate

from one host to another in a network and resume the

execution in the new host. The migration and the execution

of mobile agents are supported by a mobile agent system.

According to whether an execution state is transferred, an

agent can migrate in two different ways: strong migration,

and weak migration. Strong migration means that all of the

agent execution state and data state are captured and

transferred to a target host. After a strong migration, the

agent continues to execute its program exactly at the point

at which it has been interrupted before the migration.

Weak migration means that only the data state is

transferred from one host to another.

A
g

en
t C

o
m

m
u

n
icatio

n

C
h

an
n

el (A
C

C
)

Agent

Excution

Engine(AE

E)

SA

ASM

AMS

DF

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012

25

Since the current version of Ch does not offer the

capability to capture the execution state of a process or

thread, Mobile-C supports weak migration. The task of a

mobile agent can be divided into several subtasks which

can be executed in different hosts and listed in a list of

tasks as shown in figure4. The task list can be modified by

adding new subtasks and new conditions.

Task 1

Task 2

Task 3

.

.

Task n

Task

list

Task

progress

Agency 1

MA

Task 1

Task 2

Task 3

.

.

Task n

Task

list

Task

progress

Agency 2

MA

Migrate
M

ig
ra

te

Task 1

Task 2

Task 3

.

.

Task n

Task

list

Task

progress
Agency 3

MA

Task 1

Task 2

Task 3

.

.

Task n

Task

list

Task

progress
Agency n

MA

Migrate

Figure4. Agent migration based on a task list and a task

progress pointer.

Changing dynamically the task list improves the flexibility

of a mobile agent. Thus, once we start the execution of a

subtask in a host, the mobile agent cannot move until the

end of execution.

Mobile agent migration is achieved through ACL mobile

agent messages encoded to XML, which convey mobile

agents as the content of a message. Mobile agent message

contains the data state and the code of an agent. The data

state of mobile agent include general information about

mobile agent , also the tasks that mobile agent will

performed in certain host. The data state and code will be

wrapping up into an ACL message and transmitted to a

remote host trough Agent Communication Channel.

Mobile agent migration based on ACL messages is simple

and effective for agent migration in FIPA compliant

systems because these systems have mandatory

mechanisms for message communication, transmission and

procession.

4. SYNCHRONIZATION SUPPORT IN

MOBILE-C

In a Mobile-C agency, mobile agents are executed by

independent AEEs. A user might also need to design a

multi-threaded application where a Mobile-C agency itself

is one of the many threads that handle different tasks. The

Mobile-C library supports synchronization among mobile

agents and threads. The synchronization API functions are

used to protect shared resources as well as to provide a

method of deterministically timing the execution of

mobile agents and threads.

The API functions can be called from the binary or mobile

agent space to initialize the synchronization variables and

access them by their unique identification numbers in the

list. As opposed to traditional synchronization variables, a

Mobile-C synchronization variable is an abstract variable.

Once it has been initialized, it may be used as a mutex,

condition variable, or semaphore. No further function

calls are necessary to change a generic synchronization

variable to one of the types. However, once a

synchronization variable is used as a mutex, condition

variable, or semaphore, it should not be used again as a

different type. The example below demonstrates the

ability of a Mobile-C mutex to protect a resource that may

be shared between two agents.

Any real or imaginary resource that should not be

accessed simultaneously by more than one entity at a time

should be guarded by a mutex. The resource may be a

shared variable, or something more abstract such as

control of a robot arm. If there is only one robot arm, then

only one entity, an agent in this case, should be able to

control it at a time. In the following example, the tasks of

agents include exploring an XML file and finding some

information. The XML data files store information about

the book, the borrower of this book and time of keeping it.

A mobile agent dispatched by an agency in the host fsts1

visits remote host fsts2 and fsts3. Figure6 shows part of

the mobile agent message sent from host fsts1 to host

fsts2and host fsts3. The agent transports three kinds of

information. First, information about the mobile agent

including the name, the owner and the home address.

Second, global information about the task it has to do. The

statement <TASK task=“2” num=“0”> shows that this

mobile agent has two tasks to perform and no task has

been finished yet. Third, overall information about the

task including the name of the task’s return variable, the

persistence of the agent, the completeness of the task, the

host to perform the task, and most importantly, the mobile

agent code is C/C++ source code that implements the task.

Since the persistent is set to 1, the agent will not be

removed from an agency once its code has been executed.

<NAME> mobileagent </NAME>

<OWNER> fsts </OWNER>

<HOME> fsts1fsts.ac.ma:5125 </HOME>

<TASKS task= "2" num= "0">

 <DATA num ="0"

 name = "results_fsts2"

 persistent="1"

 complete = "0"

 server = "fsts2.fsts.ac.ma.5138">

<AGENT_CODE>

Mobile agent code on fsts2

</AGENT_CODE>

</DATA>

 <DATA num ="0"

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012

26

 name = "results_fsts3"

 persistent="1"

 complete = "0"

 server = " fsts3.fsts.ac.ma.5135">

<AGENT_CODE>

Mobile agent code on fsts3

</AGENT_CODE>

 </DATA>

</TASK>

Figure 6: The template of the mobile agent message sent

from the host fsts1 to fsts2 and fsts3.

 The task of the mobile agent”mobileagent1” and

“mobileagent2” in both host fsts2 and host fsts3 is to

access an XML system book information file listed in

figure 7, and find the date of sortie and return the book.

Function parseNode () is a typical C XML processing

program. This function searches each node of the XML

file and retrieves the date of sortie and return of the book.

Also using a variable synchronization in order to guarantee

that data of mobile agent is only accessed by one agent on

time.

<?xml version="1.0" ?>

<!DOCTYPE SYSTEM BOOK "Book.dtd">

<Book>

<Title>Les réseaux </Title>

<Author> A.Tanebaum </Author>

<Price>250 </Price>

<LoanList>

<Loan>

<borrower>Tarek Amine </borrower>

<Output>25/09/2011</Output>

<Return>02/11/2011</ Return >

</Loan>

</LoanList>

</Book>

Figure 7. The content of an XML system book file.

As shown in Program 1, the mobile agent mobileagent1

performs a ParseNode operation in the host fsts2, it’s

includes locking the mutex via the function

mc_MutexLock() to guaranteed that the desired service

and the agent providing the service are protected and the

access of the desired service cannot be simultaneously.

After that, finding the date of sortie the book by calling

parseNode () through the function mc_CallAgentFunc(),

and unlocking the mutex via the function

mc_MutexUnlock(). After visiting the host fsts2, the

mobile agent “mobileagent1” visit the host fsts3 which

perform the same task as on the host fsts2. The result

obtained from the host fsts2 is sent to the host fsts3 and the

return data will be included in the sub-element

DATA_ELEMENT.

<?xml version="1.0"?>

<MESSAGE message="MOBILE_AGENT">

 <MOBILE_AGENT>

 <AGENT_DATA>

 <NAME>mobileagent1</NAME>

 <OWNER>fsts</OWNER>

 <HOME> fsts1.fsts.ac.ma:5125 </HOME>

 <TASK task= "2" num= "0">

 <DATA number_of_elements ="0" name =

"results_fsts2"

 complete = "0" server = "fsts2.fsts.ac.ma:5138">

 <DATA_ELEMENT> </ DATA_ELEMENT >

 <AGENT_CODE>

 <![CDATA[

#include <stdlib.h>

#include <string.h>

int main() {

 int i, numService = 1, mutex_id = 55, *agentID,

numResult;

 char *funcname = "ParseNode", **service,

**agentName, **serviceName;

 MCAgent_t agent;

 service = (char **)malloc(sizeof(char *)*numService);

 for(i=0; i<numService; i++) {

 service[i] = (char

)malloc(sizeof(char)(strlen(funcname)+1));

 }

 strcpy(service[0], funcname);

 mc_SearchForService(service[0], &agentName,

&serviceName, &agentID, &numResult);

 if(numResults < 1) {

 /* No agent is found to have provided such a service. */

 mc_RegisterService(mc_current_agent, service,

numService);

 }

 else {

 /* An existing agent is found to have provided such a

service. */

 mc_MutexLock(mutex_id);

 mc_DeregisterService(agentID[0], service[0]);

 mc_RegisterService(mc_current_agent, service,

numService);

 mc_MutexUnlock(mutex_id);

 mc_DestroyServiceSearchResult(agentName,

serviceName, agentID, numResult);

 }

 for(i=0; i<numService; i++) {

 free(service[i]);

 }

 free(service);

 return 0;

}

void ParseNode (xmlDocPtr doc,xmlNodePtr cur) {

static int i;

i++;

while(cur!=NULL);{

 if(cur->type==XML_ELEMENT_NODE){

 if(!(xmlStrcmp(cur-name,(const xmlChar*)"Sortie"))){

 results-iel2[1]=atof(xmlNodeListGestring(doc,

 cur->xmlChildrenNode,1));

 printf(" the date of sortie of the book is

 %f\n",results_fsts2[1];

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012

27

 }

 parsenode(doc,cur->xmlchildrenNode)

 }

cur = cur->next;

}

i--;

return 0;

}

]]>

 </AGENT_CODE>

</DATA>

<DATA number_of_elements ="0" name = "results_fsts3"

 complete = "0" server = "fsts3.fsts.ac.ma:5135">

<DATA_ELEMENT> </ DATA_ELEMENT >

<AGENT_CODE>

 <![CDATA[

#include <stdlib.h>

#include <string.h>

int main() {

 int i, numService = 1, mutex_id = 55, *agentID,

numResult;

 char *funcname = "ParseNode", **service,

**agentName, **serviceName;

 MCAgent_t agent;

 service = (char **)malloc(sizeof(char *)*numService);

 for(i=0; i<numService; i++) {

 service[i] = (char

)malloc(sizeof(char)(strlen(funcname)+1));

 }

 strcpy(service[0], funcname);

 mc_SearchForService(service[0], &agentName,

&serviceName, &agentID, &numResult);

 if(numResults < 1) {

 /* No agent is found to have provided such a service. */

 mc_RegisterService(mc_current_agent, service,

numService);

 }

 else {

 /* An existing agent is found to have provided such a

service. */

 mc_MutexLock(mutex_id);

 mc_DeregisterService(agentID[0], service[0]);

 mc_RegisterService(mc_current_agent, service,

numService);

 mc_MutexUnlock(mutex_id);

 mc_DestroyServiceSearchResult(agentName,

serviceName, agentID, numResult);

 }

 for(i=0; i<numService; i++) {

 free(service[i]);

 }

 free(service);

 return 0;

}

void ParseNode (xmlDocPtr doc,xmlNodePtr cur) {

static int i;

i++;

while(cur!=NULL);{

 if(cur->type==XML_ELEMENT_NODE){

 if(!(xmlStrcmp(cur-name,(const xmlChar*)"Sortie"))){

 results-iel2[1]=atof(xmlNodeListGestring(doc,

 cur->xmlChildrenNode,1));

 printf(" the date of sortie of the book is

 %f\n",results_fsts3[1];

 }

 parsenode(doc,cur->xmlchildrenNode)

 }

cur = cur->next;

}

i--;

return 0;

}

]]>

 </AGENT_CODE>

 </AGENT_DATA>

</DATA>

</TASK>

Program1.The task of mobile agent 1 performed on the host fsts2 then
the host fsts3

Likewise, the task of the mobile agent “mobileagent2” is

locks the mutex, find the date of return the book and

unlocks the mutex on both the host fsts2 and fsts3.

5. CONCLUSION

This paper presents an XML-based approach for agent

communication and migration of distributed application in

mobile-C. Mobile-C conforms to the IEEE FIPA

standards, it’s integrates an embeddable C/C++ interpreter

into the platform as a mobile agent execution engine in

order to support mobile agents. Mobile agents, including

its data state and code, are carries to a remote agent

platform via ACL messages which will be encoded in

XML. Our work shows that using XML to encode

different types of messages is simple, and easy to change

.Thus, the synchronization functions guaranteed the

protection of shared resources by using the mutex in

multiple hosts.

6.REFERENCES

[1] K.Straber, J.Baumann and F.Hohl.. Mole - A Java

Based Mobile Agent System. Institute for Parallel and

Distributed Computer Systems, University of

Stuttgart,1997

[2] D. Lange, M.Oshima. Programming and Deploying

Java Mobile Agents with Aglets. Addison-Wesley:

MA, 1998.

[3] D.Wong, N.Paciorek, T.Walsh, J.DiCelie, M.Young,

B.Peet. Concordia: An infrastructure for collaborating

mobile agents. Proceedings of the First International

Workshop on Mobile Agents (MA’97) (Lecture

Notes in Computer Science, vol. 1219). Springer:

Berlin, 1997; 86–97.

[4] F.Bellifemine, G.Caire, A.Poggi, G.Rimassa.JADE:

A software framework for developing multi-agent

Special Issue of International Journal of Computer Applications (0975 – 8887)

on Software Engineering, Databases and Expert Systems – SEDEXS, September 2012

28

applications.Lessons learned. Information and

Software Technology 2008; 50(1–2):10–21.

[5] R.Gray, G.Cybenko, D.Kotz,R.Peterson, D.Rus.

D’Agents: Applications and performance of a mobile-

agent system. Software—Practice and Experience

2002; 32(6):543–573.

[6] H.Peine. Run-time support for mobile code. PhD

Dissertation, Department of Computer Science,

University of Kaiserslautern, Germany, 2002.

[7] H.Peine .Application and programming experience

with the Ara mobile agent system. Software—

Practice and Experience 2002; 32(6):515–541.

[8] D.ohnansen, K.Lauvset, R.V.Renesse, F.B.

Schneider, N.P. Sudmann, K. Jacobsen. A TACOMA

retrospective.Software—Practice and Experience

2002; 32(6):605–619.

[9] MACE—Mobile agent code environment. Available

at: http://wwwagss.informatik.uni-

kl.de/Projekte/Ara/mace.html .

[10] N.P.Sudmann,D.Johansen. Adding mobility to non-

mobile web robots. Proceedings of the IEEE

ICDCS00 Workshop on Knowledge Discovery and

Data Mining in the World-wide Web, Taipei, Taiwan,

2000; 73–79.

[11] B.Chen, H.H.Cheng. A run-time support environment

for mobile agents. Proceedings of ASME/IEEE

International Conference on Mechatronic and

Embedded Systems and Applications, No.

DETC2005-85389, Long Beach, CA, September

2005.

[12] B.Chen,H.H.Cheng,J.Palen. Mobile-C: A mobile

agent platform for mobile C/C++ agents. Software—

Practice and Experience 2006; 36(15):1711–1733.

[13] B.Chen, D.Linz, H.H.Cheng. XML-based agent

communication, migration and computation in mobile

agent systems. Journal of Systems and Software

2008; 81(8):1364–1376.

[14] Mobile-C: A multi-agent platform for mobile C/C++

code.2009.

[15] H.H.Cheng. Scientific computing in the Ch

programming language. Scientific Programming

1993; 2(3):49–75.

[16] H.H.Cheng.Ch: A C/C++ interpreter for script

computing. C/C++ User’s Journal 2006; 24(1):6–12.

[17] Ch—An embeddable C/C++ interpreter.2011

[18] B.Chen, H.H.Cheng, J.Palen. Integrating mobile

agent technology with multi-agent systems for

distributed traffic detection and management systems,

Transportation Research Part C 17 (2009) 1–10

