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ABSTRACT 

Automatic segmentation of parotid glands for computer-aided 

diagnosis in clinical practice is still a challenging task, 

especially when there are lesions needing to be outlined. In 

the applications of image-based diagnosis and computer-aided 

lesion detection, image segmentation is an important 

procedure. Features extracted from image analysis in 

companion with image segmentation algorithms are used to 

provide region-based information for clinical evaluation 

procedures. In this paper, we describe a method for 

segmenting the parotid regions with skeptical lesions in the 

head and neck CT images. At first, à trous, a modified 

discrete wavelet transform algorithm, is introduced to 

decompose an image into sub-bands, and the feature 

descriptors effective for soft tissues characteristics are 

computed using the derived coefficients in the sub-bands. 

Then, clustering algorithms are proposed to connect the pixels 

corresponding to similar features into several regions of the 

soft tissues, and so do the tissues of the lesions. In this paper, 

a comparative study of feature-based segmentation with three 

methods is carried on, and the extracted regions are compared 

with the segmentation from the experts for evaluating the 

performance. 

General Terms 

Image processing, Medical image analysis, Image 

segmentation. 

Keywords 
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1. INTRODUCTION 
As image-based computer-aided diagnosis (CAD) is 

introduced to clinical applications, automatic detection of the 

anatomical structures, including bones, organs, gland tissues 

and even tumors in the medical images, is also in high 

demands and developed in recent years [1-5]. In order to find 

the targets accurately in images filled with complex 

anatomical structures, image segmentation plays an important 

role in these works. Image segmentation methods are 

proposed to divide an image into several regions according to 

the image features, and each extracted region can be further 

processed for diagnosis assistance or guidance using 

morphological and geometric methods. In head and neck 

(H&N) CT images, automatic or semi-automatic segmentation 

methods aiming at soft tissue structures in the CT slices are in 

attentions in recent years, because manual segmentation 

requires skilled techniques and becomes tedious and time-

consuming as the amount of data grows. It is beneficial for 

assisting clinical diagnosis and advanced therapy planning 

like intensity-modulated radiotherapy (IMRT)[6-7].  

 

(a) 

  

(b) (c) 

Figure 1: (a) An H&N CT slice with parotid glands at both 

lateral sides within the dashed rectangles. (b) The left 

parotid gland in (a) with the lesion tissues inside the 

boundary of the dashed curve. (c) The right parotid in (a) 

without lesions. 

However, there are still difficulties in automatically extracting 

the parotid glands, and the lesions on risk adjacent to the 

tissues in the CT images. As shown in Figure 1, the parotids 

locate at both lateral sides of the neck anatomical structures. 

A skeptical lesion is found at the left parotid and contoured in 

Figure1.(b). In recent years, atlas-based methods are proposed 

based on the patterns manually sketched out by the experts [7-

11]. However, the stored atlas patterns need previous 

evaluation to choose an appropriate one because of the 

variation of the anatomical structures between patients, but 
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the pattern evaluation in this stage still needs manual 

procedures on extracting the rough regions of the targets. In 

order to capture the region-based information for improving 

medical automation, image segmentation can be an effective 

method. Besides, the lesions or the swollen glands are not 

predictable in size or location appeared in the CT images, so 

detection assisted with image segmentation can make use of 

more efficient information and prevent unsatisfied results. 

However, the gray level distribution, which is frequently used 

in image segmentation, is not sufficient enough for the regions 

of the parotid tissues with low contrast. Generally speaking, 

organs are expected to have consistent features shown in the 

CT slices within the tissues, so that feature-based methods in 

companion with segmentation algorithms are considered, and 

have been applied to segment the soft tissues like the livers in 

abdominal CT images and the brain tissues [14-17]. Therefore, 

soft tissues in the parotid regions need appropriate feature 

descriptors for segmentation. To derive the local features in 

images, wavelet transform is a method frequently mentioned 

in many applications for deriving the features related to 

texture analysis [18-20]. The wavelet-based features are 

characterized by the local statistical properties implying the 

relationship between the neighbor pixels in accordance with 

the wavelet coefficients, and as a result, the segmentation 

method utilizing the derived features can cluster similar pixels 

into regions based on the local image characteristics. 

In this paper, we proposed a method with local region-based 

features to segment the soft tissues of the parotids and the 

regions in risk in the region of interest (ROI). At first, the 

image-based features are derived based on the translation-

invariant wavelet analysis, and then the image feature 

descriptors are derived from the wavelet coefficients and 

utilized for image segmentation. Several segmentation 

algorithms utilizing the derived image features are compared 

in the experiments, and the results are evaluated by comparing 

with the regions figured out by the clinical experts. 

2. Wavelet-based Texture Analysis 
Wavelet-based texture analysis includes two steps: wavelet 

transform computation and feature extraction. A modified 

wavelet transform with translation preservation is mentioned 

in this section, and the wavelet coefficients are then used to 

derive the image features corresponding to each pixel. 

2.1 Wavelet Transform 
The wavelet analysis performs multi-scale properties in 

capturing both location and frequency, and is also proven 

appropriate for deriving the image features such as the local 

texture properties [21-23]. The basic idea of the continuous 

wavelet transform (CWT) of a one-dimensional signal f(x) can 

be expressed by the equation shown as below: 
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and s and τ are the parameters related to the scale and 

translation. In applications, s varies to realize the multi-scale 

analysis. As to the analysis on digital signals, the wavelet 

transform based on discrete wavelet packages are proposed to 

decompose a digital signal into sub-bands. A wavelet package 

is consisted of two bi-orthogonal filters, including a high-pass 

filter used for deriving the wavelet coefficients and a low-pass 

filter for the approximate coefficients. For digital signals, the 

digital wavelet transform (DWT) can be implemented by the 

inner product equations modified from CWT: 
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where j is the dyadic multi-resolution analysis parameter,  is 

the scaling function ,  is the wavelet function, and 

)(kc j and )(kw j are the pair of the approximation 

coefficients and the wavelet coefficients. A digital signal f(n) 

can be decomposed into two sub-bands by measuring the 

similarity with the functions   and   using the inner 

product computation in equation ()-().The one-dimensional 

wavelet transform can be extended to the two-dimensional 

transform by committing the convolution of the wavelet filters 

with the input signal in both the directions along the column 

and the row.  
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Figure 2. : Four sub-bands after traditional DWT of an 

image. 

As shown in Figure 2, after DWT of an image at a single 

level, the input image is consequently decomposed into four 

sub-bands: LL, LH, HL, and HH. The LL sub-band contains 

the scaling information, and the other three sub-bands, LH, 

HL, and HH own the detail information of the three directions, 

including the horizontal, vertical and diagonal. Each sub-band 

can be in cascades decomposed into another sub-bands in 

higher scales. The multi-scale analysis in DWT is realized 

with decimation by 2 after the convolution computation 

expressed as 2-j in equation (3) and equation (4), but the 

decimation can not preserve translation invariance and half 

resolution that may also cause the problem of accuracy.  

Therefore, a decomposition scheme called as “à trous” (with 

hole) algorithm is proposed for the drawback [24], and the 

decimation process in the traditional DWT is replaced with 

up-sampling the filters by inserting zeros between each 

coefficients to enlarge the size of the filter. As in Figure 3, the 

original filter is inserted with zeros between the adjacent 

entries, and the scale of the filter can be extended and the 

filter size is also doubled. 
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Figure 3: An example of a filter and the filter inserted 

with zeros. 

 The decomposition via the “à trous” algorithm can generate 

sub-bands of the same size as the input signal to keep the 

translation invariance in each scale. However, the wavelet 

coefficients in the “à trous” algorithm are not directly derived 

by convolving the signal with the wavelet function as shown 

in equation (4), but resulting from subtracting the 

approximation coefficients in two successive scales as 

equation (5): 

)()()( 1 kckckw jjj   . (5) 

where )(kc j is the approximation coefficients derived from 

convolving the input signal with the scaling function   at 

level  j. )(kc j  and )(1 kc j  are approximation coefficients in 

successive scales at level  j  and level  j-1. 

11 )()(   jjj kckc  . (6) 

As to a 2D image, the approximation sub-band at level j can 

be generated by convolving the input image with the scaling 

function along the column and row directions: 

 



 111 )()( jjjj kckc  . 
(7) 

where 


 1j and  1j denote the convolution operations 

along the row and column directions at level  j-1, respectively. 

The decomposition can be illustrated as Figure 4.  
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Figure 4: The decomposition scheme of the “à trous” 

algorithm. 

Figure 5 shows an example of a one-level decomposition 

using the “à trous” algorithm of a parotid CT image. Figure 

5.(a) is the original image and Figure 5.(b) illustrates the 

approximation coefficients deriving from filtering Figure 5.(a) 

with a low-pass filter in both directions. Besides, Figure 5.(c) 

illustrates the wavelet coefficients corresponding to each pixel 

with brightness and the higher brightness indicates the higher 

intensity of the variation. It can be seen that the wavelet 

coefficients can reflect the intensity of the regional detail 

information such as edges. 

 

(a) 

 

(b) 

 

(c) 

Figure 5: (a) The ROI of the parotid in a CT slice (b) 

image filtered by a low-pass filter (c) the intensity map of  

the difference between (a) and (b). 

2.2 Wavelet-based Feature Extraction 
After the DWT computation, the coefficients in the 

decomposed sub-bands are proposed to derive the feature 

descriptors. The segmentation of the soft tissues highly 

depends on the features selected to express the characteristics. 

There are several descriptors in accordance with these 

coefficients from DWT, including the energy, entropy, mean, 

variance, and the contrast, etc. As equation (8) to (10) written 

below, the measures collect the coefficients inside a mask to 

compute the relationship between the center pixel of a mask 

and its neighbor pixels. 
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where  Wi,j means a coefficient deriving from DWT at (i, j) 

inside a mask within a sub-band, and N is the number of 

elements inside the mask. Energy is a frequently used feature 

used to measure the variation inside a mask in the sub-bands. 

Energy in sub-bands implies the variation in directions or 

scales, and becomes larger at the regions having more detail 

information. Therefore, it can be used to evaluate the edge 

intensity within the mask. Besides, entropy is another wavelet 

texture feature descriptor used to demonstrate the randomness 

or uniformity in a region. The mean and variance are the 

statistical features. In conclusion, energy, entropy, and 

variance derived from the sub-bands of wavelet coefficients 

can be utilized to evaluate the distinctive variations of each 

element, and are beneficial for the image segmentation 

methods using the features related to only the gray level 

distribution. 

The feature vector used in this work is composed of some of 

the descriptors mentioned above. Besides the approximation 

coefficients, energy, entropy and variance from the wavelet 

coefficients are also introduced, and each element of the 

vector is adjusted by a weighting coefficient.  

3. Feature-based Image Segmentation 
Clustering algorithms used in image process and computer 

vision are intended to aggregate the pixels with similar 

features into clusters, and the image can be separate into 

several regions for advanced analysis. Three segmentation 

methods are applied in this work after the texture features are 

extracted, including mean-shift, fuzzy C-means and K-means. 

3.1 Mean-Shift Algorithm 
Mean-shift algorithm is an intuitive method used to cluster 

points with the restriction of a determined bandwidth [25][26]. 

The algorithm needs not define the number of the clusters 

before segmentation. A kernel density estimation function 

involving the bandwidth parameter is given to evaluate the 

weight of a point belonging to a cluster. A Gaussian function 

expressed as below is usually adopted as an estimation kernel. 

2
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
 , 

(12) 

where xi denotes a data point, xc is the estimated center of a 

cluster and c is a positive constant used to adjust the 

bandwidth. 

Mean-shift clustering iteration proceeds with moving the 

centers of the clusters, and the distance from the cluster center 

to each data point is computed repeatedly and weighted by the 

estimation kernel to update the cluster centers. A cluster 

center is re-estimated by 
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where 
t
cx  means the center at the tth iteration. 

The procedure terminates while the centers of the clusters do 

not vary or vary in only a small range and all points are as a 

result assigned to clusters. Each cluster resulted from the 

mean-shift algorithm owns the points within the bandwidth. 

However, the bandwidth for segmentation is hard to decide in 

applications and is always obtained from experiment. 

3.2 Fuzzy C-Means Algorithms 
Fuzzy C-Means (FCM) is an algorithm of soft clustering 

[27][28]. The idea of the fuzzy logic is employed in this 

method, and each point can be allowed to belong to two or 

more clusters. The degree of a point belonging to a cluster is 

evaluated from 0 to 1 with a smooth function. Different from 

the mean-shift algorithm, the number of clusters should be 

previously defined before the fuzzy partitioning. 

Mathematically, FCM is based on minimization of the 

objective function: 
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where xj denotes a data point, xc,i is the estimated center of the 

ith cluster, n denotes the number of clusters, m is a fuzzifier 

number larger than 1 and wj,i is a weight that represents the 

degree of point xj belonging to the  ith cluster, where 
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The FCM partitioning iteration starts with assigning the initial 

fuzzy weighting values wj,i, and the assigned values should 

satisfy equation (15). It attempts to minimize Dm in equation 

(14), and the corresponding centers of the clusters and the 

fuzzy weighting value wj,i are updated obeying the following 

two equations: 
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(17) 

The sum of the weights of a point belonging to all the n 

clusters is constrained to 1. Equation (17) implies that the 

point having the longer distance from the cluster center has 

the smaller value of the weight contributing to the center. The 

iteration repeats until the Dm in equation (14) converges to a 

small value by means of the previous center updating and 

weight computing. As a result, a point is assigned as a 

member of the cluster having the highest weighting value w. 

3.3 K-Means Algorithm 
K-means algorithm is used to segment a group of points into n 

clusters as FCM, and each feature point is consequently 

assigned to the cluster with the nearest center. However, 

unlike FCM algorithm, data points classified by means of the 

k-means algorithm are assigned to only a cluster with the 

binary degree simply either 1 or 0 [29][30]. Therefore, the 

variable w in equation (14) mentioned in FCM to evaluate the 

degree is abandoned in the k-means algorithm. The idea of k-

means algorithm is to minimize the sum of the square distance 
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(SSD) within clusters and can be demonstrated by the 

function as below: 
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where xc,i is the center of the ith cluster Ci derived from the 

equation: 
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where N is the number of points belonging to the ith cluster 

Ci. 

In application, k-means algorithm begins with n points chosen 

randomly as the centers of the clusters. The distance from 

each point to the cluster centers is computed iteratively and 

every point is observed to be assigned to the cluster with the 

center closest to it. Next, the centers of the new clusters are 

also calculated by equation (19), and the new clusters and the 

distance from each point to the centers of clusters are 

repeatedly updated until the centers of the clusters no longer 

change. 

 

4. Experiment and Results 
In this section, 45 images selected from 15 CT dataset with 

parotid pathology are used in experiments to evaluate the 

method applied to segment the soft tissues. The CT dataset are 

gathered from Cathay General Hospital and selected by the 

clinical experts. The CT images are scanned by Phillip 

Brilliance 64 scanner and the pixel spacing of the CT images 

is 0.78×0.78mm2 . The regions of interest of a slice are 

selected at both sides of the cervical spine and the air path 

near the central axis of the body. Morphological methods 

including as erosion, dilation and labeling algorithms are 

introduced to extract the regions after segmentation. The 

performance was evaluated by comparing the segmentation 

results with the overlap fraction of lesions outlined by the 

clinical experts. Detection rate (D.R.) defined as the equation 

(20) below is used to evaluated the result. 

ErrRD 1..  (20) 

whole

wrong

A

A
Err  

(21) 

where Awrong denotes the area of incorrect classification and 

Awrong denotes the area of the segmented region covering the 

target. 

The features are derived using the Gaussian filter with the 

length of 3. The one to two levels decomposition appears 

more reasonable result than the decomposition in higher levels 

in the image quality. The three segmentation algorithms 

mentioned above are compared and some of the results are 

demonstrated. The pixels in those images are labeled with 

colors to represent the classes of the segmentation.   

Figure 6 is the parotid region in an H&N CT with the lesion 

shown in weak boundaries between the adjacent normal 

tissues, and the segmentation results using different methods 

are compared and presented in Figure 7 to 10. Figure 7.(a) to 

Figure 7.(d)  illustrate the segmentation results using the 

mean-shift algorithm with different bandwidth. It can be seen 

that the bandwidth seriously affects the segmentation result. 

But the appropriate bandwidth depends on the image qualities 

and is different in each case. Therefore, it is hard to be 

decided automatically. Segmentation with small bandwidth 

may result in over-segmentation as shown in Figure 7.(a), but 

points may be wrongly gathered into large groups if the 

bandwidth goes too large. Figure 8.(a) to Figure 8.(e) show 

the results using FCM with different fuzzifier number m 

indicated in equation (14). It can be seen that the 

segmentation performs better with the smaller m which 

performs in harder clustering.  Figure 9.(a) to Figure 9.(d) 

show the results using k-means algorithms applying different 

image features. Features involving detail information result in 

more efficient segmentation than only scaling information, 

especially at the boundaries between tissues. Figure 10 is 

another test parotid image with the lesions of higher contrast 

at the boundaries. The performance of segmentation using 

different methods is also compared in the experiments and the 

results are shown in Figure 11 to Figure 13.  

 

 

 

Figure 6: The ROI of the parotid in a CT slice 
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(a) (b) (c) (d) 

Figure 7: Segmentation results of Figure 6 using the mean-shift method with different bandwidth (a) bandwidth=25 (b) 

bandwidth=50 (c) bandwidth =75 (d) bandwidth =100. 

 

(a) 

 

    

(b) (c) (d) (e) 

Figure 8: Segmentation results of Figure 6 using FCM with different fuzzier number m (a) m=2 (b) m=5(c) m=10(d) m=15 (e) 

m=20 

 

 

    

(a) (b) (c) (d) 

Figure 9: Segmentation results of Figure 6 using the k-means method (a) using only the gray level feature (b)(c)(d) the weight 

of the gray-level feature from high (b) to low (d). 
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Figure 10: The ROI of the parotid in a CT slice 

 

    

(a) (b) (c) (d) 

Figure 11: Segmentation results of Figure 10 using with the mean-shift method using different bandwidth (a) bandwidth=25 (b) 

bandwidth=50 (c) bandwidth =75 (d) bandwidth =100. 

 

    

(a) (b) (c) (d) 

Figure 12: Segmentation results of Figure 10 using with FCM method using different m (a) m=5 (b) m=10 (c) m=15 (d) m=20. 

 

    

(a) (b) (c) (d) 
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Figure 13: Segmentation results of Figure 10 using the k-means method (a) using only the gray level feature (b)(c)(d) the 

weight of the gray-level feature from high (b) to low (d). 

 

 

5. Discussion and Conclusions 
Segmentation using mean-shift algorithm can perform 

satisfying results if an appropriate bandwidth is chosen for 

clustering computation. However, the experiments indicate 

that the appropriate bandwidth in different cases varies in a 

large range and need to be decided manually. The 

performance of FCM is inferior to the k-means algorithm 

shown in the experiments, especially for the weak boundaries 

in the images. K-means algorithm performs in relatively high 

D.R in those experiments, and the segmentation applying 

more features about the detail information including the 

variation energy, entropy and variance performs better than 

the segmentation applying only the gray-level distribution or 

the scaling information derived from the approximation 

coefficients in DWT. The average detection rate utilizing the 

same features is listed in Table 1. 

Table 1: Average detection rate with different 

segmentation methods. 

Method Avg. Rate 

% 

Mean-shift 

Algorithm 

91.151 

FCM Algorithm 84.277 

K-means 

Algorithm 

95.314 

 

Conclusively, the distinctive feature descriptors used for 

textures are applicable in the segmentation for the soft tissues 

of parotid glands and the lesions. Besides, hard clustering is 

performing better than the soft clustering in this work. 

In this paper, we proposed a method for segmenting the soft 

tissues of the parotids and lesions in the CT images with 

pathology. The image features derived from wavelet analysis 

without decimation are involved to improve the performance 

of segmentation utilizing only gray level usually applied in 

CT images. Unsupervised clustering algorithms are utilized in 

this work, and the segmentation results in the experiment 

demonstrate that the lesion regions can be effectively 

separated from the adjacent tissues with the distinctive 

features. If the scale of analysis gets higher, the boundaries of 

the segmentation may be more blurred such that some lesions 

with small size may be easily neglected. The delineation of 

the extracted regions can be helpful for evaluating the initial 

condition of the active contour, and the segmentation of the 

regions of the skeptical lesions is beneficial for vision-aided 

assisting diagnosis. Feature work will involve the combination 

of the segmentation methods with shape analysis and 

recognition methods for medical automation approaches. 
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