
International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

5

Performance Analysis of Parallel Sorting Algorithms

using GPU Computing

Neetu Faujdar
Dept of CSE

Jaypee University of Information Technology,
Waknaghat Solan, India

SP Ghrera
Dept of CSE

Jaypee University of Information Technology,
Waknaghat Solan, India

ABSTRACT

Sorting is a well interrogating issue in computer science.

Many authors have invented numerous sorting algorithms on

CPU (Central Processing Unit). In today’s life sorting on the

CPU is not so efficient. To get the efficient sorting

parallelization should be done. There are many ways of

parallelization of sorting but at the present time GPU

(Graphics Processing Unit) computing is the most preferable

way to parallelize the sorting algorithms. Many authors have

implemented the some sorting algorithms using GPU

computing with CUDA. This paper mentioned the roadmap of

research direction of a GPU based sorting algorithms and the

various research aspects to work on GPU based sorting

algorithms. These research directions include the various

sorting algorithms which are parallel (Merge, Quick, Bitonic,

Odd-Even, Count, Radix etc.) sort algorithms using GPU

computing with CUDA (Compute Unified Device

Architecture). In this paper, we have tested and compared the

parallel and sequential (Merge, Quick, Count and Odd-Even

sort) using dataset. The testing of parallel algorithms is done

using GPU computing with CUDA. The speedup is also

measured of various parallel sorting algorithms. The results

have depicted that, the count sort is the most efficient sort due

to based on the key value. Future research will refine the

performance of sorting algorithms in GPU architecture.

Keywords

GPU, CUDA, Parallel Sorting Algorithms.

1. INTRODUCTION
GPU stands for Graphics Processing Unit. In the 1999-2000

computer scientist started using the GPU to extend the range

of scientific domain. The term GPU was popularized in 1999

by NVIDIA. The world first GPU was a Geforce 256. To do

the GPU programming, we require the use of graphics APIs

such as OpenGL and WebGL. In 2002 James Fung developed

OpenVIDIA. It is used for parallel GPU computer vision. The

projects of OpenVIDIA implement computer observation

algorithms run on graphics hardware such as OpenGL, Cg and

CUDA-C. In November 2006, NVIDIA launched CUDA

(Compute Unified Device Architecture). It is an API

(Application Programming Interface) that allows coding the

algorithms for execution on Geforce GPUs using C as a high

level programming language. CUDA can use with other

languages. Nowadays, several GPGPU (General Purpose

computing on GPUs) languages, such as OpenCL and

NVIDIA CUDA are proposed for designers to use GPUs with

extended C programming language, instead of graphics API.

The modern NVIDIA GPUs are precisely programmable in C

using CUDA. The parallel computing with CUDA organizes

concepts of Grid, Block and Thread. The threads are classified

on the structure of grids, block and threads. The threads are

executed using SIMT (Single Instruction and Multiple-

Threads) style. In this paper, the roadmap of research

direction about GPU based sorted algorithm is suggested. The

paper also listed the analysis of GPU parallel sorting

algorithms over sequential. The contribution of the paper is as

follows.

1. The paper contains the roadmap of research

direction about GPU based sorting algorithms.

2. Some parallel sorting using GPU computing is

related with the sequential sorting.

3. The speedup achieved by parallel sorting over

sequential is also measured in this paper.

The paper demonstrates as follows. In section 2, we have

discussed the motivation of the paper. Literature review based

on parallel sorting using GPU computing is listed under the

section 3. The section 4 shows the hardware configuration of

the system used to execute the algorithms. The performance

comparison of parallel and sequential Sorting Algorithms is

described in section 5. The measurement of speedup is

illustrated in section 6. The conclusion and future work is

listed under the section 7.

2. MOTIVATION
Nowadays GPU is in big demand in parallel computing.

Numerous researchers are working on the GPU. The

programmability of the GPU is rising in the world. The rising

GPU has enabled the threshold. The following point makes

the user to work on the GPU rather than the CPU.

 The speed of CPU is less as compared to GPU.

 GPUs are comically strong.

 GPUs have a troublesome departure path.

 The GPU programming model emerging.

 GPU is densely parallel.

 It has hundreds of cores.

 It has thousands of threads.

 It is cheap

 It is highly available.

International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

6

Fig: Rising of GPU

In the Fig. 1 NV stands for NVIDIA GPU and shows that

GPUs are highly rising rather than CPU.

3. LITERATURE REVIEW BASED ON

PARALLEL SORTING USING GPU
Greb et al presented the parallel sorting based on stream

processing architecture in the year 2006. The proposed sorting

is based on bitonic sort who is adaptive. The optimal time

complexity of proposed approach achieved O (n log n)/p). The

proposed algorithm is faster than sequential sorting. The

proposed algorithm is designed on modern GPU, so the name

GPU-ABiSort [1].

Inoue et al proposed the AA-sort which is parallel sorting

algorithm. AA-sort stands for Aligned-Access Sort. AA-sort

proposed for shared memory multiprocessors. The sequential

version of the AA-sort is more beneficial for IBM’s optimized

sequential sorting using SIMD instructions [2].

Sintorn et al presented the fast algorithm to sort huge data

using modern GPU. The implementation of the algorithm is

fast due to the GPU. The proposed algorithm performed better

than bitonic sort algorithms for the input list with more than

512k elements. The suggested approach is 6-14 times quicker

than the single CPU quick sort of 1-8M elements [3].

 Cederman et al presented the GPU Quick Sort. The proposed

algorithm is extremely capable and suitable for parallel multi-

core graphics processors. GPU quick sort performance

represents the better performance than the fastest known GPU

based sorting algorithms such as radix and bitonic sort [4].

Rozen et al presented the adoption of the bucket sort

algorithm. The proposed algorithm is entirely run on the GPU.

The proposed algorithm is implemented on GPU using

OpenGL API [5]

Baraglia et al showed that how the graphics processor used as

a coprocessor to speed up the algorithm and CPU also allowed

doing the some other task. The proposed algorithm is used to

memory efficient data access pattern to maintain the

minimumnumber of access to the memory of the chip. The

implementation results show the improvement in the GPU

based sorting in order to CPU based sorting [6].

Leischner et al presented the GPU sample sort algorithm.

Thesample merge sort is the efficient comparison based

sorting algorithm for distributed memory architecture.

Previously the sample sort algorithm was unknown for the

GPU [7].

Kukunas et al presented the GPU merge sort. In today’s life

high data throughput and computational power are increasing.

The GPGPU architecture is created by NVIDIA. The GPU

merge sort is highly efficient in comparison to a sequential

version [8].

Oat et al presented the technique for sorting data into spatial

bins using GPU. The proposed technique takes the unsorted

data as input and scatters the points in sorted order into the

buckets. The author proposed method is used to implement a

form of bucket sort using GPU [9].

Huang et al proposed the empirical optimization technique.

The empirical optimization technique is also important for

sorting routines using GPU. The radix sort generated the

highly productive code for NVIDIA GPU with a variety of

architecture specification. The paper outcome showed that the

empirical optimization technique is quite successful. The

resulting code was more efficient than radix sort [10].

Ye et al presented GPU warp sort to carry out a comparison

based parallel sort on the GPU. The warp sort is nothing but

contain the bitonic sort followed by merge sort. The proposed

algorithm achieved the high staging by depicting the sorting

task on the GPU. The experimental results of GPU- Warpsort

work well on various kinds of input distribution [11].

Peters et al presented the Batcher’s bitonic sorting network

using CUDA hardware with GPUs. The arbitrary numbers has

been taken as input and assigned compare-exchange operation

to threads using adapted bitonic sort. The proposed algorithm

has greatly increased the performance of implementation [12].

Peters et al presented the merge-based external sorting

algorithm using CUDA sanction GPUs. The production

influence of memory transfer is reduced using GPU. The

better utilization of the GPU and load balancing is achieved.

The performance of the algorithm is demonstrated by

extended testing. The two main problems occur when using

external sorting on GPUs [13].

Satish et al reported the comparison and non-comparison

based sorting algorithms on CPUs and GPUs. The author has

extended the work to the Intel Many Integrated Core (MIC)

architecture. The radix sort evaluated on Knights Ferry and

obtained the performance gain of 2.2X and 1.7 X. The

production of the GPU radix sort improves nearly 1.6X over

previous outcomes [14].

Helluy presented the portable OpenCL implementation of the

radix sort. The algorithm was tested on several GPUs or CPUs

in order to access the good performance. The implementation

was also applied to the Particle-In-Cell (PIC) sorting. The

application of the PIC is plasma physics simulations. The

radix sort algorithm contains the following steps: 1)

Histogramming. 2) Scanning. 3) Reordering [15].

Krueger et al presented a technique, differential updates

which are used to permit rapid modifications. The lead storage

is allowed to the database to maintain data storage for

accommodating the modifying queries. The author also

presented the parallel dictionary slice merge algorithm and

also GPU parallel merge algorithm that achieves 40% more

throughput in comparison to CPU [16].

Mišić et al represented an effort of sorting algorithms to

analyze and implement in the graphics processing unit. Three

sorting algorithms evaluated on the CUDA architecture. The

evaluated algorithms are quick, merge and radix sort. CUDA

platform used the NVIDIA GPU to execute applications [17].

Peters et al presented the novel optimal sorting algorithm

which is similar to the adaptive bitonic sort. The popular

parallel merge based sorting algorithm is the adaptive bitonic

International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

7

sort. It uses the tree like data structure to achieve the optimal

complexity called a bitonic tree. The author presented the

execution of the hybrid algorithm for GPUs based on bitonic

sort [18].

Jan et al presented examines three extensively used parallel

sorting algorithms. The algorithms are Odd-Even sort, rank

sort and bitonic sort. The comparative analysis is performed in

terms of sorting rate, sorting time and speedup on CPU and

different GPU architectures. The author achieved the high

speed-up of NVIDIA quadro 6000 GPU for min-max butterfly

network reaching much lower sorting for high data [19].

Munavalli developed a novel sorting algorithm on the GPU.

Author focused on the vital problem. Author presented an

efficient sorting algorithm which is Fine Sample Sort (FSS).

The proposed algorithm extends and outperforms the sample

sort algorithm. The results have shown that FSS outperforms

sample sort by at least by 26% and on average 37% of data

size ranging from 40 million and above for various input

distributions [20].

Thouti et al presented the comparative performance analysis

of various sorting algorithms. The algorithms are bitonic and

parallel radix sort. Author implemented both the algorithms in

OpenCL and compared with the quick sort algorithm. The

author used the Intel Core2Due CPU 2.67 GHz and NVIDIA

Quadro FX 3800 as GPU for the implementation [21].

Zurek et al described the implementation results for a few

diverse parallel sorting algorithms using GPU cards and

multi-core processors. The author presented the hybrid

algorithm and executed on both platforms CPU and GPU. The

comparison of many core and multi-core is lacking. The

threads are grouped in blocks and the blocks are grouped in

grids [22].

Panwar et al used the GPU architecture for solving the sorting

problem. The highly parallel computing nature of GPU

architecture is utilized for sorting purposes. The author

considered the input array in the form of 2D matrix which is

used for sorting. The modified version of merge sort is

applied in that matrix. This work performed much efficient

sorting algorithm with reduced complexity [23].

Garcial et al presented the fast data parallel implementation of

radix sort using the Direct Compute software development kit

(SDK). Author also discussed the optimization strategies in

detail that are used to increase the performance of radix sort.

The paper share the insights should be used in GPGPU

(General Purpose Graphics Processing Unit). Finally the

author discussed how radix sort can be used to accelerate ray

tracing [24].

Gluck et al introduced a method for fast quadtree construction

on the GPU. The level-by-level approach is used to construct

a quadtree. Quadtree is used for the spatial segmentation of

lidar data points using a grid digital evaluation model (DEM).

The author introduced an algorithm which is suitable for

quadtree construction using GPU. The suggested algorithm

reduces the construction problem of bucket sort [25].

Ye et al presented the GPU based sorting algorithm which is

GPUMemSort. It achieved the highest performance in sorting.

It has consisted two algorithms [26]:

Polok et al focused on the implementation of extremely

productive sorting routines for the sparse linear algebra

operations. Testing results show that the suggested approach

outperforms the other similar implementations. Author

implementation is bandwidth efficient because sorting rate is

achieved by it compare to the theoretical upper bound on

memory bandwidth [27].

Mu et al described the bitonic sort algorithm in detail and

implementation is done on CUDA architecture. The two

effective optimization implementation details are conducted at

the same time using the characteristics of the GPU which

improves the efficiency. The experimental results show that

GPU bitonic sort have 20 times more speed up to the CPU

quick sort [28].

Xiao et al proposed the high performance approximate sort

algorithm based on the CUDA parallel computing architecture

running on multi-core GPUs. The algorithm divides the input

into distribution multiple small intervals. The results showed

that approximate sort is two times faster than radix sort and

far exceeds all the GPUs-based sorting [29].

Ajdari et al described the modification of the Odd-Even sort.

The modification of the algorithm consists in the ability to

work with the blocks of elements instead working with

individual elements. The modification is done using the

CUDA technology. The results showed that sorting of integers

in CUDA environment is dozens of times faster [30].

Neetu et al presented the GPU merge and quick sort. The

objective of the paper is to evaluate and analyze the

achievement of merge and quick sort using GPU technology.

Author also evaluated the parallel time and space complexity

of both algorithms using dataset [31].

4. HARDWARE CONFIGURATION
We have run the algorithms on Window 7 32-bit operating

system. The Window 7 has Intel® core™ i3 processor 530 @

2.93 GHz. The system has the GeForce GTX 460 graphic

processor with (7 multiprocessors X (48) CUDA cores\MP) =

336 CUDA cores. The maximum threads per multiprocessor

are 1536 and 1024 threads per block. The runtime version of

CUDA system is 6.0. The global memory used by the system

is 768 Mbytes and the total amount of constant memory is

65536 bytes. The total amount of shared memory per block is

49152 bytes. System having the total number of registers

available per block is 32768 and warp size is 32. Maximum

sizes of each dimension of a block are 1024 x 1024 x 64 and

maximum size of each dimension of a grid is 65535 x 65535 x

65535.

5. EXECUTION TIME TESTING OF

PARALLEL AND SEQUENTIAL

ALGORITHMS
The certification of the sequential and parallel sorting

algorithms is done on a dataset [T10I4D100K (.gz)] [32, 33].

The dataset contains the 1010228 items. The four cases has

been chosen for certification.

(1) Random with repeated data (Random data)

(2) Reverse sorted with repeated Data (Reverse sorted data)

(3) Sorted with repeated data (Sorted data)

(4) Nearly sorted with repeated data (Nearly sorted data)

Table 1, expressed the execution time in seconds of numerous

types of parallel and sequential sorting algorithms using the

dataset.

https://ac-be-p.surfly.com/ua/fimi/HT/mZBcQHXBZQ3i09on2iuP7g/data/T10I4D100K.dat?SURFLY=T
https://ac-be-p.surfly.com/ua/fimi/HT/mZBcQHXBZQ3i09on2iuP7g/data/T10I4D100K.dat?SURFLY=T
https://ac-be-p.surfly.com/ua/fimi/HT/mZBcQHXBZQ3i09on2iuP7g/data/T10I4D100K.dat?SURFLY=T

International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

8

Table 1. Execution time of numerous types of sequential and parallel sorting algorithms in seconds

Sorting algorithms Random data Nearly sorted data Sorted data Reverse sorted data

Sequential quick sort 1.043904 1.219802 1.26322 72.089548

Parallel quick sort 0.08001152 0.08501333 0.085001309 0.08501365

Sequential count

Sort
0.001841 0.00197 0.0019 0.00199

Parallel count sort
0.000001531 0.000001542 0.000001395 0.000001594

Sequential merge

sort
0.266 0.235 0.218 0.219

Parallel merge sort
0.000001632 0.000001568 0.000001504 0.0000016

Sequential Odd-

Even Sort
2067.263 596.431 577.812 2002.876

Parallel Odd-Even

Sort

358.126 337.654 332.017 348.654

In Table 1, the most efficient parallel and sequential sort is

count sort. It is because the count sort is based on the key

range and also it is non-comparison based sorting algorithm.

The range of count sort is taken from 0 to 65565. The Fig 2 to

5 is represented using the values in Table 2. In all the Fig 2 to

5, the X-axis represented the different types of sorting

algorithms and the Y-axis expressed the execution time in

seconds.

The Fig 2 and 3 illustrate the execution time comparison of

sequential and parallel sorting using random and nearly sorted

data. In both the figures, odd-even sort is taking more time in

comparison to others. It is because the odd-even sort is the

extension of bubble sort. The count sort is the most efficient

sort because of the range of key value.

The Fig 4 and 5 illustrate the execution time comparison of

sequential and parallel sorting using sorted and reverse sorted

data. In both the figures, odd-even sort is taking more time in

comparison to others. It is because the odd-even sort is the

extension of bubble sort. The count sort is the most efficient

sort because of the range of key value.

Fig 2: Execution time comparison of various sequential and parallel sorting using random data

Fig 3: Execution time comparison of various sequential and parallel sorting using nearly sorted data

International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

9

Fig 4: Execution time comparison of various sequential and parallel sorting using sorted data

Fig 5: Execution time comparison of various sequential and parallel sorting using reverse sorted data

6. MEASUREMENT OF SPEEDUP
In this section, the speedup of parallel sorting algorithms over

the sequential has been shown. The speedup measures the

performance gain, which is acquired by parallelizing a given

application over sequential application. Table 2 represented

the speedup achieved by various parallel sorting algorithms

using different types of dataset. By analyzing the Table 2,

results shows that merge sort achieved the additional speedup

in comparison to others. In the Fig. 6, the X-axis expresses

the type of datasets and the Y-axis shows the speedup acquires

by various parallel sorting algorithms.

Table 2: Speedup acquired by parallel sorting algorithms using the various types of datasets

Speedup

Sorting

algorithms
Random data Nearly sorted data Sorted data Reverse sorted data

Quick Sort 13.04692124 14.3483616 14.8611829 847.9761544

Count Sort 1202.482038 1277.561608 1362.007168 1248.431619

Merge Sort 162990.1961 149872.449 144946.8085 136875

Odd-Even Sort 5.772446011 1.766396963 1.740308478 5.744594928

Fig 6: Speedup acquired by various parallel sorting algorithms using various datasets

International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

10

7. CONCLUSION AND FUTURE WORK
There have been various models developed based on the

traditional sorting algorithms like quick sort, merge sort

bucket sort and count sort. As in most of the cases the papers

have been found based on implementation of the GPU radix

sort. The radix sort is based on the key component that is

prefix sum. If an efficient way is measured to find the prefix

sum, then the efficiency sorting algorithms can increases

which are based on prefix sum. The sorting algorithm

implementation is established on the description of the data.

The description of data affects the sorting process. If the

sorting algorithms are designed to handle or take the

advantage of the nature of the data, then there will be a huge

increase in the performance in that particular case. This may

be an overhead for the other cases of the data. The merge sort

and quick sort have attracted the interest of various authors,

but sample sort claims to be the most efficient in compare to

comparison-based sorting algorithms above mentioned.

In this paper some parallel and sequential sorting is tested

using the four types of data sets. After comparison, outcome

comes that count sort is the most efficient sort in comparison

to others. It is because the count sort based on the range of

key elements. Speedup is also measured by the parallel sorting

algorithms over sequential in which merge sort achieved the

additional speedup than others. Four types of sorting

algorithms have tested and compared which are merge, quick,

count and odd-even sort. In the similar manner the others,

sorting algorithms can be tested and compared. The GPU

computing using CUDA hardware having the compute

capability 2.1 is used to analyze the algorithms. But, if the

same algorithms have been used on the hardware having the

compute capability 3.0, then it will give an added advantage

of unified memory architecture.

The researcher still finds a gap to use the knowledge about the

data to implement the sorting algorithm. Future research will

refine the performance of sorting algorithms using GPU

architecture and Thrust library.

8. ACKNOWLEDGMENTS
This work has been done only for research concern. All

experimental results are done in the research lab of Jaypee

University of Information Technology, Waknaghat Solan,

India.

9. REFERENCES
[1] Greb, Alexander, and Gabriel Zachmann, 2006. GPU-

ABiSort: Optimal parallel sorting on stream

architectures. IEEE Parallel and Distributed Processing

Symposium, IPDPS, 20th International

[2] Inoue, Hiroshi, et al, 2007. AA-sort: A new parallel

sorting algorithm for multi-core SIMD processors.

Proceedings of the 16th International Conference on

Parallel Architecture and Compilation Techniques. IEEE

Computer Society.

[3] Sintorn, Erik, and Ulf Assarsson. 2008. Fast parallel

GPU-sorting using a hybrid algorithm. Journal of Parallel

and Distributed Computing, vol. 68, No. 10, pp. 1381-

1388.

[4] Cederman, Daniel, and Philippas Tsigas. 2008. A

practical quicksort algorithm for graphics processors.

Algorithms-ESA, Springer Berlin Heidelberg, pp. 246-

258.

[5] Roźen, T., Krzysztof Boryczko, and Witold Alda. 2008.

GPU bucket sort algorithm with applications to nearest-

neighbour search.

[6] Baraglia, Ranieri, et al. 2009. Sorting using bitonic

network with CUDA. the 7th Workshop on Large-Scale

Distributed Systems for Information Retrieval (LSDS-

IR), Boston, USA.

[7] Leischner, Nikolaj, Vitaly Osipov, and Peter Sanders.

2010. GPU sample sort. Parallel & Distributed

Processing (IPDPS), International Symposium on IEEE.

[8] Kukunas, Jim, and James Devine. 2009. GPGPU Parallel

Merge Sort Algorithm. NVIDIA Technical Report NVR-

[9] Oat, Christopher, Joshua Barczak, and Jeremy Shopf.

2010. Efficient spatial binning on the GPU. SIGGRAPH

Asia

[10] Huang, Bonan, Jinlan Gao, and Xiaoming Li. 2009. An

empirically optimized radix sort for gpu. Parallel and

Distributed Processing with Applications, IEEE

International Symposium on.

[11] Ye, Xiaochun, et al. 2010. High performance

comparison-based sorting algorithm on many-core

GPUs. Parallel & Distributed Processing (IPDPS), IEEE

International Symposium on.

[12] Peters, Hagen, Ole Schulz-Hildebrandt, and Norbert

Luttenberger. 2010. Fast in-place sorting with cuda based

on bitonic sort. Parallel Processing and Applied

Mathematics. Springer Berlin Heidelberg, pp. 403-410.

[13] Peters, Hagen, Ole Schulz-Hildebrandt, and Norbert

Luttenberger. 2010. Parallel external sorting for CUDA-

enabled GPUs with load balancing and low transfer

overhead. Parallel & Distributed Processing, Workshops

and Phd Forum (IPDPSW), IEEE International

Symposium on.

[14] Satish, Nadathur, et al. 2010. Fast sort on cpus, gpus and

intel mic architectures. Intel Labs, pp. 77-80.

[15] Helluy, Philippe. 2011. A portable implementation of the

radix sort algorithm in OpenCL.

[16] Krueger, Jens, et al. 2011. Applicability of GPU

Computing for Efficient Merge in In-Memory Databases.

ADMS@ VLDB.

[17] Mišić, Marko J., and Milo V. Tomašević. 2011. Data

sorting using graphics processing units.

Telecommunications Forum (TELFOR), 19th. IEEE.

[18] Peters, Hagen, Ole Schulz-Hildebrandt, and Norbert

Luttenberger. 2012. A novel sorting algorithm for many-

core architectures based on adaptive bitonic sort. Parallel

& Distributed Processing Symposium (IPDPS), IEEE

26th International.

[19] Jan, Bilal, et al. 2012. Fast parallel sorting algorithms on

GPUs." International Journal of Distributed and Parallel

Systems, vol. 3, pp. 107-118.

[20] Munavalli, Seema M. 2012. Efficient Algorithms for

Sorting on GPUs.

[21] Thouti, Krishnahari, and S. R. Sathe. 2012. An OpenCL

Method of Parallel Sorting Algorithms for GPU

Architecture.

International Journal of Computer Applications (0975 – 8887)

Recent Innovations in Computer Science and Information Technology

11

[22] Żurek, Dominik, et al. 2013. The comparison of parallel

sorting algorithms implemented on different hardware

platforms." Computer Science, vol. 14, No. 4, pp. 679-

691.

[23] Panwar, Mukul, Monu Kumar, and Sanjay Bhargava.

2014. GPU Matrix Sort (An Efficient Implementation of

Merge Sort)." International Journal of Computer

Applications, vol. 89, No. 18, pp. 9-11.

[24] Arturo Garcia, Jose Omar Alvizo Flores, Ulises Olivares

Pinto, Felix Ramos. 2014. Fast Data Parallel Radix Sort

Implementation in DirectX 11 Compute Shader to

Accelerate Ray Tracing Algorithms. EURASIA

GRAPHICS: International Conference on Computer

Graphics, Animation and Gaming Technologies, pp. 27-

36.

[25] Gluck, Joshua. 2014. Fast GPGPU Based Quadtree

Construction.

[26] Ye, Yin, et al. 2014. GPUMemSort: A High Performance

Graphics Co-processors Sorting Algorithm for Large

Scale In-Memory Data. Journal on Computing (JoC),

vol. 1, No. 2.

[27] Polok, Lukas, Viorela Ila, and Pavel Smrz. 2014. Fast

radix sort for sparse linear algebra on GPU. Proceedings

of the High Performance Computing Symposium.

Society for Computer Simulation International.

[28] Mu, Qi, Liqing Cui, and Yufei Song. 2015. The

implementation and optimization of Bitonic sort

algorithm based on CUDA. arXiv preprint arXiv:

1506.01446.

[29] Xiao, Jun, Hao Chen, and Jianhua Sun. 2015. High

Performance Approximate Sort Algorithm Using GPUs.

[30] Ajdari, Jaumin, et al. 2015. A Version of Parallel Odd-

Even Sorting Algorithm Implemented in CUDA

Paradigm." International Journal of Computer Science

Issues (IJCSI), vol. 12, No. 3.

[31] Neetu Faujdar and Satya Prakash Ghrera. 2015.

Performance Evaluation of Merge and Quick Sort using

GPU Computing with CUDA. International Journal of

Applied Engineering Research, vol. 10, No.18, pp.

39315-39319.

[32] Frequent Itemset Mining Implementations

Repository,http://fimi.cs.helsinki.fi accessed on

10/11/2015

[33] Zubair Khan, Neetu Faujdar, et al. 2013. Modified

BitApriori Algorithm: An Intelligent Approach for

Mining Frequent Item-Set. Proc. Of Int. Conf. on

Advance in Signal Processing and Communication, pp.

813-819.

IJCATM : www.ijcaonline.org

