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ABSTRACT 

Elliptic Curve Cryptography (ECC) has gained increasing 

acceptance in the industry, the academic community and the 

cryptography applications. This interest is mainly due to the 

high level of security with relatively small keys provided by 

ECC. In this paper, a high-performance ASIC based ECC key 

generation processor is proposed. This processor supports 

generic elliptic curves over GF(2m) with sizes (m) ranging from 

113 to 256 bits. The proposed processor is based on 

programmable cellular automata. For real time implementation, 

the processor was simulated using active-HDL and synthesized 

using Synopsys Design Compiler. Further, the processor is 

implemented by an ASIC CMOS 120 nm technology. The 

results on the layouted processor over GF(2256) show a high 

performance, confirming the efficiency of the processor. 

Keywords 

Elliptic curve cryptography, cellular automata, finite fields, 

ASIC and Montgomery point multiplication algorithm. 

1. INTRODUCTION 
Elliptic curves cryptosystem (ECC) is a potential public key 

cryptosystem to become the dominant encryption method for 

information and communication system. The ECC was proposed 

in 1985 by Neal Koblitz [1] and Victor Miller [2], and the 

security of it rests on the discrete logarithm problem over the 

points on an elliptic curve. The ECC provides higher strength-

per-bit than any other current public-key cryptosystems [3]. 

Because of its higher strength-per-bit, Elliptic Curve 

Cryptosystems are being increasingly used in embeded systems 

(e.g. IC card and mobile devices) instead of RSA, which is most 

used for public-key cryptosystems. 

In  the  last  decade,  the  approach  of  hardware implementing  

Elliptic  Curve  Cryptography  algorithms  knew a very intensive 

race, due essentially to the requirements of security, speed and 

area constraints. Different security organizations like ISO, 

ANSI, IEEE and NIST, have been working to standardize the 

use of ECC. 

For the implementation of ECC, finite fields GF(p) and GF(2m) 

have been used, where p is prime and m is positive  integer.  In 

particular, GF(2m), which  is an m-dimensional extension  field 

of GF(2),  is suitable  for  hardware  implementation  because  

there  is  no  carry  propagation  in  arithmetic operations. The 

function used for this purpose is the scalar multiplication K.P, 

where K is an integer and P is a point on an elliptic curve.   

Recently, Hardware and firmware implementation of ECC over 

different fields GF(2m)  have been reported  in  numerous  

works.  Leung et al.  [4] Presented a microcoded FPGA-based 

elliptic curve processor. This design is parameterized for 

arbitrary key sizes and allows the rapid development of different 

control flows.  They have used a normal basis for the Galois 

field operations,  and  the  point multiplication  can  be  

computed  in  14.3 ms  for GF(2281). Morales-Sandoval  and  

Feregrino-Uribe  [5]  proposed  a  hardware  architecture  that  

can  perform  three different ECC algorithms. The main 

functional units in their cryptosystem are coprocessor for scalar 

multiplication, random number generator, algorithm units, and 

main controller. Its scalar multiplication can be computed in 4.7 

ms for GF(2191).  Orland and Paar [6] designed a reconfigurable 

elliptic curve processor over GF(2167), the processor consists of 

main controller and arithmetic units. Chang Hoon et al [7] 

described an FPGA implementation of high performance ECC 

processor over GF(2163). The proposed architecture is based on 

Lopez- Dahab elliptic curve point multiplication algorithm and 

Gaussian normal basis for GF(2163) and drive parallelized 

elliptic curve in point doubling and point addition algorithms 

with  uniform  addressing.  Dan Young-ping et al, proposed a 

parallel hardware processor to compute elliptic curve scalar 

multiplication in polynomial basis representation over GF(2163) 

[8]. Bednara et al [9] designed an FPGA-based cryptographic 

processor architecture that allows using multiple squares, adders 

and multipliers.  They are looking for a hybrid coordinate 

representation in affine projective Jacobian and Lopez-Dahab 

form.  Two prototypes were synthesized for GF(2191).  In Ref  

[10], Cheung  et al proposed an ECC design  for various  field 

operations, which is, however, not optimized for fixed field. The 

implementations of ECC in an integrated circuit (ASIC), are 

presented in works [11] and [12]. In [13], we described the 

coupled FPGA/ASIC implementation of elliptic curve crypto-

processor over GF(2163) . In our scheme, we have developed the 

arithmetic unit over the finite field GF (2163) and the elliptic 

curve operations. We have provided a comparison with some 

ECC hardware implementations in terms of occupation (Slices) 

and performances.  The proposed ECC implementation 

outperforms all other implementations used for comparative 

purposes. 

In this work we present the results of the implementation of 

generic ECC Algorithms over GF(2m) with sizes (m) ranging 

from 113 to 256 bits. Different algorithms of ECC are described 

in VHDL language and synthesised using Synopsys. In our 

design we selected an ASIC CMOS 120 nm technology for the 

implementation of the ECC processor. 
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The rest of the paper is organized as follows:  the elliptic curve 

arithmetic hierarchy is described in section 2; section 3 presents 

the ASIC Implementation of the finite field arithmetic design.  

In section 4, the results of the implementation of the ECC 

arithmetic based on projective systems are discussed. The 

implementation of proposed ECC key generation processor is 

described. Section 6 concludes the paper. 

2. ECC ARITHMETIC HIERARCHY 
Elliptic curves have an algebra that allows the manipulation of 

points along a curve in controlled manners [14]. Point addition 

takes two points on the curve and constructs another one. By 

subtracting one among the original points from the sum, this 

could lead to a computation of another original point. Point 

doubling takes a single point and computes the addition of the 

point to itself. Finally, point multiplication combines the two 

point operations and allows us to multiply a scalar integer 

against a point. An elliptic curve, defined over GF (2m) where m 

is a prime, is the set of solution points (x, y) to an equation of 

the form:  

         y2 + x.y = x3 + a.x2 +b                 (Eq. 1) 

With a, b   GF(2m).              

The set of points on an elliptic curve, together with a special 

point called the point of infinity, formed an abelian group 

structure by the following operations. The first one, the point 

addition operation is given by: Let P=(x1,y1) and Q=(x2,y2)  

GF(2m), the point addition P+Q= R(x3,y3), with:     

                           x3 = λ2 + λ + x1 +x2 + a 

                           y3 = λ. (x1 + x3) + y1 + x3         (Eq. 2) 

                            λ = (y2 + y1)/(x2 + x1)  

The second operation is the point doubling operation R(x3,y3) = 

2*P  with: 

                           x3 = λ2 + λ + a 

                           y3 = 
2

1x + (λ + 1). x3                      (Eq. 3) 

                           λ = x1 +y1/x1 

The ECC security is based on the discrete logarithm problem, 

called the Elliptic Curve Discrete Logarithm Problem (ECDLP). 

Thus, a cryptosystem could be built using this approach. The 

ECDLP consists of giving two points P, Q   E (GF (2m)), to 

find the positive integer k such as Q = k*P. On the contrary, 

knowing the scalar k and the point P, the operation k*P is 

relatively easy to compute [15]. The hierarchy of an Elliptic 

Curve Point Multiplication is depicted in fig.1. 

Finite Field Arithmetic

(addition, multiplication,

inversion division,etc)

Group operations

(Point Addition

Point Doublig)

Point

Multiplication

ECC

 

Fig.1 Elliptic curve hierarchy 

3. ASIC IMPLEMENTATION OF FINITE 

FIELD   ARITHMETIC 

3.1 Finite field description 
Finite field GF(2m) arithmetic is fundamental to the 

implementation of a number of modern cryptographic systems 

[16]. The finite field arithmetic operations have been widely 

used in the areas of data communication and network security 

applications. Most arithmetic operations needed for security 

applications, such as exponentiation, inversion, division and 

multiplication.  

In hardware field, elements can be easily implemented as a bit 

vector, which makes this kind of finite fields interesting for 

hardware implementations. In this section, we present the 

hardware implementation of the finite field operations. 

3.1.1 Modular multiplication Implementation 
In finite field GF(2m), the operation of multiplication can be 

carried out by multiplying two elements of this field A(x) and 

B(x) and then performing reduction modulo P(x) or alternatively 

by interleaving multiplication and reduction, the multiplication 

is shown as follows:  

        (b(x)am-1x
m-1+…+b(x)a2x+b(x)a0) mod P(x).       (Eq. 4) 

For the implementation of the modular multiplication, many 

algorithms are proposed. In this section, we will describe three 

modular multiplications methods in GF(2m).   

3.1.1.1  Cellular Automata Multiplier  
In this subsection, we briefly discuss the properties of 

Programmable Cellular Automata (PCA). And we will study the 

modular multiplications methods in GF(2m) using cellular 

automata 

A.  Programmable cellular automata 

The Programmable cellular automata (PCA) [17], is a one 

dimensional CA whose the state transition rule is not fixed for 

each cell, but switched by control signals. So, different functions 

can be generated depending on the value of these signals. In 

fig.2, we present a standard 3-neighbrhood PCA with non-

complemented additive rules. Using a cell structure like this, all 

possible additive rules can be achieved. The combinations of the 

control signals of Cl, Cm and Cr 
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From rightFrom left
Cell

Control Signals

Fig.2 A 3-neighborhood PCA  

B. PCA Multiplier 
In [18], H. Li and C.N Zhang present a low complexity 

programmable cellular automata based versatile modular 

multiplier in GF(2m). The algorithm of the multiplication is 

shown in fig.3. 

------------------------------------------------------------------------------  

Input: A(x), B(x), P(x)   

Output: Z = A. B mod P(x)  

(1)Reset PCA  

(2)Config Coefficients of B(x) as Cm, and Coefficients of P(x) 

as Cr  

(3)Run PCA m clock cycle 

------------------------------------------------------------------------------ 

Fig.3 PCA based modular multiplication algorithm 

In fig.4, we present the general architecture of the serial 

multiplier based on PCA in GF(2m).  
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B0 P0 B1 P1 Bm-2 Pm-2 Bm-1 Pm-1

Cm  Xm Cr Cm  Xm Cr Cm  Xm Cr
....

Fig.4 PCA Multiplier architecture in GF(2m ) 

According to fig.4, we noticed the architecture of the serial 

multiplier consist of a logical block (LB) of m combination logic 

(CL) and m bascules. The execution time to compute the 

complete modular multiplication in GF(2m) with this 

architecture is equal of m x T, where T is the critical time of this 

architecture [31]. 

3.1.1.2 Interleaved multiplication 
The idea of interleaved modular multiplication is very simple: 

the first operand is multiplied with the second operand bitwise 

and added to the intermediate result. The intermediate result is 

reduced with respect to the modulus. For this purpose two 

subtractions per iteration are required. The pseudo code 

implementation of interleaved modular multiplication is shown 

in fig.5.  

------------------------------------------------------------------------------ 

Input: X, Y, M with 0  X, Y  M 

Output: Z = X . Y mod M 

n: number of bits of X 

xi: i
th bit of X 

Z = 0 

for (i = n–1; i   0; i = i–1) loop 

Z = 2.Z; 

I = xi. Y; 

Z= Z+ I; 

if (ZM)   Z = Z – M 

if (ZM)   Z = Z – M 

end loop; 

------------------------------------------------------------------------------ 

Fig.5 Interleaved multiplication algorithm 

3.1.1.3 Montgomery Modular Multiplication 
The Montgomery modular multiplication algorithm was 

designed to avoid division in modular multiplications. Given 

two n-bit inputs, X and Y, this algorithm gives Z = X.Y. R-1 

mod M, where R equals to 2m and M is the m-bit modulo. Fig.6, 

gives a pseudo code implementation of Montgomery modular 

multiplication. 

------------------------------------------------------------------------------ 

Input: X, Y < M < 2n with 2n-1 < M < 2n and M = 2t + 1;         

with tn 

Output: Z = X.Y. 2-n mod M 

Z = 0 

for (i = 0; i < n; i++) loop 

Z = P + xi. Y; 

If ( z0 = 1) P = P + M; 

Z = Z div 2; 

end loop 

if (Z  M) Z = Z – M; 

------------------------------------------------------------------------------ 

Fig.6 Montgomery multiplication algorithm 

3.1.2 Inversion in Galois Field   
In finite field GF(2m), the inversion is a complex operation that 

is computed only once in a k.P operation. To calculate the 

multiplicative inverse operation for an element AGF(2m), 

Extended Euclidean Theorem can be applied [19]. The hardware 

architecture related to this operation is presented in Fig.7.   

 

CL 
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Fig.7 Hardware implementation of an Inverter in GF (2m) 

3.1.3 Division in Galois Field   
Typically, in GF(2m) the division x/y is implemented as two 

consecutive operations, the inversion y-1 and then the 

multiplication x. y-1. There are well known algorithms for field 

inversion (see. Section 3.1.2), like The Modified Almost 

Inversion Algorithm, the Fermat's theorem or the Ito-Tsujii 

algorithm [21]. 

The algorithm proposed by S. C. Shantz [22] shown in fig.8 can 

perform a direct division x/y mod F in at most 2m-2 clock 

cycles. That is, this algorithm requires almost the same time to 

compute a single inversion but saves the additional time for the 

field multiplication in the operation x. y-1. 

------------------------------------------------------------------------------ 

Input: X1(x); Y1(x)GF(2m), X1(x) 0 and F(x) the 

irreducible polynomial of degree m 

Output: U(x) = Y1(x)/X1(x)mod F(x) 

A(x)X1(x) 

B(x)  F(x) 

U(x)  Y1(x) 

V(x)  0 

while A(x)  B(x) do 

if x divides to A(x) then 

A(x)A(x)x-1 

U(x)U(x)x-1 mod F(x) 

Else 

if x divides to B(x) then 

B(x)B(x)x-1 

V(x)V (x)x-1 mod F(x) 

Else 

if grade of A(x) is greater than grade of B(x) then 

A(x) (A(x) + B(x))x-1 

U(x) (U(x) + V (x))x-1 mod F(x) 

else 

B(x) (A(x) + B(x))x-1 

V(x) (U(x) + V (x))x-1 mod F(x) 

end if 

end if 

end if 

end while 

------------------------------------------------------------------------------ 

Fig.8 Division algorithm in GF(2m) 

3.2 ASIC Implementation of Finite Field 

3.2.1 Modular Multiplication Implementation 
We prototyped the modular multiplication methods on an ASIC 

CMOS 120 nm technology. The architectures were described 

using VHDL language. These modules were simulated using 

Active-HDL and synthesized using Synopsys Design Compiler. 

Synthesis results are shown in table.1. In this section, three 

criteria’s are described: the area occupation (mm²), the static 

power consumption (mW) and the frequency (MHz). In order to 

testing the sensitivity of the different architectures in function of 

the number m, in our implementation we selected 4 values for 

m: 32, 64, 128 and 256. 

Table.1 Modular multiplication performances 

 

 
 

 

 

 

 

 

In table.2, we present the comparison of our implementation 

results for the cellular automata multiplication method and the 

sum results published for the implementations of the modular 

multiplication methods. According to table.2, our proprietary 

implementation of the modular multiplication is faster, it has the 

best time was by about 0.44 µs in GF(2163) and 0.65 µs in 

GF(2233). Also, our result has the best area 21337 slices in 

GF(2163). 

3.2.2  Inversion and division Implementation 
In table.3, we present the performances of the extended 

Euclidean algorithm for the inversion and division operations 

over GF(2m), in table.3 three criteria’s are described the Area 

(mm²) and the dynamic power (mW) and frequency.    

According to table.3, we noticed the important consumption of 

the inversion and division operations in term of area and power 

compared with the multiplication operation. Then inversion 

presents the least area occupation. But, the division presents the 

least dynamic power consumption. 

 

 

 

 

Performances Size CA Interleaved Montgo 

Area (Slices) 

 

32 06245 06085 06241 

64 09908 11483 12038 

128 17434 22507 23669 

256 31942 44553 46895 

Dynamic 

 Power (m W) 

32 1,75 2,13 01.75 

64 2,56 3,40 03.81 

128 3,78 4,90 07.54 

256 4,74 7,61 13.91 

Frequency 

(MHz) 

32 769 769 1250 

64 666 625 714 

128 555 454 666 

256 370 357 625 
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Table.3 Inversion and division performances 

Operation Size Frequency Slices  Power (mw) 

Inversion 32 555 12399 01.90 

64 500 23286 01.90 

128 384 44719 04.62 

256 357 87530 08.38 

Division 32 833 09184 03.19 

64 625 17198 04.64 

128 588 33539 08.55 

256 555 66095 15.76 

 
3.2.3 Implementations comparison  
In this section, we describe the finite field implementations 

comparison in term of the total area occupation and the power  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

consumption. In fig.9, we present the histograms of the 

performance for different size of integer m.  

 
 

 

 

 

 

 
Fig.9 Finite field implementations comparison 

According to fig.9, we noticed the high power consumption of 

the inverter and division operations compared with the 

multiplication.  Hence, projective coordinates are used instead of 

the inversion operation, which is hard to compute and 

implement on hardware device. In order to eliminate the 

inversion operation, in the rest of the paper, we will devote to 

implement the elliptic curve processor on the projective 

coordinate. 

4. IMPLEMENTATION OF THE ECC 

ARITHMETIC BASED ON PROJECTIVE 

SYSTEMS 
Elliptic curves have an algebra that allows the manipulation of 

points along a curve in controlled manners [22]. Point addition 

takes two points on the curve and constructs another one. By 

subtracting one among the original points from the sum, this 

could lead to a computation of another original point. Point 

doubling takes a single point and computes what would amount 

to the addition of the point to itself. Finally, point multiplication 

combines the two point operations and allows us to multiply a 

point integer. In this section, we present the implementation of 

the elliptic curve arithmetic based on projective coordinate. In 

the next subsection, we describe the projective systems. 

4.1 Projective coordinate 
Compared to field multiplication in affine coordinates, inversion 

is by far the most expensive basic arithmetic operation in GF 

(2m). Inversion can be avoided by means of projective 

coordinate [23] representation. A point P in projective 

coordinates is represented using three coordinates X, Y, and Z. 

This representation greatly helps to reduce internal 

computational operations. It is customary to convert the point P 

back from projective to affine coordinates in the final step. To 

get projective equation of an elliptic curve (E), a transformation 

on Equation (1) must be performed. It consists of multiplying 

this equation by a power of Z to clear the denominator. Each 

form of projective systems developed has positive and negative 

aspects for practical issues. The different projective coordinate 

systems are derived by substituting the affine coordinates (x, y) 

by (X/Zc, Y/Zd) with d, c being constants [24]. The formulas for 

adding two distinct points and for doubling a point appear to be 

different. However, the doubling operation can be rewritten in 

terms of an addition operation. To compute the point 

multiplication, we experimented with two different point 

multiplication algorithms.  

In this subsection, three proposed projective coordinate designs 

serving for computing the elliptic curve point multiplication are 

presented and developed: Jacobian, Lopez & Dahab and 

Montgomery projective coordinates [25]. We experimented with 

different point multiplication algorithms:  the double and add 

algorithm is used to perform point multiplication. While, for 

projective Montgomery method, a special double and add 

algorithm is applied.   

Let P=(X1, Y1, Z1) and Q=(X2, Y2, Z2) be points of an elliptic 

curve E, the addition point P+Q=(X3, Y3, Z3), the doubling of 

point P1 is 2*P1= (X3, Y3, Z3). We show the concrete 

algorithms for computing point addition and doubling for each 

method. In this section are discussed various ways for making 

indistinguishable the addition formula on elliptic curves. 
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4.1.1 Jacobian projective coordinates  
In the Jacobian projective coordinates system (c=2, d=3), a 

standard point is represented by means of three variables. A 

projective point P=(X, Y, Z) on the curve satisfies the next 

equation:   

Y2 + XYZ = X3+ aX2Z2 + bZ6        (Eq. 5) 

The addition and doubling Elliptic curve arithmetic operations 

can be performed as shown in algorithm 5 and 6. 

------------------------------------------------------------------------------  

Input:P =(X1,Y1,Z1),Q = (X2,Y2,Z2)E(GF(2m))  

Output: P(x3,Y3,Z3)= P + Q  

1. W = X1 + X2.
2

1Z   

2. R = Y1 + Y2.
3

1Z   

3. Z3 = Z1.W  

4. T = R + Z3  

5. X3 = a. 
2

3Z  + R.T + W3  

6. Y3 =T.X3 + W² [R.X1 + W.Y1]  

------------------------------------------------------------------------------ 

Fig.10 Jacobian point addition method. 

------------------------------------------------------------------------------ 

Input: P = (X1, Y1, Z1)E(GF(2m)), c such that c2 = b  

Output: P(X3,Y3,Z3)= 2*P  

1. X3 = 
4

1X  + b.
8

1Z  

2. Z3 = X1. 
2

1Z   

3. U = 
2

1X  + Z1.Y1 + Z3  

4. Y3 = U.X3 + Z3. 
4

1X  

------------------------------------------------------------------------------ 

Fig.11 Jacobian point addition method. 

4.1.2 Lopez & Dahab coordinates  
In the Lopez & Dahab coordinates system (c=1, d=2), A 

projective point P=(X, Y, Z) on the curve satisfies the next 

equation:   

Y2+XYZ = X3Z + a X2Z2 + bZ4              (Eq. 6) 

The addition and doubling Elliptic curve arithmetic operations 

can be efficiently implemented as illustrated in algorithms 7 and 

8. 

------------------------------------------------------------------------------ 

Input: P = (X1, Z1), Q = (X2 , Z2)E(GF(2m))  

Output: P(X3,Y3,Z3) = P + Q  

1. A = Y1 + Y2.
2

1Z   

2. B = X1 + X2.Z1  

3. C = Z1 .B   

4. D = B².C   

5. E = A.C   

6. Z3 = A² + D + E  

7. X3 = E.(X3 + X2.Z3) + Z3.(X3 + Y2.Z3 )  

8. Y3 = C² 

------------------------------------------------------------------------------ 

Fig.12 Lopez & Dahab point addition method. 

------------------------------------------------------------------------------ 

 

Input: P = (X1, Y1, Z1)E(GF(2m)), c such that c2 = b  

Output: P(X3,Y3,Z3) = 2*P  

1. A = 
2

1Z  

2. B = b. 
4

1Z  = (c.A)²  

3. C = 
2

1X   

4. D = C²  

5. X3 = D + B   

6. Y3 = X3.( 
2

1Y + a.Z3 + B)  B.Z3  

7. Z3 = 
2

1X .
2

1Z  = A.C 

------------------------------------------------------------------------------ 

Fig.13 Lopez & Dahab point doubling method. 

4.1.3  Montgomery method  
Let  us  consider  the  points  P(X1,Y1,Z1), R(X2,Y2,Z2),  

Q(X3,Y3,Z3),  belonging  to  the  curve E(GF(2m)),  where  R  =  

2 * P  and  Q  =  P+R,  the computations become,  through  the 

use of Montgomery method respectively as follows: 

------------------------------------------------------------------------------ 

Input:  P(X1,Z1),Q(X2,Z2)E(GF(2m))  

Output: Q(X3,Z3) = P + Q  

1. M = (X1·Z2) + (Z1·X2)  

2. Z3 = M2 

3. N = (X1·Z2)·(Z1·X2)  

4. M = x·Z3  

5. X3 = M + N  

------------------------------------------------------------------------------ 

Fig.14 Montgomery point addition method. 

------------------------------------------------------------------------------ 

Input: P(X1,Z1)E (GF(2m)), c such that c2 = b  

Output: R(X3,Z3) = 2* P  

1. T = 
2

1X   

2. M = c ·
2

1Z    

3. Z3 = T ·
2

1Z   

4. M = M2   

5. T = T2      

6. X3= T +M 

------------------------------------------------------------------------------ 

Fig.15 Montgomery point doubling method. 

4.2 ASIC Implementation of Elliptic Curve 

Operations 
In fig.16, the total area occupations (mm²) of the ECC 

operations (point addition and point doubling) are presented. In 

fig.16, are reported the results obtained for the three projective 

coordinate systems.   
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In fig.17, we present the dynamic power consumption of the 

ECC arithmetic in different projective coordinate systems. 

 

 

 

 

 

 

According to fig.16 and fig.17, as can be noticed, the 

Montgomery method, based on projective coordinates, is the 

best for elliptic curve arithmetic over GF (2m) in term of area 

occupation and power consumption. In the next of this work, we 

selected the Montgomery method for the implementation of the 

ECC processor over GF(2m). 

5. IMPLEMENTATION OF THE ECC 

PROCESSOR   

5.1 Elliptic Curve Point Multiplication   
There are a variety of procedures allowing to accomplish point 

multiplication, the most basic being the double and add method. 

It is essentially the square and multiply technique for 

exponentiation converted to point multiplication [26].  

------------------------------------------------------------------------------ 

Input: k = (kn−1,kn−2...,k1,k0)2 with kn−1 = 1, P(X1,Z1) E 

(GF(2m))  

Output: Q = k*P  

Procedure:  

 1. P1 ← P;  P2 ← 2*P   

 2. For i from n − 2 downto 0 do  

 3. if (ki = 1) then   

 4. P1 ← P1 + P2; P2 ← 2*P2  

 5. else   

 6. P2 ← P2 + P1; P1 ← 2*P1  

 7. end of  

 8. end for  

 9. Return P1  

end algorithm. 

------------------------------------------------------------------------------ 

Fig.18 Montgomery point multiplication algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Elliptic curve point multiplication kP, where k is an integer 

and P is a point on the curve, is a fundamental operation in 

elliptic curve cryptosystems. It is defined as adding a point to 

itself a set number of times.   

For the implementation of elliptic curve point multiplication, 

many methods are proposed. In our scheme, we selected the 

Montgomery method for the implementation of the point 

multiplication (see fig.18). 

As mentioned above, we will study the scalar multiplication 

method based on Montgomery algorithm.  The  main  

advantages  of  this  algorithm  are:  it  does  not  have  any  

extra  storage requirements;  the  same  operations  are  

performed  in  every iteration  of  the main  loop,  thereby 

potentially increasing resistance of timing attacks and power 

analysis attacks. The algorithm is shown below [13]. 

According to fig.18, we noticed the Montgomery method is 

based on the formulas for doubling and addition (steps 4 and 6). 

In the next subsection, we describe the proposed architecture for 

the implementation of elliptic curve point multiplication over 

finite field GF(2m). 

5.2 Proposed processor architecture   
The  main  units  of  the  proposed  Elliptic  Curve  Point 

Multiplication  processor  are  shown  in fig.19, including the 

input and the output interfaces for storing the input and the 

output data implemented as FIFOs.  The control module consists 

of a finite state machine description.  It generates the control 

signals for the initialization operations of finite field, the point 
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Fig.16. Area occupation comparison histograms. 
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Fig. 17. Power consumption comparison histograms. 
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addition and point doubling operations, and the  conversion  to  

affine  coordinates  operations,  relying  on  the  key  values  by  

the  Montgomery  Algorithm. The elliptic curve operator is 

formed by the point addition and the point doubling modules. 

Finally the arithmetic and logical unit (ALU) allow parallel 

execution of finite field addition, inversion a 
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Fig.19 Proposed elliptic curve processor 

5.3 ASIC implementation of elliptic curve 

processor 
We  designed  an  ECC  IP  using  the VHDL  language  and  

synthesized  using  Synopsys Design Compiler. In table.4, we 

present the implementation results of the ellpitic curve point 

multiplication over GF(2m) , where                            

m  256 233, 191, 163, 113, . In table.4, three criteria’s are 

described: the area occupation (mm²), the static power 

consumption (mW) and the frequency (MHz). 

Table.4 The ECC processor performances 

Size Frequency 

(MHz) 

Area 

(Slices) 

Power  

(mw) 

113 377 135420 12.65 

163 370 207577 17.52 

191 357 224808 19.76 

233 333 275482 22.26 

256 312 323449 23.10 

 

5.4 Layout of ECC Processor 
The  resulting  netlist of the ECC processor over GF(2256)  is  

used  as  input  to Cadence  in  order  to  perform mapping  and 

routing  with  a  120  nm  CMOS  technology.  The results 

obtained from these operations are reported in table.5 and fig.20.  

The final ASIC has been implemented using CMOS 120 nm 

technology. 

The result in synthesis operating frequency is about 312 Mhz. 

The ECC processor areas are about 1.29 mm2. The total 

Input/output is equal to 44. The core dimension of the ECC 

processor is about 0.74 mm x 0.74 mm, and the core is about 

0.55 mm2. The proposed ECC implementation provides a time 

of 0.85 ms over GF(2256)  and 0.29 ms over GF(2163). 

Table.5 ASIC implementation of ECC processor 

.Core dimension    : 0.74 mm x  0.74 mm 

Core area               : 0.55 mm2 

Circuit dimension : 1.36 mm x 1.36 mm 

Circuit area           : 1.29 mm2 

Total In/out           : 44 

 

 

Fig.20 Layout of the design over GF(2256) 

6. CONCLUSION 
In this paper, we proposed a high performance of the generic 

elliptic curve key generation processor over GF(2m)  scheme  

based  on  the  Montgomery  scalar  multiplication algorithm. 

The proposed processor is performed using polynomial basis.  

The Finite Field operations use a cellular automata multiplier 

and Extended Euclidean Theorem for inversion. The elliptic 

curve arithmetic based on projective systems is used to compute 

the point multiplication in GF (2m).   Our presented elliptic 

Curve arithmetic architectures improved point addition and point 

doubling for speed, low-power and less-Area applications. 

Finally, a completely parameterized processor of VHDL Elliptic 

Curve point multiplication was developed and tested. The 

second part of the paper, present’s the first design of the ECC 

processor using a 120 nm CMOS technology. The ASIC area is 

about 1.29 mm2. This processor operates with clock frequency 

of 312 Mhz and provides a time of 0.85 ms over GF(2256).    
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