
IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

1

High Performances ASIC based Elliptic Curve

Cryptographic Processor over GF(2
m

)

 Z. Guitouni1,3, R.Chotin-Avot2, M. Machhout3, H. Mehrez2 and R. Tourki3
1
Higher Institute of applied Sciences and Technology of Mahdia, Tunisia.

2
University of Paris VI, LIP6/SOC Laboratory of University Pierre & Marie Curie, France
3
Electronic and Micro Electronic Laboratory, Faculty of Sciences of Monastir, Tunisia

ABSTRACT

Elliptic Curve Cryptography (ECC) has gained increasing

acceptance in the industry, the academic community and the

cryptography applications. This interest is mainly due to the

high level of security with relatively small keys provided by

ECC. In this paper, a high-performance ASIC based ECC key

generation processor is proposed. This processor supports

generic elliptic curves over GF(2m) with sizes (m) ranging from

113 to 256 bits. The proposed processor is based on

programmable cellular automata. For real time implementation,

the processor was simulated using active-HDL and synthesized

using Synopsys Design Compiler. Further, the processor is

implemented by an ASIC CMOS 120 nm technology. The

results on the layouted processor over GF(2256) show a high

performance, confirming the efficiency of the processor.

Keywords

Elliptic curve cryptography, cellular automata, finite fields,

ASIC and Montgomery point multiplication algorithm.

1. INTRODUCTION
Elliptic curves cryptosystem (ECC) is a potential public key

cryptosystem to become the dominant encryption method for

information and communication system. The ECC was proposed

in 1985 by Neal Koblitz [1] and Victor Miller [2], and the

security of it rests on the discrete logarithm problem over the

points on an elliptic curve. The ECC provides higher strength-

per-bit than any other current public-key cryptosystems [3].

Because of its higher strength-per-bit, Elliptic Curve

Cryptosystems are being increasingly used in embeded systems

(e.g. IC card and mobile devices) instead of RSA, which is most

used for public-key cryptosystems.

In the last decade, the approach of hardware implementing

Elliptic Curve Cryptography algorithms knew a very intensive

race, due essentially to the requirements of security, speed and

area constraints. Different security organizations like ISO,

ANSI, IEEE and NIST, have been working to standardize the

use of ECC.

For the implementation of ECC, finite fields GF(p) and GF(2m)

have been used, where p is prime and m is positive integer. In

particular, GF(2m), which is an m-dimensional extension field

of GF(2), is suitable for hardware implementation because

there is no carry propagation in arithmetic operations. The

function used for this purpose is the scalar multiplication K.P,

where K is an integer and P is a point on an elliptic curve.

Recently, Hardware and firmware implementation of ECC over

different fields GF(2m) have been reported in numerous

works. Leung et al. [4] Presented a microcoded FPGA-based

elliptic curve processor. This design is parameterized for

arbitrary key sizes and allows the rapid development of different

control flows. They have used a normal basis for the Galois

field operations, and the point multiplication can be

computed in 14.3 ms for GF(2281). Morales-Sandoval and

Feregrino-Uribe [5] proposed a hardware architecture that

can perform three different ECC algorithms. The main

functional units in their cryptosystem are coprocessor for scalar

multiplication, random number generator, algorithm units, and

main controller. Its scalar multiplication can be computed in 4.7

ms for GF(2191). Orland and Paar [6] designed a reconfigurable

elliptic curve processor over GF(2167), the processor consists of

main controller and arithmetic units. Chang Hoon et al [7]

described an FPGA implementation of high performance ECC

processor over GF(2163). The proposed architecture is based on

Lopez- Dahab elliptic curve point multiplication algorithm and

Gaussian normal basis for GF(2163) and drive parallelized

elliptic curve in point doubling and point addition algorithms

with uniform addressing. Dan Young-ping et al, proposed a

parallel hardware processor to compute elliptic curve scalar

multiplication in polynomial basis representation over GF(2163)

[8]. Bednara et al [9] designed an FPGA-based cryptographic

processor architecture that allows using multiple squares, adders

and multipliers. They are looking for a hybrid coordinate

representation in affine projective Jacobian and Lopez-Dahab

form. Two prototypes were synthesized for GF(2191). In Ref

[10], Cheung et al proposed an ECC design for various field

operations, which is, however, not optimized for fixed field. The

implementations of ECC in an integrated circuit (ASIC), are

presented in works [11] and [12]. In [13], we described the

coupled FPGA/ASIC implementation of elliptic curve crypto-

processor over GF(2163) . In our scheme, we have developed the

arithmetic unit over the finite field GF (2163) and the elliptic

curve operations. We have provided a comparison with some

ECC hardware implementations in terms of occupation (Slices)

and performances. The proposed ECC implementation

outperforms all other implementations used for comparative

purposes.

In this work we present the results of the implementation of

generic ECC Algorithms over GF(2m) with sizes (m) ranging

from 113 to 256 bits. Different algorithms of ECC are described

in VHDL language and synthesised using Synopsys. In our

design we selected an ASIC CMOS 120 nm technology for the

implementation of the ECC processor.

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

2

The rest of the paper is organized as follows: the elliptic curve

arithmetic hierarchy is described in section 2; section 3 presents

the ASIC Implementation of the finite field arithmetic design.

In section 4, the results of the implementation of the ECC

arithmetic based on projective systems are discussed. The

implementation of proposed ECC key generation processor is

described. Section 6 concludes the paper.

2. ECC ARITHMETIC HIERARCHY
Elliptic curves have an algebra that allows the manipulation of

points along a curve in controlled manners [14]. Point addition

takes two points on the curve and constructs another one. By

subtracting one among the original points from the sum, this

could lead to a computation of another original point. Point

doubling takes a single point and computes the addition of the

point to itself. Finally, point multiplication combines the two

point operations and allows us to multiply a scalar integer

against a point. An elliptic curve, defined over GF (2m) where m

is a prime, is the set of solution points (x, y) to an equation of

the form:

 y2 + x.y = x3 + a.x2 +b (Eq. 1)

With a, b  GF(2m).

The set of points on an elliptic curve, together with a special

point called the point of infinity, formed an abelian group

structure by the following operations. The first one, the point

addition operation is given by: Let P=(x1,y1) and Q=(x2,y2)

GF(2m), the point addition P+Q= R(x3,y3), with:

 x3 = λ2 + λ + x1 +x2 + a

 y3 = λ. (x1 + x3) + y1 + x3 (Eq. 2)

 λ = (y2 + y1)/(x2 + x1)

The second operation is the point doubling operation R(x3,y3) =

2*P with:

 x3 = λ2 + λ + a

 y3 =
2

1x + (λ + 1). x3 (Eq. 3)

 λ = x1 +y1/x1

The ECC security is based on the discrete logarithm problem,

called the Elliptic Curve Discrete Logarithm Problem (ECDLP).

Thus, a cryptosystem could be built using this approach. The

ECDLP consists of giving two points P, Q  E (GF (2m)), to

find the positive integer k such as Q = k*P. On the contrary,

knowing the scalar k and the point P, the operation k*P is

relatively easy to compute [15]. The hierarchy of an Elliptic

Curve Point Multiplication is depicted in fig.1.

Finite Field Arithmetic

(addition, multiplication,

inversion division,etc)

Group operations

(Point Addition

Point Doublig)

Point

Multiplication

ECC

Fig.1 Elliptic curve hierarchy

3. ASIC IMPLEMENTATION OF FINITE

FIELD ARITHMETIC

3.1 Finite field description
Finite field GF(2m) arithmetic is fundamental to the

implementation of a number of modern cryptographic systems

[16]. The finite field arithmetic operations have been widely

used in the areas of data communication and network security

applications. Most arithmetic operations needed for security

applications, such as exponentiation, inversion, division and

multiplication.

In hardware field, elements can be easily implemented as a bit

vector, which makes this kind of finite fields interesting for

hardware implementations. In this section, we present the

hardware implementation of the finite field operations.

3.1.1 Modular multiplication Implementation
In finite field GF(2m), the operation of multiplication can be

carried out by multiplying two elements of this field A(x) and

B(x) and then performing reduction modulo P(x) or alternatively

by interleaving multiplication and reduction, the multiplication

is shown as follows:

 (b(x)am-1x
m-1+…+b(x)a2x+b(x)a0) mod P(x). (Eq. 4)

For the implementation of the modular multiplication, many

algorithms are proposed. In this section, we will describe three

modular multiplications methods in GF(2m).

3.1.1.1 Cellular Automata Multiplier
In this subsection, we briefly discuss the properties of

Programmable Cellular Automata (PCA). And we will study the

modular multiplications methods in GF(2m) using cellular

automata

A. Programmable cellular automata

The Programmable cellular automata (PCA) [17], is a one

dimensional CA whose the state transition rule is not fixed for

each cell, but switched by control signals. So, different functions

can be generated depending on the value of these signals. In

fig.2, we present a standard 3-neighbrhood PCA with non-

complemented additive rules. Using a cell structure like this, all

possible additive rules can be achieved. The combinations of the

control signals of Cl, Cm and Cr

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

3

From rightFrom left
Cell

Control Signals

Fig.2 A 3-neighborhood PCA

B. PCA Multiplier
In [18], H. Li and C.N Zhang present a low complexity

programmable cellular automata based versatile modular

multiplier in GF(2m). The algorithm of the multiplication is

shown in fig.3.

--

Input: A(x), B(x), P(x)

Output: Z = A. B mod P(x)

(1)Reset PCA

(2)Config Coefficients of B(x) as Cm, and Coefficients of P(x)

as Cr

(3)Run PCA m clock cycle

--

Fig.3 PCA based modular multiplication algorithm

In fig.4, we present the general architecture of the serial

multiplier based on PCA in GF(2m).

D Q

CLK

D Q

CLK

D Q

CLK

D Q

CLK

Xl Xm Xr

Cm Xm Cr

Xl Xm Xr Xl Xm Xr Xl Xm Xr

....

C0 C1 Cm-2 Cm-1

CLK

0
A0,.., Am-1

B0 P0 B1 P1 Bm-2 Pm-2 Bm-1 Pm-1

Cm Xm Cr Cm Xm Cr Cm Xm Cr
....

Fig.4 PCA Multiplier architecture in GF(2m)

According to fig.4, we noticed the architecture of the serial

multiplier consist of a logical block (LB) of m combination logic

(CL) and m bascules. The execution time to compute the

complete modular multiplication in GF(2m) with this

architecture is equal of m x T, where T is the critical time of this

architecture [31].

3.1.1.2 Interleaved multiplication
The idea of interleaved modular multiplication is very simple:

the first operand is multiplied with the second operand bitwise

and added to the intermediate result. The intermediate result is

reduced with respect to the modulus. For this purpose two

subtractions per iteration are required. The pseudo code

implementation of interleaved modular multiplication is shown

in fig.5.

--

Input: X, Y, M with 0 X, Y M

Output: Z = X . Y mod M

n: number of bits of X

xi: i
th bit of X

Z = 0

for (i = n–1; i  0; i = i–1) loop

Z = 2.Z;

I = xi. Y;

Z= Z+ I;

if (ZM) Z = Z – M

if (ZM) Z = Z – M

end loop;

--

Fig.5 Interleaved multiplication algorithm

3.1.1.3 Montgomery Modular Multiplication
The Montgomery modular multiplication algorithm was

designed to avoid division in modular multiplications. Given

two n-bit inputs, X and Y, this algorithm gives Z = X.Y. R-1

mod M, where R equals to 2m and M is the m-bit modulo. Fig.6,

gives a pseudo code implementation of Montgomery modular

multiplication.

--

Input: X, Y < M < 2n with 2n-1 < M < 2n and M = 2t + 1;

with tn

Output: Z = X.Y. 2-n mod M

Z = 0

for (i = 0; i < n; i++) loop

Z = P + xi. Y;

If (z0 = 1) P = P + M;

Z = Z div 2;

end loop

if (Z M) Z = Z – M;

--

Fig.6 Montgomery multiplication algorithm

3.1.2 Inversion in Galois Field
In finite field GF(2m), the inversion is a complex operation that

is computed only once in a k.P operation. To calculate the

multiplicative inverse operation for an element AGF(2m),

Extended Euclidean Theorem can be applied [19]. The hardware

architecture related to this operation is presented in Fig.7.

CL

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

4

D

>>1

Y

>>1

Z Result

B0

F

A

1

m

m

m

m

0

Fig.7 Hardware implementation of an Inverter in GF (2m)

3.1.3 Division in Galois Field
Typically, in GF(2m) the division x/y is implemented as two

consecutive operations, the inversion y-1 and then the

multiplication x. y-1. There are well known algorithms for field

inversion (see. Section 3.1.2), like The Modified Almost

Inversion Algorithm, the Fermat's theorem or the Ito-Tsujii

algorithm [21].

The algorithm proposed by S. C. Shantz [22] shown in fig.8 can

perform a direct division x/y mod F in at most 2m-2 clock

cycles. That is, this algorithm requires almost the same time to

compute a single inversion but saves the additional time for the

field multiplication in the operation x. y-1.

--

Input: X1(x); Y1(x)GF(2m), X1(x) 0 and F(x) the

irreducible polynomial of degree m

Output: U(x) = Y1(x)/X1(x)mod F(x)

A(x)X1(x)

B(x) F(x)

U(x) Y1(x)

V(x) 0

while A(x)  B(x) do

if x divides to A(x) then

A(x)A(x)x-1

U(x)U(x)x-1 mod F(x)

Else

if x divides to B(x) then

B(x)B(x)x-1

V(x)V (x)x-1 mod F(x)

Else

if grade of A(x) is greater than grade of B(x) then

A(x) (A(x) + B(x))x-1

U(x) (U(x) + V (x))x-1 mod F(x)

else

B(x) (A(x) + B(x))x-1

V(x) (U(x) + V (x))x-1 mod F(x)

end if

end if

end if

end while

--

Fig.8 Division algorithm in GF(2m)

3.2 ASIC Implementation of Finite Field

3.2.1 Modular Multiplication Implementation
We prototyped the modular multiplication methods on an ASIC

CMOS 120 nm technology. The architectures were described

using VHDL language. These modules were simulated using

Active-HDL and synthesized using Synopsys Design Compiler.

Synthesis results are shown in table.1. In this section, three

criteria’s are described: the area occupation (mm²), the static

power consumption (mW) and the frequency (MHz). In order to

testing the sensitivity of the different architectures in function of

the number m, in our implementation we selected 4 values for

m: 32, 64, 128 and 256.

Table.1 Modular multiplication performances

In table.2, we present the comparison of our implementation

results for the cellular automata multiplication method and the

sum results published for the implementations of the modular

multiplication methods. According to table.2, our proprietary

implementation of the modular multiplication is faster, it has the

best time was by about 0.44 µs in GF(2163) and 0.65 µs in

GF(2233). Also, our result has the best area 21337 slices in

GF(2163).

3.2.2 Inversion and division Implementation
In table.3, we present the performances of the extended

Euclidean algorithm for the inversion and division operations

over GF(2m), in table.3 three criteria’s are described the Area

(mm²) and the dynamic power (mW) and frequency.

According to table.3, we noticed the important consumption of

the inversion and division operations in term of area and power

compared with the multiplication operation. Then inversion

presents the least area occupation. But, the division presents the

least dynamic power consumption.

Performances Size CA Interleaved Montgo

Area (Slices)

32 06245 06085 06241

64 09908 11483 12038

128 17434 22507 23669

256 31942 44553 46895

Dynamic

 Power (m W)

32 1,75 2,13 01.75

64 2,56 3,40 03.81

128 3,78 4,90 07.54

256 4,74 7,61 13.91

Frequency

(MHz)

32 769 769 1250

64 666 625 714

128 555 454 666

256 370 357 625

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

5

Table.3 Inversion and division performances

Operation Size Frequency Slices Power (mw)

Inversion 32 555 12399 01.90

64 500 23286 01.90

128 384 44719 04.62

256 357 87530 08.38

Division 32 833 09184 03.19

64 625 17198 04.64

128 588 33539 08.55

256 555 66095 15.76

3.2.3 Implementations comparison
In this section, we describe the finite field implementations

comparison in term of the total area occupation and the power

consumption. In fig.9, we present the histograms of the

performance for different size of integer m.

Fig.9 Finite field implementations comparison

According to fig.9, we noticed the high power consumption of

the inverter and division operations compared with the

multiplication. Hence, projective coordinates are used instead of

the inversion operation, which is hard to compute and

implement on hardware device. In order to eliminate the

inversion operation, in the rest of the paper, we will devote to

implement the elliptic curve processor on the projective

coordinate.

4. IMPLEMENTATION OF THE ECC

ARITHMETIC BASED ON PROJECTIVE

SYSTEMS
Elliptic curves have an algebra that allows the manipulation of

points along a curve in controlled manners [22]. Point addition

takes two points on the curve and constructs another one. By

subtracting one among the original points from the sum, this

could lead to a computation of another original point. Point

doubling takes a single point and computes what would amount

to the addition of the point to itself. Finally, point multiplication

combines the two point operations and allows us to multiply a

point integer. In this section, we present the implementation of

the elliptic curve arithmetic based on projective coordinate. In

the next subsection, we describe the projective systems.

4.1 Projective coordinate
Compared to field multiplication in affine coordinates, inversion

is by far the most expensive basic arithmetic operation in GF

(2m). Inversion can be avoided by means of projective

coordinate [23] representation. A point P in projective

coordinates is represented using three coordinates X, Y, and Z.

This representation greatly helps to reduce internal

computational operations. It is customary to convert the point P

back from projective to affine coordinates in the final step. To

get projective equation of an elliptic curve (E), a transformation

on Equation (1) must be performed. It consists of multiplying

this equation by a power of Z to clear the denominator. Each

form of projective systems developed has positive and negative

aspects for practical issues. The different projective coordinate

systems are derived by substituting the affine coordinates (x, y)

by (X/Zc, Y/Zd) with d, c being constants [24]. The formulas for

adding two distinct points and for doubling a point appear to be

different. However, the doubling operation can be rewritten in

terms of an addition operation. To compute the point

multiplication, we experimented with two different point

multiplication algorithms.

In this subsection, three proposed projective coordinate designs

serving for computing the elliptic curve point multiplication are

presented and developed: Jacobian, Lopez & Dahab and

Montgomery projective coordinates [25]. We experimented with

different point multiplication algorithms: the double and add

algorithm is used to perform point multiplication. While, for

projective Montgomery method, a special double and add

algorithm is applied.

Let P=(X1, Y1, Z1) and Q=(X2, Y2, Z2) be points of an elliptic

curve E, the addition point P+Q=(X3, Y3, Z3), the doubling of

point P1 is 2*P1= (X3, Y3, Z3). We show the concrete

algorithms for computing point addition and doubling for each

method. In this section are discussed various ways for making

indistinguishable the addition formula on elliptic curves.

0

2

4

6

8

10

12

14

16

18

32 64 128 256

m

D
y

n
a

m
ic

 P
o

w
er

Multiplication

Inversion

Division

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

32 64 128 256

m

S
li

ce
s

Multiplication

Inversion

Division

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

6

4.1.1 Jacobian projective coordinates
In the Jacobian projective coordinates system (c=2, d=3), a

standard point is represented by means of three variables. A

projective point P=(X, Y, Z) on the curve satisfies the next

equation:

Y2 + XYZ = X3+ aX2Z2 + bZ6 (Eq. 5)

The addition and doubling Elliptic curve arithmetic operations

can be performed as shown in algorithm 5 and 6.

--

Input:P =(X1,Y1,Z1),Q = (X2,Y2,Z2)E(GF(2m))

Output: P(x3,Y3,Z3)= P + Q

1. W = X1 + X2.
2

1Z

2. R = Y1 + Y2.
3

1Z

3. Z3 = Z1.W

4. T = R + Z3

5. X3 = a.
2

3Z + R.T + W3

6. Y3 =T.X3 + W² [R.X1 + W.Y1]

--

Fig.10 Jacobian point addition method.

--

Input: P = (X1, Y1, Z1)E(GF(2m)), c such that c2 = b

Output: P(X3,Y3,Z3)= 2*P

1. X3 =
4

1X + b.
8

1Z

2. Z3 = X1.
2

1Z

3. U =
2

1X + Z1.Y1 + Z3

4. Y3 = U.X3 + Z3.
4

1X

--

Fig.11 Jacobian point addition method.

4.1.2 Lopez & Dahab coordinates
In the Lopez & Dahab coordinates system (c=1, d=2), A

projective point P=(X, Y, Z) on the curve satisfies the next

equation:

Y2+XYZ = X3Z + a X2Z2 + bZ4 (Eq. 6)

The addition and doubling Elliptic curve arithmetic operations

can be efficiently implemented as illustrated in algorithms 7 and

8.

--

Input: P = (X1, Z1), Q = (X2 , Z2)E(GF(2m))

Output: P(X3,Y3,Z3) = P + Q

1. A = Y1 + Y2.
2

1Z

2. B = X1 + X2.Z1

3. C = Z1 .B

4. D = B².C

5. E = A.C

6. Z3 = A² + D + E

7. X3 = E.(X3 + X2.Z3) + Z3.(X3 + Y2.Z3)

8. Y3 = C²

--

Fig.12 Lopez & Dahab point addition method.

--

Input: P = (X1, Y1, Z1)E(GF(2m)), c such that c2 = b

Output: P(X3,Y3,Z3) = 2*P

1. A =
2

1Z

2. B = b.
4

1Z = (c.A)²

3. C =
2

1X

4. D = C²

5. X3 = D + B

6. Y3 = X3.(
2

1Y + a.Z3 + B) B.Z3

7. Z3 =
2

1X .
2

1Z = A.C

--

Fig.13 Lopez & Dahab point doubling method.

4.1.3 Montgomery method
Let us consider the points P(X1,Y1,Z1), R(X2,Y2,Z2),

Q(X3,Y3,Z3), belonging to the curve E(GF(2m)), where R =

2 * P and Q = P+R, the computations become, through the

use of Montgomery method respectively as follows:

--

Input: P(X1,Z1),Q(X2,Z2)E(GF(2m))

Output: Q(X3,Z3) = P + Q

1. M = (X1·Z2) + (Z1·X2)

2. Z3 = M2

3. N = (X1·Z2)·(Z1·X2)

4. M = x·Z3

5. X3 = M + N

--

Fig.14 Montgomery point addition method.

--

Input: P(X1,Z1)E (GF(2m)), c such that c2 = b

Output: R(X3,Z3) = 2* P

1. T =
2

1X

2. M = c ·
2

1Z

3. Z3 = T ·
2

1Z

4. M = M2

5. T = T2

6. X3= T +M

--

Fig.15 Montgomery point doubling method.

4.2 ASIC Implementation of Elliptic Curve

Operations
In fig.16, the total area occupations (mm²) of the ECC

operations (point addition and point doubling) are presented. In

fig.16, are reported the results obtained for the three projective

coordinate systems.

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

7

In fig.17, we present the dynamic power consumption of the

ECC arithmetic in different projective coordinate systems.

According to fig.16 and fig.17, as can be noticed, the

Montgomery method, based on projective coordinates, is the

best for elliptic curve arithmetic over GF (2m) in term of area

occupation and power consumption. In the next of this work, we

selected the Montgomery method for the implementation of the

ECC processor over GF(2m).

5. IMPLEMENTATION OF THE ECC

PROCESSOR

5.1 Elliptic Curve Point Multiplication
There are a variety of procedures allowing to accomplish point

multiplication, the most basic being the double and add method.

It is essentially the square and multiply technique for

exponentiation converted to point multiplication [26].

--

Input: k = (kn−1,kn−2...,k1,k0)2 with kn−1 = 1, P(X1,Z1) E

(GF(2m))

Output: Q = k*P

Procedure:

 1. P1 ← P; P2 ← 2*P

 2. For i from n − 2 downto 0 do

 3. if (ki = 1) then

 4. P1 ← P1 + P2; P2 ← 2*P2

 5. else

 6. P2 ← P2 + P1; P1 ← 2*P1

 7. end of

 8. end for

 9. Return P1

end algorithm.

--

Fig.18 Montgomery point multiplication algorithm

The Elliptic curve point multiplication kP, where k is an integer

and P is a point on the curve, is a fundamental operation in

elliptic curve cryptosystems. It is defined as adding a point to

itself a set number of times.

For the implementation of elliptic curve point multiplication,

many methods are proposed. In our scheme, we selected the

Montgomery method for the implementation of the point

multiplication (see fig.18).

As mentioned above, we will study the scalar multiplication

method based on Montgomery algorithm. The main

advantages of this algorithm are: it does not have any

extra storage requirements; the same operations are

performed in every iteration of the main loop, thereby

potentially increasing resistance of timing attacks and power

analysis attacks. The algorithm is shown below [13].

According to fig.18, we noticed the Montgomery method is

based on the formulas for doubling and addition (steps 4 and 6).

In the next subsection, we describe the proposed architecture for

the implementation of elliptic curve point multiplication over

finite field GF(2m).

5.2 Proposed processor architecture
The main units of the proposed Elliptic Curve Point

Multiplication processor are shown in fig.19, including the

input and the output interfaces for storing the input and the

output data implemented as FIFOs. The control module consists

of a finite state machine description. It generates the control

signals for the initialization operations of finite field, the point

Point Addition

0

50000

100000

150000

200000

16 32 64 128

m

S
li

c
e
s

Jacobian

Lopez

Montgomery

Point Doubling

0

20000

40000

60000

80000

100000

120000

140000

16 32 64 128

m

S
li

c
e
s

Jacobian

Lopez

Montgomery

Fig.16. Area occupation comparison histograms.

Point Addition

0

2

4

6

8

10

12

16 32 64 128

m

D
y

n
a

m
ic

 P
o

w
e
r

Jacobian

Lopez

Montgomery

Point Doubling

0

1

2

3

4

5

6

16 32 64 128

m

D
y

n
a

m
ic

 P
o

w
e
r

Jacobian

Lopez

Montgomery

Fig. 17. Power consumption comparison histograms.

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

8

addition and point doubling operations, and the conversion to

affine coordinates operations, relying on the key values by

the Montgomery Algorithm. The elliptic curve operator is

formed by the point addition and the point doubling modules.

Finally the arithmetic and logical unit (ALU) allow parallel

execution of finite field addition, inversion a

Input

Interface

Output

Interface

Control

Unit

ECC Addition

Ecc Doubling

Aff_Proj_Conversion

ECC_Pt_Mult

Addition, Inversion

CA_Multiplication,

Square,division

ALU

(GF(2)Operations)

ECC Operations

yp

S
t
a
r
t

C
l
o
c
k

R
e
s
e
t

D
o
n
e

8

8

8

8

8

xp

K

yq

xq

m

m

m

m

m

m

m

m m m

Fig.19 Proposed elliptic curve processor

5.3 ASIC implementation of elliptic curve

processor
We designed an ECC IP using the VHDL language and

synthesized using Synopsys Design Compiler. In table.4, we

present the implementation results of the ellpitic curve point

multiplication over GF(2m) , where

m  256 233, 191, 163, 113, . In table.4, three criteria’s are

described: the area occupation (mm²), the static power

consumption (mW) and the frequency (MHz).

Table.4 The ECC processor performances

Size Frequency

(MHz)

Area

(Slices)

Power

(mw)

113 377 135420 12.65

163 370 207577 17.52

191 357 224808 19.76

233 333 275482 22.26

256 312 323449 23.10

5.4 Layout of ECC Processor
The resulting netlist of the ECC processor over GF(2256) is

used as input to Cadence in order to perform mapping and

routing with a 120 nm CMOS technology. The results

obtained from these operations are reported in table.5 and fig.20.

The final ASIC has been implemented using CMOS 120 nm

technology.

The result in synthesis operating frequency is about 312 Mhz.

The ECC processor areas are about 1.29 mm2. The total

Input/output is equal to 44. The core dimension of the ECC

processor is about 0.74 mm x 0.74 mm, and the core is about

0.55 mm2. The proposed ECC implementation provides a time

of 0.85 ms over GF(2256) and 0.29 ms over GF(2163).

Table.5 ASIC implementation of ECC processor

.Core dimension : 0.74 mm x 0.74 mm

Core area : 0.55 mm2

Circuit dimension : 1.36 mm x 1.36 mm

Circuit area : 1.29 mm2

Total In/out : 44

Fig.20 Layout of the design over GF(2256)

6. CONCLUSION
In this paper, we proposed a high performance of the generic

elliptic curve key generation processor over GF(2m) scheme

based on the Montgomery scalar multiplication algorithm.

The proposed processor is performed using polynomial basis.

The Finite Field operations use a cellular automata multiplier

and Extended Euclidean Theorem for inversion. The elliptic

curve arithmetic based on projective systems is used to compute

the point multiplication in GF (2m). Our presented elliptic

Curve arithmetic architectures improved point addition and point

doubling for speed, low-power and less-Area applications.

Finally, a completely parameterized processor of VHDL Elliptic

Curve point multiplication was developed and tested. The

second part of the paper, present’s the first design of the ECC

processor using a 120 nm CMOS technology. The ASIC area is

about 1.29 mm2. This processor operates with clock frequency

of 312 Mhz and provides a time of 0.85 ms over GF(2256).

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

9

7. REFERENCES
[1] N. Koblitz, “Elliptic curve cryptosystems”, Mathematics of

Computation, number 48, pages 203-209, 1987.

[2] V.S. Miller, “Use of elliptic curve in cryptography”,

Advances in Cryptology– Proceedings of CRYPTO’85,

Springer Verlag Lecture Notes in Computer Science 218,

pages 417-426, 1986.

[3] Certicom research, “The Elliptic Curve Cryptosystem”,

Certicom, April 1997.

[4] K.H. Leung et al., FPGA implementation of a microcoded

elliptic curve cryptographic processor, IEEE Symposium

on Field Programmable Custom Computing Machines,

2000, pp 68-76.

[5] M.Morales-Sandoval, C.Feregrino-Uribe, on the hardware

design of an elliptic curve cryptosystem, Proceeding of the

5th Mexican International Conference in Computer Science,

2004, pp60-70.

[6] G.Orlando, C.Paar, A high performance reconfigurable

elliptic curve processor for GF(2m), Second International

Workshop on Cryptographic Hardware and Embedded

Systems (CHES 2000), pp 41-56.

[7] Chang Hoon Kim, Soonhak kown and Chun Pyo Hong,

FPGA implementation of high performance ECC

processor over GF(2163), Journal of Systems

Architecture, Vol 54(, pp 893-900, 2008.

[8] Dan Young-ping, Zou Xue-cheng, Han Yu and Yi Li-hua,

Design of highly efficient elliptic curve crypto-processor

with two multiplications over GF(2163), The journal of

china Universities of Posts and Telecommunications, Vol

16(2), pp 72-79, 2009.

[9] M Bednara, M Daldrup, J von zur Gathen and J

Shokrollahi, Reconfigurable implementation of elliptic

curve crypto algorithms. Reconfigurable Architectures

Workshop, 16th International Parallel and Distributed

Processing Sympsium, April 2002.

[10] Cheung R C C, Telle N J, Luk W, et al,

Customizable elliptic curve cryptosystems, IEEE

Transactions on Very Large Scale Integration (VLSI)

Systems, vol 13 (2), pp 1048-1059, 2005.

[11] Sakyama K, Batina L, Preneel B, et al, Multicore curve-

based cryptoprocessor with reconfigurable modular

arithmetic logic units over GF(2^n), IEEE Transactions on

Computers, vol 56 (9), pp 1269-1282, 2007.

[12] Sozzana F, Bertoni G, S Turcato, et al, A parallelized

design for an elliptic curve cryptosystem coprocessor,

Proceeding of the International Conference on

Information Technology, IEEE Computer Society, pp

626-630, 2005.

[13] Mohsen Machhout, Zied Guitouni, Kholdoun Torki,

Lazhar Khriji and Rached Tourki, Coupled FPGA/ASIC

Implementation of Elliptic Curve Crypto-Processor, IJNSA

International Journal of Network Security & Its

Applications, Vol.2 No.3, Juillet 2010.

[14] U.S. Department of Commerce, National Institute of

Standards and Technology, Digital Signature Standard

(DSS), Federal Information Processing Standards

Publication FIPS PUB 186-2, January 2000.

[15] T. Izu1, B. Moller, and T. Takagi, "Improved Elliptic

Curve Multiplication Methods Resistant against Side

Channel Attacks", Progress in Cryptology – INDOCRYPT

2002,. Springer-Verlag LNCS 2551, 2002, pp. 296–313.

[16] Hyun-Sung Kim1 and Kee-Young Yoo, Multiplier for

Public-Key Cryptosystem Based on Cellular Automata,

MMM-ACNS 2003, LNCS 2776, pp. 436–439, 2003.

Springer

[17] Jun-Cheol Jeon, Kee-Won Kim et all, Cellular Automata

Architecture for Elliptic Curve Cryptographic Hardware,

ICCS 2006, Part III, LNCS 3993, pp. 329 – 336, 2006,

Springer.

[18] H. Li and C.N Zhang, “Efficient cellular automata versatile

multiplier for GF(2n)”, ttp://www.iis.sinica.edu.tw

/JISE/2002/ 2002 07_01.pdf.

[19] A. Daly, W. Maranane, T. Kerins and E. Popocivi, "Fast

Modular Division for Application in ECC on

Reconfiguration Logic", Field Programmable Logic and

application, 13th International Conference, (FPL ’03),2003,

pp. 786-795.

[20] D. Hankerson, L. Lopez, and A. Menezes, Software

Implementation of Elliptic Curve Cryptography Over

Binary Fields, in Proc. of the Second International

Workshop on Cryptographic Hardware and Embedded

Systems, CHES'2000, volume 1965 of Lecture Notes in

Computer Science, pp. 1{24,Worcester, MA, August 2000,

Springer.

[21] S. C. Shantz, From Euclid's GCD to Montgomery

Multiplication to the Great Divide, Technical Report TR-

2001-95, Sun Microsystems Laboratories, 2001.

[22] M. Morales-Sandoval, "Hardware architecture for Elliptic

Curve Cryptography and Lossless Data Compression",

Computer Science Department National Institute for

Astrophisics, Optics and Electronics Tonantzintla. Puebla

México, December 2004.

[23] M. Dion. “Implantation d’ECDSA sur une Carte à

Puce“.Université de Montréal, Département d’informatique

et de Recherche Opérationnelle. Mai 1999.

[24] E.Oswald, "Introduction to elliptic curve Cryptography",

Institue for Applied information Processing and

communication, July 2005. 2

[25] Sining Liu, Francis Bowen, Brian King, and Wei Wang, "

Elliptic curve Cryptosystem implementation Based on a

look-Up Table sharing Scheme", In Proc. IEEE

International Symposium on Circuits and Systems

(ISCAS’06), 2006, pp. 4.

[26] Dupont L. Roy, S. Chouinard, J.Y. , «A FPGA

Implementation of an Elliptic Curve Cryptosystem", In

Proc. IEEE International Symposium on Circuits and

Systems (ISCAS’06), 2006, pp. 4.

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

10

[27] B. Ansari, M. Anwar Hasan, High performance architecture

of elliptic curve scalar multiplication, Tech. Report

CACR2006-01, 2006.

[28] F. Sozzani, G. Bertoni, S. Turcato, L. Breveglieri, A

parallelized design for an elliptic curve cryptosystem

coprocessor, in: Symposium on Information Technology:

Coding and Computing (ITCC), 1, 2005, pp. 626–630.

[29] A. K. Daneshbeh, M.A. Hasan, Area efficient high speed

elliptic curve cryptoprocessor for random curves, in: IEEE

Symposium on Information Technology: Coding and

Computing (ITCC), 2, 2004, pp. 588–592.

[30] A. Satoh, K. Takano, A scalable dual-field elliptic curve

cryptographic processor, IEEE Transactions Computers 52

(4) (2003) 449–460.

[31] Z. Guitouni1, R. Chotin-Avot, M. Machhout, H. Mehrez

and R. Tourki, Design and FPGA implementation of

modular multiplication methods using cellular automata,

IEEE International Conference on Design & Technology of

Integrated Systems in Nanoscale Era, (DTIS’10).

