
IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

19

Network Anomaly Detection using Unsupervised
Model

Prasanta Gogoi
Dept. of Computer Sc.& Engg.

Tezpur University, India

Bhogeswar Borah

Dept. of Computer Sc.& Engg.
Tezpur University, India

Dhruba K Bhattacharyya

Dept. of Computer Sc.& Engg
Tezpur University, India

ABSTRACT

Most existing network intrusion detection systems use signature-

based methods which depend on labeled training data. This

training data is usually expensive to produce due to cost of

laboratory set up, experienced or knowledge person and non

availability of ready software tool. Above all, these methods

have difficulty in detecting new or unknown types of attacks.

Using unsupervised anomaly detection techniques, however, the

system is capable of detecting previously unknown attacks

without labeled training data. In this paper, we have discussed

anomaly based network intrusion detection and proposed two

unsupervised clustering algorithms for anomaly detection. The

algorithms are evaluated with our generated real life intrusion

dataset. The dataset is created with extracted features of

captured network packet as well as flow traffic. The algorithm is

also tested and validated with standard KDD Cup 1999 dataset

and NSL-KDD dataset. The results are compared with results of

similar algorithms and have been found excellent.

General Terms

Intrusion Detection, Unsupervised Classification, Detection Rate

Keywords

Intrusion, Unsupervised, Supervised, Anomaly, Clustering,

TPR, FPR

1. INTRODUCTION
With the evolutionary expansion of network-based computer

services, the security measure against computer and network

intrusions is a crucial issue in a computing environment. The

intrusions or attacks to the computer or network system are the

activity or attempt to destabilize it by compromising the security

in confidentiality, availability or integrity of the system. As

defined in [1], intrusion detection system (IDS) is the process of

monitoring the events occurring in a computer system or

network and analyzing them for signs of intrusions. A network-

based IDS (NIDS) often consists of a set of single-purpose

sensors or host computers placed at various points in a network.

These units monitor network traffic, performing local analysis of

that traffic and reporting attacks to a central management

console. The network-based intrusion detection are broadly

studied in two approaches [2] : rule based and anomaly-based.

Rule based (also called misuse-based) detection searches for

specific pattern (or intrusion signature of rules) in the data

effectively detecting previously known intrusions. Snort [3] is a

widely used rule-based NIDS and it can detect intrusions of

previously known intrusion signature patterns. Rule-based

approach usually, do not generate large number of false alarms

of detection since it is based on rules of known intrusions but it

fails to detect new types of intrusions as their signatures are not

known. Anomaly detection consists of analyzing and reporting

unusual behavioral patterns in computing systems. Anomaly

based detection approach, typically, builds a model of normal

behavior from the observed data and distinguishes any

significant deviations or exceptions from this model. Anomaly

based detection implicitly assumes that any deviation from

normal behavior is anomalous. Anomaly detection approach has

the ability to examine new or unknown intrusions. Based on

learning method, anomaly detection can be of two different

categories [4]: supervised and unsupervised. In supervised

anomaly detection, normal behavior model of systems or

networks are established by training with labeled or purely

normal dataset. These normal behavior models are used to

classify new network connections and gives alert if a connection

is classified to be maligned or abnormal behavior. ADAM [5] is

a supervised anomaly-based as well as misuse-based NIDS.

However, in practice, to train a supervised anomaly-based

method, labeled or purely normal data are not easily available.

Since it is time consuming to acquire and error prone in manual

classifying the label as benign or malign. Whereas, unsupervised

anomaly detection approaches work without any training data or

these models may be trained on unlabeled or unclassified data

and it attempts to find intrusions lurked inside the data. A

number of IDSs employ unsupervised anomaly-based

approaches [6,7,8]. The most prevalent advantage of anomaly

detection approach is the detection of unknown intrusions

without any previous knowledge of intrusions. However, it fails

to detect or false detection rate tends to be higher if behavior of

some of intrusions are not significantly different from

considered normal behavior model. In network-based intrusion

detection, usually, threat arises from new or previously not

known intrusions. The possible detection approach of novel

intrusions is anomaly-based detection approach instead of rule

based approach. In anomaly-based supervised detection

approach, obtaining labeled or purely normal data is a critical

issue. Unsupervised anomaly-based detection can address this

issue of novel intrusion detection without prior knowledge of

intrusions or purely normal data.

In literature [9,8,10,11] clustering is established as a useful

method for anomaly-based unsupervised detection of intrusions.

From classical definition of data mining, clustering is a method

of grouping of objects based on similarity of the objects. The

similarity within a cluster is more and dissimilarity among

clusters are distinct. Clustering itself is a kind of unsupervised

study method [12]. This method can be carried on unlabeled

data, it divides the similar data to the same class and divides the

dissimilar data to different classes. Unsupervised anomaly-based

detection often tries to cluster test dataset into groups of similar

instances which may be either intrusion or normal data.

Although, using of clustering method in unsupervised anomaly

based detection for intrusion, generate many clusters, labeling

clusters is still a difficult issue faced by this approach. In order

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

20

to label clusters, unsupervised anomaly-based detection

approach model normal behavior by using two assumptions [4]

(i) the number of normal instances vastly outnumber the number

of anomalies and (ii) anomalies themselves are qualitatively

different from the normal instances. If these assumptions hold,

intrusions can be detected based on cluster sizes. Larger clusters

correspond to normal data, and smaller clusters correspond to

intrusions. But this method is likely to produce higher false

detection rate as the assumptions are not always true in practice.

For example, in denial of service category of intrusions a large

number of very similar instances are generated that may form

larger clusters than normal behavior cluster. On the other hand

in remote to local (r2l) and user to root (u2r) categories of

intrusion, legitimate and illegitimate users are difficult to

distinguish. These intrusions may include normal behavior

model. Consequently, these can rise the false detection rate.

1.1 Motivation
Our motivation of this work is to build an efficient and effective

clustering based algorithm for detection of novel intrusions by

allowing training with unlabeled data. Its efficiency and

effectiveness will be the higher detection rate and the lower false

detection comparing to the existing approaches of unsupervised

intrusion detection.

1.2 Contribution
In this work we developed two clustering based algorithms

called k-point-1 and k-point-2 for unsupervised anomaly based

intrusion detection. We evaluate the approaches with our

generated intrusion dataset and well-known benchmark intrusion

dataset KDD Cup 1999 [13]. Also, we evaluate the approach

with NSL-KDD dataset [14] which is a filtered dataset from

KDD Cup 1999 dataset. We compare results of our approach

with similar existing approaches.

1.3 Organization
The remainder of this paper is organized as follows. Section 2,

summarizes the related work on k-point-1 and k-point-2

algorithms. In section 3, we describe the proposed clustering

algorithms for unsupervised and supervised anomaly detection.

Section 4 reports the evaluation results of the proposed

algorithms. Finally, section 5 concludes with future direction of

research.

2. Related work
Applying clustering in unsupervised anomaly-based detection of

network intrusion is a wide research area that has drawn interest

in the academic community. Portnoy, et. al. [4] presents a

clustering based unsupervised anomaly detection algorithm in

order to detect new intrusions. The training dataset containing

unlabeled data is clustered using a modified incremental k-

means algorithm. Each cluster is labeled as normal or intrusive

based on the number of instances in the cluster. Some

percentage of the clusters containing the largest number of

instances are labeled as normal and the rest of the clusters are

labeled as anomalous. Intrusion in test datasets are detected by

using the labeled clusters. The labeling of a test instance is done

with the label of its closest cluster. In [15], a mixture model is

presented for detecting the presence of anomalies without

training on normal data. This anomaly detection model uses

machine learning techniques to estimate the probability

distributions over data and uses a statistical test to detect

anomalies. Eskin, et al. [6] presents three algorithms in anomaly

detection: the fixed width clustering algorithm, an optimized

version of the k-nearest neighbor algorithm (k-NN), and the one

class support vector machine (SVM) algorithm. In fixed-width

clustering, clusters are created based on defined distance in

between data objects to isolate smaller clusters for identifying as

anomalous. In k-NN algorithm, nearest points in sparse regions

are found and a score is computed. If the score falls below a

threshold, the points are considered as anomalous. Though

standard SVM is a supervised learning algorithm, the author

presents one-class SVM as unsupervised method for anomaly

detection. Oldmeadow, et. al. [16] presents a modified cluster-

TV (time-varying) algorithm based on the fixed-width clustering

[6] and shows improvements in detection accuracy when the

clusters are adaptive to changing traffic patterns. The Y-means

algorithm proposed by Yu Guan, et. al. [17] is an improvement

of the k-means algorithm. The algorithm handles outliers by

splitting and merging clusters that automatically adjust the

number of clusters. No training data is used. Clusters are labeled

according to their population, that is, if the population ratio of

one cluster is above a given threshold, all the instances in the

cluster will be classified as normal; otherwise they are labeled

intrusive. Wei Lu, et. al. [18] introduces I-means algorithm. It is

an extension of k-means algorithm and can estimate

automatically the number of clusters for a set of data by

allowing automatic conversion of regular packet features into a

3-dimensional numerical feature space, in which the clustering

takes place. Intrusion decisions are taken based on the clustering

result. In [8], Kingsly, et. al. presents a new density and grid

based clustering algorithm, fpMAFIA based on the subspace

clustering algorithm pMAFIA [19]. Grid-based methods divide

the object space into a finite number of cells that form a grid

structure. All of the clustering operations are performed on the

grid structure. The authors in [20] presents ADWICE (anomaly

detection with fast incremental clustering), an adaptive anomaly

detection scheme based on BIRCH [21] clustering algorithm and

extends with new capabilities. The work of [22] discusses a

statistical methodology for anomaly detection using the NetFlow

protocol. The methodology detects intrusions in the shortest

possible time by monitoring computer network parameters

through anomalies identification in traffic. Basically, it uses an

algorithm to separate maximum values as normal and anomalous

traffic as outlier. A review of the most well known anomaly

based intrusion detection techniques are provided in [23,24].

Available platforms, systems under development and research

projects in the area are also presented. In [25], a survey work on

network anomaly detection by identifying outliers is presented.

The work outlines the challenges to be dealt with outlier in

anomaly-based intrusion detection.

Primarily, network anomaly detections [23] deal with detecting

intrusions in huge volume of high dimensional network intrusion

data. Also, the network intrusion data (viz. KDD Cup 1999 [13])

are mixed type attributes of numerical and categorical. Distance

or similarity measures are necessary to solve classification or

clustering problem of large high dimensional data. A distance or

dissimilarity is the quantitative degree of how different of two

objects are. A synonym for similarity is proximity. The selection

of an appropriate proximity measure depends upon (i) the types

of attributes in the data (ii) the dimensionality of data and (iii)

the problem of weighing data attributes. In the case of numeric

attribute data, distance functions between two data points can be

defined by exploiting their inherent geometric properties.

Numeric attributes can be discrete or continuous. A discussion

on the various proximity measures for numeric attribute data is

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

21

available in [26]. Like, numerical values, categorical attribute

values cannot be arranged naturally. Similarity measure

computation between categorical data instances is not

straightforward. Many data-driven similarity measures for

categorical data have been proposed in [27]. In mixed type data,

usually, categorical values are transformed into numeric values

and then use a proximity measure for numeric data before using

for clustering.

The number of features or attributes extracted from raw network

data, is usually large for small as well as large network [28,29].

Many researchers have tried to improve the detection rate of

network anomaly detection through proposing new clustering

methods. Though feature selection [30,31] can be used to

optimize the existing clustering methods. Feature selection

methods have been employed to network anomaly detection for

eliminating the unimportant ones. Feature selection is useful to

improve the computational time, remove redundant information

and facilitate data understanding.

After several literature studies, we propose a clustering method

based on k-means algorithm. The aim of our algorithm is high

rate of anomaly detection by identifying normal instances and

reduction of false detection rate.

3. Proposed Clustering Method
The proposed clustering method uses the k-point algorithm to

create a set of representative clusters from the available

unlabeled objects of data. Initially, the method considers k

objects randomly from the dataset. The dataset objects are then

gathered to these selected points (or objects) based on various

attribute similarities. The clusters are formed using three

similarity measures: (i) similarity between two objects, (ii)

similarity between a cluster and an object and (iii) similarity

between two clusters. The method will identify various clusters.

The detail explanation of the k-point algorithm is presented next.

3.1 k-point Algorithm Fundamental
The dataset to be clustered contains n objects, each described by

d attributes A1,A2,..,Ad having finite valued domains D1,D2,...,Dd

respectively. A data object can be represented as X = {x1, x2,..,

xd}. The j-th component of object X is xj and it takes one of the

possible values defined in domain Dj of attribute Aj . Referring

to each object by its serial number, the dataset can be

represented by the set N = {1, 2, …, n}. Similarly, the attributes

are represented by the set M = {1, 2, …, d}.

Based on this clustering method two algorithms are proposed: k-

point-1 and k-point-2. k-point-1 is a clustering approach and k-

point-2 is a clustering approach using class specific subset of

attributes of dataset.

3.1.1 Similarity Function Between two Data objects
Similarity between two data objects X and Y is the sum of per

attribute similarity for all the attributes. It is computed as,

1

(,) (,)
d

j j

j

simO X Y s x y


 (1)

where s (xj , yj) is the similarity for j-th attribute defined as,

 (2)

3.1.2 Similarity Between a Cluster and an Object
A cluster is a set of objects which are similar over a sub-set of

attributes only. The minimum size of the subset of attributes

required to form a cluster is defined by the threshold MinAtt.

Let, the subset of defining attributes be represented by

Dattrib = {a1, a2,…, aNattrib} such that Dattrib M and Nattrib is the

size of Dattrib. A cluster will be represented by its profile that

looks like an object. All the objects of the cluster is similar with

respect to the profile. The cluster profile is defined by a set of

values, Vattrib ={vI, v2,…, vNattrib} taken over the corresponding

attributes in Dattrib, that is v1Da1 is the value for attribute

a1M, v2Da2 is the value for attribute a2M and so on.

Thus, the cluster profile is defined by:

Profile={Nattrib, Dattrib,Vattrib} (3)

Let, Olist  N is the list of data objects in the cluster. A cluster

C is completely defined by its Profile and Olist:

C={Olist, Profile} (4)

The k-point clustering algorithm inserts an object in any one of

the set of clusters existing at the particular moment. So the

similarity between a cluster and a data object needs to be

computed. Obviously, the cluster profile is used for computing

this similarity. A cluster profile is defined by equation 3. As the

similarity needs to be computed over the set of Nattrib attributes

in Dattrib positions of Vattrib values only of a cluster and an object, the

cluster profile is needed to find in the object. The similarity

function between a cluster C and an object Y becomes

1

(,) (,)
d

j j

j

simC C Y s x y


 (5)

where Nattrib is the attribute numbers in cluster profile and s(xj,yj)

is the similarity between j-th value xj of profile of cluster C and

j-th attribute value yj of object Y is defined by equation 2.

3.1.3 Similarity Function Between two Clusters
The k-point clustering algorithm can create large number of

clusters based on equation 1 and inserts an object in any of the

existing clusters on the basis of equation 5. Obviously, there are

possibilities of existence of clusters with similar profiles. So,

similar clusters need to be merged into a single cluster.

Similarity function between two clusters P and Q is defined as

the sum of per attribute similarity for all the constituting

attributes members. It is computed as,

1

(,) (,)
Nattrib

j j

j

simCl P Q s x y


  (6)

where s (xj , yj) is the similarity function between j-th value xj of

profile of cluster P and j-th attribute value yj of cluster Q as

defined by equation 2.

Example: Consider a sample dataset shown in Table 1 with ten

objects defined over six attributes A1, A2, A3, A4, A5 and A6. The

domains for the attributes are respectively, D1 = {a1, a2, a3},

D2 = {b1, b2}, D3 = {c1, c2, c3, c4}, D4 = {d1, d2, d3},

D5 = {e1, e2} and D6 = {f1, f2, f3, f4, f5}.

Clusters C1, C2, C3 and C4 can be identified in the dataset with

MinAtt = 6/2 = 3.

C1 = {Olist = {2, 8} , Nattrib = 6, Dattrib = {1, 2, 3, 4, 5, 6},

1
(,)

0

j j

j j

if x y
s x y

otherwise


 


IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

22

Vattrib = {a2, b2, c4, d3, e2, f2}}.

C2 = {Olist = {1, 4} , Nattrib = 5, Dattrib = { 2, 3, 4, 5, 6},

Vattrib = {b2, c4, d1, e2, f1}}.

C3 = {Olist = {5, 7}, Nattrib = 5, Dattrib = {1, 2, 3, 5, 6},

Vattrib = {a3, b1, c2, e1, f3}}.

C4 = {Olist = {3, 9, 10}, Nattrib = 5, Dattrib = {1, 2, 3, 4, 5},

Vattrib = {a3, b1, c2, d1, e1}}.

Table 1. A sample dataset

Sl. no. A1 A2 A3 A4 A5 A6

1 a3 b2 c4 d1 e2 f1

2 a2 b2 c4 d3 e2 f2

3 a3 b1 c2 d1 e1 f2

4 a2 b2 c4 d1 e2 f1

5 a3 b1 c2 d3 e1 f3

6 a1 b2 c1 d2 e2 f1

7 a3 b1 c2 d2 e1 f3

8 a2 b2 c4 d3 e2 f2

9 a3 b1 c2 d1 e1 f4

10 a3 b1 c2 d1 e1 f5

3.1.4 k-point-1 Algorithm
The unsupervised clustering algorithm starts with an empty set

of clusters. Initially, k objects are selected randomly from the

dataset. It reads each object Xi sequentially from dataset, and

inserts Xi in an existing cluster based upon the similarity

between Xi and a cluster. If the similarity between a cluster and

the object does not hold, a new cluster is created with Xi, if Xi is

similar with any of the randomly selected k objects for a defined

threshold MinAtt of attributes. Search for a cluster for inserting

an object is started from the beginning of the created cluster set

until the search is successful. The objects which are neither able

to include in any one of the clusters nor create a new cluster

based upon the defined MinAtt are excluded from the clusters.

Based upon similarity on profiles, similar clusters are merged

into single cluster. The largest cluster is selected to identify its

label of normal on basis of the assumption of normal behavior

model. The description of notations used in the algorithm is

given in Table 2. The algorithm has the following steps.

k-point-1 Algorithm

Step 1. Read dataset D and find number of attributes i.e. M in D.

Step 2. Initialize ,

 S ← Null;

 MinAtt ← M/2;

 T ← M.

Step 3. Select k records randomly from D.

Step 4. IF D ≠ Null THEN select an unselected record d from D.

Step 5. IF i , |S| < 2 THEN compute simO(d, ki)

 ELSE go to Step 8.

Step 6. IF simO(d, ki) = 0 THEN

 Create a cluster Ci with profile=(Nattrib, Dattrib, Vattrib).

 Include object d to Cj and update S and go to Step 4.

 ELSE T = T - 1.

Step 7. IF T > MinAtt, THEN go to Step 6.

 ELSE go to Step 4.

Step 8. IF simC (Ci, d) = 0 THEN

add record d to Ci and go to Step 4.

Step 9. IF |S| ≥ 2 THEN

 ,i j , IF Nattrib.Ci = Nattrib.Cj THEN

IF simCl(Ci,Cj) = 0 THEN

 Olist.Ci=Olist.Ci+Olist.Cj and update S.

Step 10. Find the largest cluster by comparing Olist of clusters

from S.

Step 11. Stop.

Table 2. k-point-1 & k-point-2 Algorithms Notations

Symbol Description

D Dataset

M, T number of attributes of dataset

FS number of attributes of selected features

FSi i-th selected features

xi value of i-th selected feature value of a record

k number of randomly selected records

kfi,j i-th feature value j-th randomly selected record

S set of clusters

Ci , Cj i-th and j-th cluster

MinAtt threshold value for minimum attribute

simO similarity value between two objects

simC similarity value between a cluster and an object

simCl similarity value between two clusters

Olist object list in a cluster

Olist.Ci object list in i-th cluster, Ci

Nattrib total number of attributes in a cluster profile

Nattrib.Ci total number of attributes in profile of i-th cluster, Ci

Dattrib distribution of attributes in a cluster profile

Vattrib values of attributes in a cluster profile

3.1.5 Complexity analysis: k-point-1 Algorithm
The k-point-1 algorithm requires one pass through the dataset.

Each object need to be compared with existing clusters one after

another until it gets inserted in one of the clusters. The similarity

computation involves a subset of attributes. Therefore, the

clustering process has a complexity O(ncd), where n is the

number of objects in dataset, c is the number of clusters, and d is

the number of attributes. Each of the created clusters need to be

visited for k number of objects for d attributes. Hence, maximum

time complexity of k-point algorithm becomes O(ncd) + O(kd).

3.1.6 Feature Selection
The feature selection methods have been introduced in intrusion

detection to eliminate the unimportant features from dataset. A

number of feature selection methods have been utilizing over the

decade. Three feature-ranking methods are proposed in [29] for

feature selection. Feature selection based on information gain

[31] is a commonly used method. Mutual information-based

feature selection method results in detecting intrusions with

higher accuracy. The mutual information (MI) between two

random variables X and Y is a measure of the amount of

knowledge on Y supplied by X (or conversely on the amount of

knowledge on X supplied by Y). If X and Y are independent, i.e.

X contains no information about Y and vice versa; then their

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

23

mutual information is zero. MMIFS [30] (modified MI-based

feature selection) is a promising MI-based feature selection

method in terms of least computational complexity and

maximum accuracy for different categories of attacks and

normal data.

3.1.7 K-point-2 Algorithm
The algorithm starts with the input of dataset for selected

attributes based on feature selection algorithm [30]. The feature

selection algorithm selects the features relevant to attacks and

normal category from the intrusion data set. The classification

algorithm is initialized with an empty set of clusters and k

objects are selected randomly from the dataset. It reads each

object Xi sequentially from dataset for the selected attributes

only, and inserts Xi in an existing cluster based upon the

similarity between Xi and a cluster. If the similarity between a

cluster and the object does not hold, a new cluster is created

with Xi, if Xi is similar with any of the randomly selected k

objects for selected attributes. Search for a cluster for inserting

an object is started from the beginning of the created cluster set

until the search is successful. The objects which are neither able

to include in any one of the clusters nor create a new cluster

based upon the selected attributes are excluded from the clusters.

Based upon similarity on profiles, similar clusters are merged

into single cluster. The largest cluster is selected to identify its

label of normal on basis of the assumption of normal behavior

model. The algorithm has the following steps.

k-point-2 Algorithm

Step 1. Read dataset D and find number of attributes i.e. M in D.

Step 2. i , FSi = List of attributes from MI-based Feature

Selection Function (D).

Step 3. Initialize S ← Null;

Step 4. Select k records randomly from D.

Step 5. IF D ≠ Null THEN select an unselected record d from D.

 Nattrib= FS;

 Dattrib = FSi;

 Vattrib = xi.

Step 6. . IF i , |S| < 2 THEN compute simO(xi,kfi,j)

 ELSE go to Step 8.

Step 7. IF simO(xi,kfi,j)= 0 THEN

 Create a cluster Ci with profile=(Nattrib, Dattrib, Vattrib).

 Include object d to Cj and update S and go to Step 5.

Step 8. IF simC (Ci, d) = 0 THEN

add record d to Ci and go to Step 5.

Step 9. IF |S| ≥ 2 THEN

 ,i j , IF Nattrib.Ci = Nattrib.Cj THEN

IF simCl(Ci,Cj) = 0 THEN

 Olist.Ci=Olist.Ci+Olist.Cj and update S.

Step 10. Find the largest cluster by comparing Olist of clusters

from S.

Step 11. Stop.

3.1.8 Complexity analysis: k-point-2 Algorithm
Like k-point-1 algorithm, the k-point-2 algorithm also requires

one pass through the dataset. Each object is required to compare

with existing clusters one after another until it gets inserted in

one of the clusters. The similarity computation involves a subset

of attributes. Therefore, the clustering process has a complexity

O(ncd), where n is the number of objects in dataset, c is the

number of clusters, and d is the number of selected attributes.

Each of the created clusters need to be visited for k number of

objects for d number of selected attributes. Hence, the maximum

time complexity of k-point-2 algorithm becomes O(ncd)+O(kd).

4. EXPERIMENTAL RESULTS
All the experiments were carried out on an Intel workstation

with configuration of core 2 Quad @2.4GHz, 2 GB RAM,

160GB HDD. The program was developed in C in a Linux

environment.

4.1 Dataset Description

The proposed algorithms were evaluated with three sets of

intrusion datasets.

4.1.1 Real Life Network Intrusion Dataset
The proposed method was evaluated using our own real life

network intrusion dataset. The dataset is given in Table 3 and it

includes two datasets- Packet Level and Flow Level. The

network traffics of attack and normal were captured using our

local network within a 4 week period. The attacks were

generated using attack tools [32] against a local network server

and collected the produced traffic as known as attack traffic.

There were generated 16 different types of attacks. The attacks

along with the corresponding tools for their generation are given

in Table 4. The network traffics were captured in packet level

and flow level through two separate port mirroring machines.

The captured data were preprocessed and filtered to extract

various types of features.

Table 3. Real Life Network Intrusion Dataset

Datasets Normal Attacks Total

Packet Level 31485 198698 230183

Flow Level 32616 116096 148712

Table 4. Attack List

Attack
Generation

Tool
Attack

Generation

Tool

bonk targa2.c 1234 targa2.c

jolt targa2.c saihyousen targa2.c

land targa2.c oshare targa2.c

nestea targa2.c window targa2.c

newtear targa2.c syn Nmap

syndrop targa2.c xmas Nmap

teardrop targa2.c fraggle Fraggle.c

winnuke targa2.c smurf smurf4.c

The experimental setup of the testbed for network traffic

capturing includes one router, one L3 switch, two L2 switches,

one server, two workstations and forty nodes. Six VLANs are

created from the L3 switch and L2 switch and nodes and

workstations are connected to separate VLANs. The L3 switch

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

24

is connected to a router through internal an IP router and the

router is connected to internet through an external IP router. The

server is connected to the L3 switch through mirror port to

observe the traffic activity to the switch. Another LAN of 350

nodes is connected to other VLANs through five L3 and L2

switches and three routers. The attacks are launched within our

testbed as well as from another LAN through the internet. In

launching attacks within testbed, nodes of one VLAN are

attacked from nodes of another VLAN and also the same

VLAN. Normal traffic is created within our testbed in restricted

condition after disconnecting another LAN. The traffic activities

to our testbed are observed in the computer connected to the

mirror port. A diagram of the testbed is shown in Figure 1.

Figure 1: Testbed

The packet level network traffic were captured by using open

source software gulp[33]. Gulp has the ability to read directly

from the network and decaptulate the packets. The packets were

analyzed using the open source packet analyzing software

wireshark [34]. The raw packet data were preprocessed and

filtered before extracting and constructing new features. In

packet level network traffic, 45 types of features were extracted.

To extract these features we used open source tool tcptrace [35],

C programs and perl script. These features are classified as

basic, time-based, window-based and content-based features.

The lists of features are given in Table 5-8.

Table 5. Packet level time-based features

Sl

No.
Features Description

1
count-dest

Number of frames to unique destination IP

addresses inside the network in the last T

seconds from the same source.

2 count-src
Number of frames from unique source IP

addresses inside the network in the last T

seconds to the same destination.

3
count-
serv-src

Number of frames from the source IP to the
same destination port in the last T seconds.

4 count-

serv-dest

Number of frames to the destination IP

using same source port in the last T seconds.

The network flow is a unidirectional sequence of packets

passing through an observation point in the network during a

certain time interval between source and destination hosts. All

traffic belonging to a particular flow has a set of common

properties. The NetFlow protocol (IPFIX standard) [36,37]

provides a summarization of information about the router or

switch traffic. Network flow is identified by source and

destination IP addresses as well as by port numbers. [39] is a

simple protocol that exports flow records of fixed size (48 bytes

in total). To identify a flow uniquely, NetFlow also uses several

fields, viz., types of protocols and types of services (ToS) from

IP header, and the input logical interface of the router or the

switch.

Table 6. Packet level window-based features

Sl

No.
Features Description

1 count-dest-

conn

Number of frames to unique destination IP

addresses inside the network in the last N

connection from the same source.

2 count-src-

conn

Number of frames from unique source IP

addresses inside the network in the last N

connection to the same destination

3 count-serv-

src-conn

Number of frames from the source IP to

the same destination port in the last N

connection.

4 count-serv-

dest-conn

Number of frames to the destination IP

using same source port in the last N

connection.

Table 7. Packet level content based features

Sl

No.
Features Description

1 num packet src dst The number of packets owing from

the source to destination

2 num packet dst src
The number of packets owing from
destination to source

3 num acks src dst
The number of acknowledgement

packets owing from source to

destination

4 num acks dst src
The number of acknowledgement

packets owing from destination to

source

5 num bytes src dst The number of bytes owing from
source to destination

6 num bytes dst src The number of bytes owing from

destination to source

7 num retransmit src

dst

The number of retransmitted

packets owing from source to

destination

8 num retransmit dst

src

The number of retransmitted

packets owing from destination to

source

9 num pushed src dst The number of pushed packets

owing from source to destination

10 num pushed dst src The number of pushed packets

owing from destination to source

11 num SYNs src dst The number of SYN packets owing
from source to destination

12 num FINs src dst The number of FIN packets owing
from source to destination

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

25

13 num SYNs dst src The number of SYN packets owing
from destination to source

14 num FINs dst src The number of FIN packets owing
from destination to source

15 connection status

(discrete)
Status of the connection
(0-Completed, 1-Not completed; 2- Reset)

Table 8. Packet level basic features

Sl No. Features Description

1 Time delta Time since occurrence of first frame

2 Frame no. Frame number

3 Frame length Length of the frame

4 Capture length Captured frame length

5 Header length Header length of the packet

6 Fragment offset Fragment offset value

7 ttl Time to live

8 Protocol Protocol of layer 3- IP, TCP, UDP

9 Src IP Source IP address

10 Dest IP Destination IP address

11 Src port Source port of machine

12 Dest port Destination port of machine

13 Seq. no. Sequence number

14 CWR Congestion Window Record

15 ECN Explicit Congestion Notification

16 URG Urgent TCP flag

17 ACK Acknowledgement flag

18 PSH Push flag

19 RST Reset flag

20 SYN Syn flag

21 FIN Fin flag

22 Window size Sliding window size

The flows are stored in router or the switch cache and exported

to a collector under the following constraints (i) flows that have

been idle for a specified time are expired where default setting

of specified time is 15 seconds, or the user can configure this

time to be between 10 to 600 sec., (ii) flows lived longer than 30

minutes are expired, (iii) if the cache reaches its maximum size,

a number of heuristic expiry functions are applied to export

flows, and (iv) a TCP connection has finished with flag FIN or

RST. A flow collector tool, viz., nfdump [32] receives flow

records from the flow exporter and stores them in a form

suitable for further monitoring or analysis. A flow record is the

information stored in the flow exporter cache. A flow exporter

protocol defines how expired flows are transferred by the

exporter to the collector. The information exported to the

collector is referred to as flow record. NetFlow version 5 [33] is

a simple protocol that exports flow records of fixed size (48

bytes in total). To identify a flow uniquely, NetFlow also uses

several fields, viz., types of protocols and types of services

(ToS) from IP header, and the input logical interface of the

router or the switch. The flows are stored in router or the switch

cache and exported to a collector under the following constraints

(i) flows that have been idle for a specified time are expired

where default setting of specified time is 15 seconds, or the user

can configure this time to be between 10 to 600 sec., (ii) flows

lived longer than 30 minutes are expired, (iii) if the cache

reaches its maximum size, a number of heuristic expiry

functions are applied to export flows, and (iv) a TCP connection

has finished with flag FIN or RST.

Network flow is identified by source and destination IP

addresses as well as by port numbers. [39] is a simple protocol A

flow collector tool, viz., nfdump [32] receives flow records from

the flow exporter and stores them in a form suitable for further

monitoring or analysis. A flow record is the information stored

in the flow exporter cache. A flow exporter protocol defines

how expired flows are transferred by the exporter to the

collector. The information exported to the collector is referred to

as flow record. NetFlow version 5 [33] is a simple protocol that

exports flow records of fixed size (48 bytes in total).

We used the NetFlow version 5 protocol to export flow records

and used nfdump to receive flow records. All data are stored on

disk before analyzing. This separates the process of storing and

analyzing the data. The data is organized in a time based

fashion. Nfdump has a flow record capturing daemon process

nfcapd which reads data from the network and stores the data

into files. Automatically, in every n minutes, typically 5

minutes, nfcapd rotates and renames each output file with time

stamp nfcapd, YYYYMMddhhmm, e.g., nfcapd, 201012110845

contains data from December 11th 2010 08:45 onward. Based

on a 5 minutes time interval, this stores results in 288 files per

day. Analysis of the data is done by concatenating several files

for a single run. The output is stored either in ASCII or in binary

into a file and it is ready to be processed again with the same

tool. We used C programs to filter the captured data to extract

new features. Unnecessary parameters were removed and the

retained parameters were flow-start, duration, protocol, source-

IP, source-Port, destination-IP, destination-Port, flags, ToS,

bytes, packets-per-second (pps), bits-per-second (bps) and bytes-

per-packet (Bps). Network traffic corresponding to attack and

normal traffic was gathered using our local network within a 4

week period. We collected 1,48,712 flow records of 16 attack

types and normal records. The extracted features were of 23

types and were classified into three groups of features: (i) basic,

(ii) time-window based, and (iii) connection based features. The

list of features is given in Table 9-11.

Table 9. Flow level time-window features

Sl No. Features Description

1
count-dest

Number of flows to unique destination IP

addresses inside the network in the last T

seconds from the same source.

2 count-src Number of flows from unique source IP

addresses inside the network in the last T

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

26

seconds to the same destination.

3 count-

serv-src

Number of flows from the source IP to the

same destination port in the last T seconds.

4 count-

serv-dest

Number of flows to the destination IP using

same source port in the last T seconds.

Table 10. Flow level Connection based features

Sl

No. Features Description

1 count-dest-

conn

Number of flows to unique destination IP

addresses inside the network in the last N

flows from the same source.

2 count-src-

conn

Number of flows from unique source IP

addresses inside the network in the last N

flows to the same destination.

3 count-serv-

src-conn

Number of flows from the source IP to the

same destination port in the last N flows.

4 count-serv-

dest-conn

Number of flows to the destination IP

using same source port in the last N flows..

Table 11. Flow level basic features

Sl No. Features Description

1 Duration Length of the flow (in seconds)

2 Protocol-type Type of protocols- TCP, UDP, ICMP

3 Src IP Source node IP address

4 Dest IP Destination IP address

5 Src port Source port

6 Dest port Destination port

7 ToS Type of service

8 URG Urgent flag of TCP header

9 ACK Acknowledgement flag

10 PSH Push flag

11 RST Reset flag

12 SYN SYN flag

13 FIN FIN flag

14 Source byte
Number of data bytes transfer from

source IP to destination IP

15 Land
Same source IP/source port are equal

to Destination IP/Destination port

4.1.2 KDD Cup 1999 Dataset
The proposed method was tested on datasets available in the

KDD Cup 1999 intrusion detection benchmark datasets [13].

Each record of the datasets represents a connection between two

network hosts according to network protocols and is described

by 41 attributes (38 continuous or discrete numerical attributes

and 3 categorical attributes). Each record is labeled as either

normal or one specific kind of attack. Each dataset contains 22

types of attacks. The two datasets of KDD Cup 1999 : (i)

Corrected KDD, and (ii) 10% KDD are given in Table 12.

Table 12. KDD Cup 1999 Dataset

Datasets Normal Attacks Total

Corrected KDD 60593 250436 311029

10% KDD 97278 396743 494021

4.1.3 NSL-KDD Dataset
NSL-KDD [14] is a network-based intrusion dataset. It is a

filtered version of KDD Cup 1999 intrusion detection

benchmark dataset. In the KDD Cup 1999 dataset, there are

huge number of redundant records, which can cause the learning

algorithms to be biased towards the frequent records. To solve

this issue, one copy of each record was kept in the NSL-KDD

dataset. The two datasets of NSL-KDD: (i) KDDTrain+, and (ii)

KDDTest+ are shown in Table 13.

Table 13. NSL-KDD Dataset

Datasets Normal Attacks Total

KDDTrain+ 67343 58630 125973

KDDTest+ 9710 12834 22544

4.2 Performance measures
Evaluation of performance of a clustering model is based on the

counts of test records correctly and incorrectly predicted by the

model. These counts are tabulated in a table known as a

confusion matrix [40]. A confusion matrix summarizes number

of instances predicted correctly or incorrectly by a classification

model and it is given in Table 14.

Table 14. Confusion matrix for binary classification

Predicted Class

+ -

Actual Class
+ TP FN

- FP TN

The following terminology is often used when referring the

counts tabulated in the confusion matrix.

 True positive (TP), which corresponds to the number of

positive examples correctly predicted by the classification

model.

 False negative (FN), which corresponds to the number of

positive examples wrongly predicted as negative by the

classification model.

 False positive (FP), which corresponds to the number of

negative examples wrongly predicted as positive by the

classification model.

 True negative (TN), which corresponds to the number of

negative examples correctly predicted by the classification

model.

The counts in a confusion matrix can also be expressed in terms

of percentages. True positive rate (TPR) is defined as the

fraction of positive examples predicted correctly by the model,

i.e.,

TPR = TP/(TP + FN). (6)

Similarly, the true negative rate (TNR) is defined as the fraction

of negative examples predicted correctly by the model, i.e.,

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

27

TNR = TN/(TN + FP). (7)

The false positive rate (FPR) is the fraction of negative

examples predicted as positive class, i.e.,

FPR = FP/(TN + FP). (8)

Finally, the false negative rate (FNR) is the fraction of positive

examples predicted as negative class, i.e.,

FNR = FN/(TP + FN). (9)

Detection Rate: The detection rate (DR) is defined as the number

of intrusion instances detected by the system divided by the total

number of intrusion instances present in the test dataset. In

confusion matrix, detection rate can be represented by TNR.

4.3 Experimental results
Three datasets viz. (i) Real Life Network Intrusion Dataset, (ii)

KDD Cup 1999 Dataset and (iii) NSL-KDD dataset, and are

used to evaluate the performance of our algorithm. We

experimented as each of its dataset using two distinct

approaches (i) over full feature space, k-point-1 algorithm and

(ii) over reduced feature space (identifying relevant feature

specific to a particular class, while using approach (ii), k-point-2

algorithm. Our experiments carried out after preprocessing of

the above three datasets. Each preprocessing has two phases:

data normalization and feature reduction phases. After all

attribute values of each data set are scaled to the range [0-1] by

dividing every attribute value by its own maximum value, we

utilize the mutual information based feature selection algorithm

[30] to select important features for each dataset. The

performance evaluation over the dataset and its preprocessed

dataset are presented next.

4.3.1 Results on Real Life Network Intrusion Dataset

using k-point-1 Algorithm
The confusion matrices for two dataset Packet-level and Flow-

level of our Real Life Network Intrusion Dataset are given in

Table 15 and 16. On Packet Level dataset, the DR for intrusion

records is 99.29%, TPR for normal records is 98.89% and FPR

for normal records is 0.71%. Similarly, on Flow Level dataset,

the DR for intrusion records is 99.53%, TPR for normal records

is 99.11% and FPR for normal records is 0.47%.

Table 15. Confusion matrix for Packet level dataset using

k-point-1 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 31135 350 31485

Attack 1411 197287 198698

Sum 32546 197637 230183

Table 16. Confusion matrix for Flow level dataset using

k-point-1 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 32325 291 32616

Attack 546 115550 116096

Sum 32871 115841 148712

4.3.2 Results on Real Life Network Intrusion Dataset

using k-point-2 Algorithm
In data preprocessing and feature selection of dataset Packet-

level, sixteen numbers of features [7, 8, 9, 11, 15, 16, 17, 18, 19,

20, 25, 26, 29, 30, 31, 34] are reduced. The confusion matrices

for dataset Packet-level is given in Table 17. The DR for

intrusion records is 99.54%, TPR for normal records is 98.25%

and FPR for normal records is 0.49%.

Similarly, in data preprocessing and feature selection of dataset

Flow-level, eight number features [8, 9, 16, 17, 18, 20, 31, 34]

are reduced. The confusion matrices for dataset Flow-level is

given in Table 18. The DR for intrusion records is 99.53%, TPR

for normal records is 99.11% and FPR for normal records is

0.47%.

Table 17. Confusion matrix for Packet level dataset using

k-point-2 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 30935 550 31485

Attack 911 197787 198698

Sum 31846 198337 230183

Table 18. Confusion matrix for Flow level dataset using

k-point-2 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 32025 591 32616

Attack 246 115850 116096

Sum 32271 116441 148712

4.3.3 Results on KDD Cup 1999 Dataset using k-

point-1 Algorithm
The confusion matrices for two dataset Corrected KDD and 10

percent KDD of KDD Cup 1999 Dataset are given in Table 19

and 20. On Corrected KDD dataset, the DR for intrusion records

is 97.55%, TPR for normal records is 90.01% and FPR for

normal records is 2.45%. Similarly, on 10 percent KDD dataset,

the DR for intrusion records is 95.75%, TPR for normal records

is 94.76% and FPR for normal records is 4.25%.

Table 19. Confusion matrix for Corrected KDD dataset using

k-point-1 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 54540 6053 60593

Attack 6135 244301 250436

Sum 60675 250354 311029

Table 20. Confusion matrix for 10 percent KDD dataset

using k-point-1 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 92180 5098 97278

Attack 16846 379897 396743

Sum 109026 384995 494021

4.3.4 Results on KDD Cup 1999 Dataset using k-

point-2 Algorithm
In data preprocessing and feature selection, fourteen numbers of

features [8, 9, 11, 16, 17, 18, 19, 20, 25, 26, 29, 30, 31, 34] are

reduced from the two dataset Corrected KDD and 10 percent

KDD. The confusion matrices for the two dataset Corrected

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

28

KDD and 10 percent KDD of KDD Cup 1999 dataset are given

in Table 21 and 22.

Table 21. Confusion matrix for Corrected KDD dataset using

k-point-2 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 54540 6053 60593

Attack 5635 244801 250436

Sum 60175 250854 311029

Table 22. Confusion matrix for 10 percent KDD dataset

using k-point-2 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 92280 4998 97278

Attack 16846 16846 396743

Sum 109126 384895 494021

4.3.5 Results on NSL-KDD Dataset using k-point-1

Algorithm
The confusion matrices for two datasets KDDTrain+ and

KDDTest+ of NSL-KDD Dataset are given in Table 23 and 24.

On KDDTrain+ dataset, the DR for intrusion records is 97.65%,

TPR for normal records is 93.89% and FPR for normal records

is 2.35%. Similarly, on KDDTest+ dataset, the DR for intrusion

records is 98.88%, TPR for normal records is 96.55% and FPR

for normal records is 1.12%.

Table 23. Confusion matrix for KDDTrain+ dataset using

k-point-1 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 63228 4115 67343

Attack 1377 57413 58630

Sum 64445 61528 125973

Table 24. Confusion matrix for KDDTest+ dataset using

k-point-1 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 9375 335 9710

Attack 144 12690 12834

Sum 9519 13025 22544

4.3.6 Results on NSL-KDD Dataset using k-point-2

Algorithm
Ten numbers of features [8, 9, 11, 18, 19, 20, 25, 26, 30, 34] are

scaled down in data preprocessing and feature selection for two

datasets KDDTrain+ and KDDTest+ of NSL-KDD. The

confusion matrices for the two datasets KDDTrain+ and

KDDTest+ of NSL-KDD Dataset are given in Table 25 and 26.

Table 25. Confusion matrix for KDDTrain+ dataset using

k-point-2 algorithm

Predicted Class

Normal Attack Sum

Actual Class Normal 63028 4315 67343

Attack 1217 57413 58630

Sum 64245 61728 125973

Table 26. Confusion matrix for KDDTest+ dataset using

k-point-2 algorithm

Predicted Class

Normal Attack Sum

Actual Class

Normal 9275 435 9710

Attack 104 12730 12834

Sum 9379 13165 22544

On KDDTrain+ dataset, the DR for intrusion records is 97.92%,

and TPR and FPR for normal records are 93.59% and 2.08%

respectively. Similarly, on KDDTest+ dataset, the DR for

intrusion records is 99.19%, and TPR and FPR for normal

records are 95.52% and 0.81% respectively.

4.3.7 Comparison of Results
The summarized results over the three distinguished datasets are

made for detection rate (DR) on intrusive records, TPR and FPR

over normal records for the datasets. The comparison results for

the datasets for k-point-1 algorithm are presented in Table 27.

Table 27. Experimental Results of k-point-1 Algorithm

Data sets Total Attacks Normal
Detection
Rate (%)

TPR
(%)

FPR
(%)

Corrected
KDD

311029 250436 60593 97.55 90.01 2.45

10% KDD 494021 396743 97278 95.75 94.76 4.25

KDDTrain+ 125973 58630 67343 97.65 93.89 2.35

KDDTest+ 22544 12834 9710 98.88 96.55 1.12

Packet
Level

230183 198698 31485 99.29 98.89 0.71

Flow Level 148712 116096 32616 99.53 99.11 0.47

Similarly, the summarized results using k-point-2 algorithm are

made for detection rate (DR) on intrusive records, TPR and FPR

over normal records for the preprocessed datasets. The

comparison results are presented in Table 28.

Table 28. Experimental Results of k-point-2 Algorithm

Data sets Total Attacks Normal
Detection
Rate (%)

TPR
(%)

FPR
(%)

Corrected

KDD
311029 250436 60593 97.75 90.01 2.25

10% KDD 494021 396743 97278 95.75 94.86 4.25

KDDTrain+ 125973 58630 67343 97.92 93.59 2.08

KDDTest+ 22544 12834 9710 99.19 95.52 0.81

Packet Level 230183 198698 31485 99.54 98.25 0.49

Flow Level 148712 116096 32616 99.79 98.19 0.21

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

29

4.3.8 Performance Comparisons
The performance of k-point-1 algorithm is compared with other

four unsupervised anomaly-based intrusion detection

algorithms: fpMAFIA [8], K-NN [6], fixed width clustering [6]

and Modified Clustering-TV [16]. The comparison results of

performance over Corrected KDD dataset for all these

algorithms are shown in Table 29. In the performance

comparison, detection rate for intrusion instances by k-point

algorithms are maximum.

Table 29. Comparison with Unsupervised Techniques on

Corrected KDD

Algorithm Detection Rate (%)

fpMAFIA [8] 86.70

K-NN [6] 89.95

Fixed width clustering [6] 94.00

Modified Clustering-TV [16] 97.30

k-point-1 algorithm 97.55

k-point-2 algorithm 97.75

5. CONCLUSION AND FUTURE WORKS
In this paper we have provided a clustering based method and

applied it in unsupervised anomaly based network intrusion

detection. We have developed the clustering method by building

normal behavior model from unlabeled dataset. We evaluated

the anomaly detection approach by applying it to network

intrusion detection on evaluated benchmark intrusion dataset as

well as on real life network intrusion dataset captured in local

network and compared it to existing method of unsupervised

network anomaly detection. However, the framework presented

for network intrusion detection can be applied for broader

classification problems. For example, the method can be applied

for error detection in large datasets considering maximum

instances as normal compared to erroneous instances.

6. ACKNOWLEDGEMENT
We acknowledge the reviewers and the Department of

Information Technology, Ministry of Information Technology,

Government of India for funding this research work.

7. REFERENCES
[1] Bace, R. and Mell, P. (2001). Intrusion detection systems.

NIST Special Publications SP 800, U S Department of

Defence, 31 November 2001.

[2] Lee, W. and Stolfo, S. J. (1998) Data mining approaches

for intrusion detection. Proceedings of the 7th conference

on USENIX Security Symposium-Volume 7, San Antonio,

Texas, USA, Jan., pp. 6–6. USENIX.

[3] Roesch, M. (1999) Snort-lightweight intrusion detection for

networks. Proceedings of the 13th USENIX conference on

System administration, Seattle, Washington, Nov., pp. 229–

238. USENIX.

[4] Portnoy, L., Eskin, E., and Stolfo, S. J. (2001) Intrusion

detection with unlabeled data using clustering. In Proc. of

the ACM CSS workshop DMSA-2001, Philadelphia PA,

November 8, pp. 5–8. ACM.

[5] Daniel, B., Julia, C., Sushil, J., and Ningning, W. (2001)

Adam: a testbed for exploring the use of data mining in

intrusion detection. SIGMOD Rec., 30, 15–24.

[6] Eskin, E., Arnold, A., Prerau, M., Portnoy, L., and Stolfo,

S. (2002) A geometric framework for unsupervised

anomaly detection. Applications of Data Mining in

Computer Security, Norwell, MA, USA, Dec., pp. 78–100.

Kluwer Academic Publishers.

[7] Smith, R., Bivens, A., Embrechts, M., Palagiri, C., and

Szymanski, B. (2002) Clustering approaches for anomaly

based intrusion detection. Proc. of Walter Lincoln Hawkins

Graduate Research Conference 2002, New York, USA,

October.

[8] Leung, K. and Leckie, C. (2005) Unsupervised anomaly

detection in network intrusion detection using clusters.

Proc. of 28 Australasian conference on Computer Science -

Volume 38, Newcastle, NSW, Australia, January/February,

pp. 333–342. Australian Computer Society, Inc.

Darlinghurst.

[9] Leon, E., Nasraoui, O., and Gomez, J. (2004) Anomaly

detection based on unsupervised niche clustering with

application to network intrusion detection. IEEE Congres

on Evolutionary Computation, 1, 502–508.

[10] Chimphlee, W., Abdullah, A. H., Sap, M. N.

M.,Chimphlee, S., and Srinoy, S. (2005) Unsupervised

clustering methods for identifying rare events in anomaly

detection. Proc. of World Academy of Science,

Engineering and Technology, October.

[11] Zhong, S., Khoshgoftaar, T., and Seliya, N. Clustering-

based network intrusion detection. Int’nl J of Reliability,

Quality and Safety Engineering,14.

[12] Zhang, C., Zhang, G., and Sun, S. (2009) A mixed

unsupervised clustering-based intrusion detection. Proc. of

3rd International Conference on Genetic and Evolutionary

Computing, WGEC 2009, Gulin, China, 14-17 October.

IEEE Computer Society.

[13] Hettich, S. and Bay, S. D. (1999). The uci kdd archive.

Irvine, CA:University of California, Department of

Information and Computer Science, http://kdd.ics.uci.edu.

[14] Tavallaee, M., Bagheri, E., Lu, W., and Ghorbani, A. A.

(2009). A detailed analysis of the kdd cup 99 data set.

Availble on: http://nsl.cs.unb.ca/NSL-KDD/.

[15] Eskin, E. (2000) Anomaly detection over noisy data using

learned probability distributions. Proceedings of the 7th

International Conference on Machine Learning, Stanford

University, Stanford, CA, USA, June 29-July 2, pp. 255–

262. Morgan Kaufmann Publishers Inc.

[16] 16. Oldmeadow, J., Ravinutala, S., and Leckie, C. (2004)

Adaptive clustering for network intrusion detection. In

Proc. of the PAKDD 2004, Sydney, Australia, May 26-28,

pp. 255–259. LNCS 3056 Springer 2004, ISBN 3-540-

22064-X.

[17] Guan, Y., Ghorbani, A., and Belacel, N. (2003) Ymeans: A

clustering method for intrusion detection. Proc. of the

Canadian Conference on Electrical and Computer

Engineering, Montreal, Quebec, Canada, May 4-7.

[18] Lu,W. and Traore, I. Unsupervised anomaly detection

using an evolutionary extension of k-means algorithm. Int.

J. Information and Computer Security, 2.

[19] Nagesh, H. S., Goil, S., and Choudhary, A. N. (2000) A

scalable parallel subspace clustering algorithm for massive

data sets. Proc. of the ICPP 2000, Toronto, Canada, 21-24

August 477. IEEE Computer Society.

[20] Burbeck, K. and Nadjm-Tehrani, S. (2005) Adwice -

anomaly detection with real-time incremental clustering.

http://kdd.ics.uci.edu/
http://nsl.cs.unb.ca/NSL-KDD/

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

30

Proceedings of Information Security and Cryptology -

ICISC 2004, Berlin , Germany, May, pp. 407–424.

Springer Berlin / Heidelberg.

[21] Zhang, T., Ramakrishnan, R., and Livny, M. (1996) Birch:

an efficient data clustering method for very large databases.

Proc. of the 1996 ACM SIGMOD, Montreal, Quebec,

Canada, June 4-6, pp. 103–114. ACM Press.

[22] Proto, A., Alexandre, L. A., Batista, M. L., Oliveira, I. L.,

and Cansian, A. M. Statistical model applied to netflow for

network intrusion detection. LNCS, 6480.

[23] Diaz-Verdejo, P. G.-T. J., Macia-Fernandez, G., and

Vazquez, E. Anomaly-based network intrusion detection:

Techniques, systems and challenges. Computers &

Security, 28.

[24] Gogoi, P., Borah, B., and Bhattacharyya, D. K. Anomaly

detection analysis of intrusion data using supervised &

unsupervised approach. Journal of Convergence

Information Technology, 5.

[25] Gogoi, P., Bhattacharyya, D. K., Borah, B., and Kalita, J.

K. A survey of outlier detection methods in network

anomaly identification. The Computer Journal, 54.

[26] Cha, S.-H. (2007) Comprehensive survey on distance/

similarity measures between probability density functions.

nternational Journal of Mathematical Models and Methods

in Applied Science, 1 (4), 300–307.

[27] Boriah, S., Chandola, V., and Kumar, V. (2008) Similarity

measures for categorical data: A comparative evaluation.

Proceedings of the 8th SIAM International Conference on

Data Mining, Atlanta, Georgia, USA, Apr., pp. 243–254.

Society for Industrial and Applied Mathematics(SIAM).

[28] T. S. Chou and L. J. K. K. Yen, “Network intrusion

detection design using feature selection of soft computing

paradigms,” International Journal of computational

Intelligence, vol. 4, pp. 196–208, 2008.

[29] S. Mukkamala and A. H. Sung, “Significant feature

selection using computational intelligent techniques for

intrusion detection,” Advanced Method for Knowledge

Discovery from Complex Data, vol. Part II, pp. 285–306,

2005.

[30] F. Amiri, M. M. R. Yousefi, C. Lucas, A. Shakery, and N.

Yazdani, “Mutual information-based feature selection for

intrusion detection systems,” Journal of Network and

Computer Applications, vol. 34, pp. 1184-1199, 2011.

[31] H.G. Kayacik, A.N. Zincir-Heywood, and M.I. Heywood,

“Selecting Features for Intrusion Detection: A Feature

Relevance Analysis on KDD 99 Intrusion Detection

Datasets”, In Proceedings of the 3rd Annual Conference on

Privacy, Security and Trust (PST-2005), Oct., 2005.

[32] Mixter (2003). Attacks tools and information.

http://packetstormsecurity.nl/index.html.

[33] Satten, C. (2008). Lossless gigabit remote packet capture

with linux. http://staff.washington.edu/corey/gulp/,

University of Washington Network Systems.

[34] (2009). Wireshark. http://www.wireshark.org/.

[35] Osterman, S. (2009). Tcptrace. http://www.tcptrace.org.

[36] Quittek, J., Zseby, T., Claise, B., and Zender, S. (2004).

Rfc 3917: Requirements for ipflow information export:

Ipfix, hawthorn victoria.

http://www.ietf.org/rfc/rfc3917.txt.

[37] Claise, B. (2004). Rfc 3954: Cisco systems netflow

services export version 9.

http://www.ietf.org/rfc/rfc3954.txt.

[38] Haag, P. (2010). Nfdump & nfsen.

http://nfdump.sourceforge.net/.

[39] Cisco.com (2010). Cisco ios netflow configuration guide,

release 12.4. http://www.cisco.com.

[40] Tan, P.-N., Steinbach, M., and Kumar, V. (2009)

Introduction to Data Mining. Pearson Education, Inc.,

Newyork, USA.

http://packetstormsecurity.nl/index.html
http://staff.washington.edu/corey/gulp/
http://www.wireshark.org/
http://www.tcptrace.org/
http://www.ietf.org/rfc/rfc3917.txt
http://www.ietf.org/rfc/rfc3954.txt
http://nfdump.sourceforge.net/
http://www.cisco.com/

