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ABSTRACT 

Most existing network intrusion detection systems use signature-

based methods which depend on labeled training data. This 

training data is usually expensive to produce due to cost of 

laboratory set up, experienced or knowledge person and non 

availability of ready software tool. Above all, these methods 

have difficulty in detecting new or unknown types of attacks. 

Using unsupervised anomaly detection techniques, however, the 

system is capable of detecting previously unknown attacks 

without labeled training data. In this paper, we have discussed 

anomaly based network intrusion detection and proposed two 

unsupervised clustering algorithms for anomaly detection. The 

algorithms are evaluated with our generated real life intrusion 

dataset. The dataset is created with extracted features of 

captured network packet as well as flow traffic. The algorithm is 

also tested and validated with standard KDD Cup 1999 dataset 

and NSL-KDD dataset. The results are compared with results of 

similar algorithms and have been found excellent. 
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Keywords 
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1. INTRODUCTION 
With the evolutionary expansion of network-based computer 

services, the security measure against computer and network 

intrusions is a crucial issue in a computing environment. The 

intrusions or attacks to the computer or network system are the 

activity or attempt to destabilize it by compromising the security 

in confidentiality, availability or integrity of the system. As 

defined in [1], intrusion detection system (IDS) is the process of 

monitoring the events occurring in a computer system or 

network and analyzing them for signs of intrusions. A network-

based IDS (NIDS) often consists of a set of single-purpose 

sensors or host computers placed at various points in a network. 

These units monitor network traffic, performing local analysis of 

that traffic and reporting attacks to a central management 

console. The network-based intrusion detection are broadly 

studied in two approaches [2] : rule based and anomaly-based. 

Rule based (also called misuse-based) detection searches for 

specific pattern (or intrusion signature of rules) in the data 

effectively detecting previously known intrusions. Snort [3] is a 

widely used rule-based NIDS and it can detect intrusions of 

previously known intrusion signature patterns. Rule-based 

approach usually, do not generate large number of false alarms 

of detection since it is based on rules of known intrusions but it 

fails to detect new types of intrusions as their signatures are not 

known. Anomaly detection consists of analyzing and reporting 

unusual behavioral patterns in computing systems. Anomaly 

based detection approach, typically, builds a model of normal  

behavior from the observed data and distinguishes any 

significant deviations or exceptions from this model. Anomaly 

based detection implicitly assumes that any deviation from 

normal behavior is anomalous. Anomaly detection approach has 

the ability to examine new or unknown intrusions. Based on 

learning method, anomaly detection can be of two different 

categories [4]: supervised and unsupervised. In supervised 

anomaly detection, normal behavior model of systems or 

networks are established by training with labeled or purely 

normal dataset. These normal behavior models are used to 

classify new network connections and gives alert if a connection 

is classified to be maligned or abnormal behavior. ADAM [5] is 

a supervised anomaly-based as well as misuse-based NIDS. 

However, in practice, to train a supervised anomaly-based 

method, labeled or purely normal data are not easily available. 

Since it is time consuming to acquire and error prone in manual 

classifying the label as benign or malign. Whereas, unsupervised 

anomaly detection approaches work without any training data or 

these models may be trained on unlabeled or unclassified data 

and it attempts to find intrusions lurked inside the data. A 

number of IDSs employ unsupervised anomaly-based 

approaches [6,7,8]. The most prevalent advantage of anomaly 

detection approach is the detection of unknown intrusions 

without any previous knowledge of intrusions. However, it fails 

to detect or false detection rate tends to be higher if behavior of 

some of intrusions are not significantly different from 

considered normal behavior model. In network-based intrusion 

detection, usually, threat arises from new or previously not 

known intrusions. The possible detection approach of novel 

intrusions is anomaly-based detection approach instead of rule 

based approach. In anomaly-based supervised detection 

approach, obtaining labeled or purely normal data is a critical 

issue. Unsupervised anomaly-based detection can address this 

issue of novel intrusion detection without prior knowledge of 

intrusions or purely normal data. 

In literature [9,8,10,11] clustering is established as a useful 

method for anomaly-based unsupervised detection of intrusions. 

From classical definition of data mining, clustering is a method 

of grouping of objects based on similarity of the objects. The 

similarity within a cluster is more and dissimilarity among 

clusters are distinct. Clustering itself is a kind of unsupervised 

study method [12]. This method can be carried on unlabeled 

data, it divides the similar data to the same class and divides the 

dissimilar data to different classes. Unsupervised anomaly-based 

detection often tries to cluster test dataset into groups of similar 

instances which may be either intrusion or normal data. 

Although, using of clustering method in unsupervised anomaly 

based detection for intrusion, generate many clusters, labeling 

clusters is still a difficult issue faced by this approach. In order 
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to label clusters, unsupervised anomaly-based detection 

approach model normal behavior by using two assumptions [4] 

(i) the number of normal instances vastly outnumber the number 

of anomalies and (ii) anomalies themselves are qualitatively 

different from the normal instances. If these assumptions hold, 

intrusions can be detected based on cluster sizes. Larger clusters 

correspond to normal data, and smaller clusters correspond to 

intrusions. But this method is likely to produce higher false 

detection rate as the assumptions are not always true in practice. 

For example, in denial of service category of intrusions a large 

number of very similar instances are generated that may form 

larger clusters than normal behavior cluster. On the other hand 

in remote to local (r2l) and user to root (u2r) categories of 

intrusion, legitimate and illegitimate users are difficult to 

distinguish. These intrusions may include normal behavior 

model. Consequently, these can rise the false detection rate. 

1.1 Motivation 
Our motivation of this work is to build an efficient and effective 

clustering based algorithm for detection of novel intrusions by 

allowing training with unlabeled data. Its efficiency and 

effectiveness will be the higher detection rate and the lower false 

detection comparing to the existing approaches of unsupervised 

intrusion detection. 

1.2 Contribution 
In this work we developed two clustering based algorithms 

called k-point-1 and k-point-2 for unsupervised anomaly based 

intrusion detection. We evaluate the approaches with our 

generated intrusion dataset and well-known benchmark intrusion 

dataset KDD Cup 1999 [13]. Also, we evaluate the approach 

with NSL-KDD dataset [14] which is a filtered dataset from 

KDD Cup 1999 dataset. We compare results of our approach 

with similar existing approaches. 

1.3 Organization 
The remainder of this paper is organized as follows. Section 2, 

summarizes the related work on k-point-1 and k-point-2 

algorithms. In section 3, we describe the proposed clustering 

algorithms for unsupervised and supervised anomaly detection. 

Section 4 reports the evaluation results of the proposed 

algorithms. Finally, section 5 concludes with future direction of 

research. 

2. Related work 
Applying clustering in unsupervised anomaly-based detection of 

network intrusion is a wide research area that has drawn interest 

in the academic community. Portnoy, et. al. [4] presents a 

clustering based unsupervised anomaly detection algorithm in 

order to detect new intrusions. The training dataset containing 

unlabeled data is clustered using a modified incremental k-

means algorithm. Each cluster is labeled as normal or intrusive 

based on the number of instances in the cluster. Some 

percentage of the clusters containing the largest number of 

instances are labeled as normal and the rest of the clusters are 

labeled as anomalous. Intrusion in test datasets are detected by 

using the labeled clusters. The labeling of a test instance is done 

with the label of its closest cluster. In [15], a mixture model is 

presented for detecting the presence of anomalies without 

training on normal data. This anomaly detection model uses 

machine learning techniques to estimate the probability 

distributions over data and uses a statistical test to detect 

anomalies. Eskin, et al. [6]  presents three algorithms in anomaly 

detection: the fixed width clustering algorithm, an optimized 

version of the k-nearest neighbor algorithm (k-NN), and the one 

class support vector machine (SVM) algorithm. In fixed-width 

clustering, clusters are created based on defined distance in 

between data objects to isolate smaller clusters for identifying as 

anomalous. In k-NN algorithm, nearest points in sparse regions 

are found and a score is computed. If the score falls below a 

threshold, the points are considered as anomalous. Though 

standard SVM is a supervised learning algorithm, the author 

presents one-class SVM as unsupervised method for anomaly 

detection. Oldmeadow, et. al. [16] presents a modified cluster-

TV (time-varying) algorithm based on the fixed-width clustering 

[6] and shows improvements in detection accuracy when the 

clusters are adaptive to changing traffic patterns. The Y-means 

algorithm proposed by Yu Guan, et. al. [17] is an improvement 

of the k-means algorithm. The algorithm handles outliers by 

splitting and merging clusters that automatically adjust the 

number of clusters. No training data is used. Clusters are labeled 

according to their population, that is, if the population ratio of 

one cluster is above a given threshold, all the instances in the 

cluster will be classified as normal; otherwise they are labeled 

intrusive. Wei Lu, et. al. [18] introduces I-means algorithm. It is 

an extension of k-means algorithm and can estimate 

automatically the number of clusters for a set of data by 

allowing automatic conversion of regular packet features into a 

3-dimensional numerical feature space, in which the clustering 

takes place. Intrusion decisions are taken based on the clustering 

result. In [8], Kingsly, et. al. presents a new density and grid 

based clustering algorithm, fpMAFIA based on the subspace 

clustering algorithm pMAFIA [19]. Grid-based methods divide 

the object space into a finite number of cells that form a grid 

structure. All of the clustering operations are performed on the 

grid structure.  The authors in [20] presents ADWICE (anomaly 

detection with fast incremental clustering), an adaptive anomaly 

detection scheme based on BIRCH [21] clustering algorithm and 

extends with new capabilities. The work of [22] discusses a 

statistical methodology for anomaly detection using the NetFlow 

protocol. The methodology detects intrusions in the shortest 

possible time by monitoring computer network parameters 

through anomalies identification in traffic. Basically, it uses an 

algorithm to separate maximum values as normal and anomalous 

traffic as outlier. A review of the most well known anomaly 

based intrusion detection techniques are provided in [23,24]. 

Available platforms, systems under development and research 

projects in the area are also presented. In [25], a survey work on 

network anomaly detection by identifying outliers is presented. 

The work outlines the challenges to be dealt with outlier in 

anomaly-based intrusion detection. 

Primarily, network anomaly detections [23] deal with detecting 

intrusions in huge volume of high dimensional network intrusion 

data. Also, the network intrusion data (viz. KDD Cup 1999 [13]) 

are mixed type attributes of numerical and categorical. Distance 

or similarity measures are necessary to solve classification or 

clustering problem of large high dimensional data. A distance or 

dissimilarity is the quantitative degree of how different of two 

objects are. A synonym for similarity is proximity. The selection 

of an appropriate proximity measure depends upon (i) the types 

of attributes in the data (ii) the dimensionality of data and (iii) 

the problem of weighing data attributes. In the case of numeric 

attribute data, distance functions between two data points can be 

defined by exploiting their inherent geometric properties. 

Numeric attributes can be discrete or continuous. A discussion 

on the various proximity measures for numeric attribute data is 
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available in [26]. Like, numerical values, categorical attribute 

values cannot be arranged naturally. Similarity measure 

computation between categorical data instances is not 

straightforward. Many data-driven similarity measures for 

categorical data have been proposed in [27]. In mixed type data, 

usually, categorical values are transformed into numeric values 

and then use a proximity measure for numeric data before using 

for clustering.  

The number of features or attributes extracted from raw network 

data, is usually large for small as well as large network [28,29]. 

Many researchers have tried to improve the detection rate of 

network anomaly detection through proposing new clustering 

methods. Though feature selection [30,31] can be used to 

optimize the existing clustering methods. Feature selection 

methods have been employed to network anomaly detection for 

eliminating the unimportant ones. Feature selection is useful to 

improve the computational time, remove redundant information 

and facilitate data understanding. 

After several literature studies, we propose a clustering method 

based on k-means algorithm. The aim of our algorithm is high 

rate of anomaly detection by identifying normal instances and 

reduction of false detection rate. 

3. Proposed Clustering Method 
The proposed clustering method uses the k-point algorithm to 

create a set of representative clusters from the available 

unlabeled objects of data. Initially, the method considers k 

objects randomly from the dataset. The dataset objects are then 

gathered to these selected points (or objects) based on various 

attribute similarities. The clusters are formed using three 

similarity measures: (i) similarity between two objects, (ii) 

similarity between a cluster and an object and (iii) similarity 

between two clusters. The method will identify various clusters. 

The detail explanation of the k-point algorithm is presented next. 

3.1 k-point Algorithm Fundamental 
The dataset to be clustered contains n objects, each described by 

d attributes A1,A2,..,Ad having finite valued domains D1,D2,...,Dd 

respectively. A data object can be represented as X = {x1, x2,.., 

xd}. The j-th component of object X is xj and it takes one of the 

possible values defined in domain Dj of attribute Aj . Referring 

to each object by its serial number, the dataset can be 

represented by the set N = {1, 2, …, n}. Similarly, the attributes 

are represented by the set M = {1, 2, …, d}. 

Based on this clustering method two algorithms are proposed: k-

point-1 and k-point-2. k-point-1 is a clustering approach and k-

point-2 is a clustering approach using class specific subset of 

attributes of dataset. 

3.1.1 Similarity Function Between two Data objects 
Similarity between two data objects X and Y is the sum of per 

attribute similarity for all the attributes. It is computed as, 

1

( , ) ( , )
d

j j

j

simO X Y s x y


                (1) 

where s (xj , yj) is the similarity for j-th attribute defined as, 

 

                                                                                (2) 

3.1.2 Similarity Between a Cluster and an Object 
A cluster is a set of objects which are similar over a sub-set of 

attributes only. The minimum size of the subset of attributes 

required to form a cluster is defined by the threshold MinAtt. 

Let, the subset of defining attributes be represented by         

Dattrib = {a1, a2,…, aNattrib} such that Dattrib  M and Nattrib is the 

size of Dattrib. A cluster will be represented by its profile that 

looks like an object. All the objects of the cluster is similar with 

respect to the profile. The cluster profile is defined by a set of 

values, Vattrib ={vI, v2,…, vNattrib} taken over the corresponding 

attributes in Dattrib, that is v1Da1 is the value for attribute 

a1M, v2Da2 is the value for attribute a2M and so on. 

Thus, the cluster profile is defined by: 

Profile={Nattrib, Dattrib,Vattrib}                      (3) 

Let, Olist   N is the list of data objects in the cluster. A cluster 

C is completely defined by its Profile and Olist: 

C={Olist, Profile}                                               (4) 

The k-point clustering algorithm inserts an object in any one of 

the set of clusters existing at the particular moment. So the 

similarity between a cluster and a data object needs to be 

computed. Obviously, the cluster profile is used for computing 

this similarity. A cluster profile is defined by equation 3. As the 

similarity needs to be computed over the set of Nattrib attributes 

in Dattrib positions of Vattrib values only of a cluster and an object, the 

cluster profile is needed to find in the object. The similarity 

function between a cluster C and an object Y becomes 

1

( , ) ( , )
d

j j

j

simC C Y s x y


                       (5) 

where Nattrib is the attribute numbers in cluster profile and s(xj,yj) 

is the similarity between j-th value xj of profile of cluster C and 

j-th attribute value yj of object Y is defined by equation 2. 

3.1.3 Similarity Function Between two Clusters 
The k-point clustering algorithm can create large number of 

clusters based on equation 1 and inserts an object in any of the 

existing clusters on the basis of equation 5. Obviously, there are 

possibilities of existence of clusters with similar profiles. So, 

similar clusters need to be merged into a single cluster. 

Similarity function between two clusters P and Q is defined as 

the sum of per attribute similarity for all the constituting 

attributes members. It is computed as, 

1

( , ) ( , )
Nattrib

j j

j

simCl P Q s x y


              (6) 

where s (xj , yj) is the similarity function between j-th value xj of 

profile of cluster P and j-th attribute value yj of cluster Q as 

defined by equation 2. 

Example: Consider a sample dataset shown in Table 1 with ten 

objects defined over six attributes A1, A2, A3, A4, A5 and A6. The 

domains for the attributes are respectively, D1 = {a1, a2, a3},    

D2 = {b1, b2},  D3 = {c1, c2, c3, c4},  D4 = {d1, d2, d3},                

D5 = {e1, e2} and D6 = {f1, f2, f3, f4, f5}. 

Clusters C1, C2, C3 and C4 can be identified in the dataset with 

MinAtt = 6/2 = 3. 

C1 = {Olist = {2, 8} ,   Nattrib = 6,   Dattrib = {1, 2, 3, 4, 5, 6}, 

1  
( , )

0

j j

j j

if x y
s x y

otherwise


 

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Vattrib = {a2, b2, c4, d3, e2, f2}}. 

C2 = {Olist = {1, 4} ,  Nattrib = 5,  Dattrib = { 2, 3, 4, 5, 6},      

Vattrib = {b2, c4, d1, e2, f1}}. 

C3 = {Olist = {5, 7},    Nattrib = 5,   Dattrib = {1, 2, 3, 5, 6},    

Vattrib = {a3, b1, c2, e1, f3}}. 

C4 = {Olist = {3, 9, 10}, Nattrib = 5, Dattrib = {1, 2, 3, 4, 5},   

Vattrib = {a3, b1, c2, d1, e1}}. 

Table 1. A sample dataset 

Sl. no. A1 A2 A3 A4 A5 A6 

1 a3 b2 c4 d1 e2 f1 

2 a2 b2 c4 d3 e2 f2 

3 a3 b1 c2 d1 e1 f2 

4 a2 b2 c4 d1 e2 f1 

5 a3 b1 c2 d3 e1 f3 

6 a1 b2 c1 d2 e2 f1 

7 a3 b1 c2 d2 e1 f3 

8 a2 b2 c4 d3 e2 f2 

9 a3 b1 c2 d1 e1 f4 

10 a3 b1 c2 d1 e1 f5 

3.1.4 k-point-1 Algorithm 
The unsupervised clustering algorithm starts with an empty set 

of clusters. Initially, k objects are selected randomly from the 

dataset. It reads each object Xi sequentially from dataset, and 

inserts Xi in an existing cluster based upon the similarity 

between Xi and a cluster. If the similarity between a cluster and 

the object does not hold, a new cluster is created with Xi, if Xi is 

similar with any of the randomly selected k objects for a defined 

threshold MinAtt of attributes. Search for a cluster for inserting 

an object is started from the beginning of the created cluster set 

until the search is successful. The objects which are neither able 

to include in any one of the clusters nor create a new cluster 

based upon the defined MinAtt are excluded from the clusters. 

Based upon similarity on profiles, similar clusters are merged 

into single cluster. The largest cluster is selected to identify its 

label of normal on basis of the assumption of normal behavior 

model. The description of notations used in the algorithm is 

given in Table 2. The algorithm has the following steps. 

k-point-1 Algorithm  

Step 1. Read dataset D and find number of attributes i.e. M in D. 

Step 2. Initialize , 

             S ← Null; 

             MinAtt ← M/2; 

             T ← M. 

Step 3. Select k records randomly from D. 

Step 4. IF D ≠ Null THEN  select an unselected record d from D. 

Step 5. IF i , |S| < 2 THEN compute simO(d, ki) 

 ELSE go to Step 8. 

Step 6. IF simO(d, ki) = 0 THEN 

  Create a cluster Ci with  profile=(Nattrib, Dattrib, Vattrib). 

  Include object d  to Cj and update S and go to Step 4. 

 ELSE T = T - 1. 

Step 7. IF T > MinAtt, THEN go to Step 6. 

 ELSE go to Step 4. 

Step 8. IF simC (Ci, d) = 0 THEN   

add record d to Ci and go to Step 4. 

Step 9. IF |S| ≥ 2 THEN 

 ,i j , IF Nattrib.Ci  = Nattrib.Cj  THEN  

IF simCl(Ci,Cj) = 0 THEN  

      Olist.Ci=Olist.Ci+Olist.Cj and update S.  

Step 10. Find the largest cluster by comparing Olist of clusters 

from S. 

Step 11.  Stop. 

Table 2. k-point-1 & k-point-2 Algorithms Notations 

Symbol Description 

D Dataset 

M, T number of attributes of dataset 

FS number of attributes of selected features 

FSi i-th selected features 

xi value of i-th selected feature value of a record 

k number of randomly selected records 

kfi,j i-th feature value j-th randomly selected record 

S set of clusters 

Ci  , Cj i-th and j-th cluster 

MinAtt threshold value for minimum attribute 

simO similarity value between two objects 

simC similarity value between a cluster and an object 

simCl similarity value between two clusters 

Olist object list in a cluster 

Olist.Ci object list in i-th cluster, Ci 

Nattrib total number of attributes in a cluster profile 

Nattrib.Ci total number of attributes in profile of  i-th cluster, Ci 

Dattrib distribution of attributes in a cluster profile 

Vattrib values of attributes in a cluster profile 

3.1.5 Complexity analysis: k-point-1 Algorithm 
The k-point-1 algorithm requires one pass through the dataset. 

Each object need to be compared with existing clusters one after 

another until it gets inserted in one of the clusters. The similarity 

computation involves a subset of attributes. Therefore, the 

clustering process has a complexity O(ncd), where n is the 

number of objects in dataset, c is the number of clusters, and d is 

the number of attributes. Each of the created clusters need to be 

visited for k number of objects for d attributes. Hence, maximum 

time complexity of k-point algorithm becomes O(ncd) + O(kd). 

3.1.6 Feature Selection 
The feature selection methods have been introduced in intrusion 

detection to eliminate the unimportant features from dataset. A 

number of feature selection methods have been utilizing over the 

decade. Three feature-ranking methods are proposed in [29] for 

feature selection. Feature selection based on information gain 

[31] is a commonly used method. Mutual information-based 

feature selection method results in detecting intrusions with 

higher accuracy. The mutual information (MI) between two 

random variables X and Y is a measure of the amount of 

knowledge on Y supplied by X (or conversely on the amount of 

knowledge on X supplied by Y). If X and Y are independent, i.e. 

X contains no information about Y and vice versa; then their 
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mutual information is zero. MMIFS [30] (modified MI-based 

feature selection) is a promising MI-based feature selection 

method in terms of least computational complexity and 

maximum accuracy for different categories of attacks and 

normal data. 

3.1.7 K-point-2 Algorithm 
The algorithm starts with the input of dataset for selected 

attributes based on feature selection algorithm [30]. The feature 

selection algorithm selects the features relevant to attacks and 

normal category from the intrusion data set. The classification 

algorithm is initialized with an empty set of clusters and k 

objects are selected randomly from the dataset. It reads each 

object Xi sequentially from dataset for the selected attributes 

only, and inserts Xi in an existing cluster based upon the 

similarity between Xi and a cluster. If the similarity between a 

cluster and the object does not hold, a new cluster is created 

with Xi, if Xi is similar with any of the randomly selected k 

objects for selected attributes. Search for a cluster for inserting 

an object is started from the beginning of the created cluster set 

until the search is successful. The objects which are neither able 

to include in any one of the clusters nor create a new cluster 

based upon the selected attributes are excluded from the clusters. 

Based upon similarity on profiles, similar clusters are merged 

into single cluster. The largest cluster is selected to identify its 

label of normal on basis of the assumption of normal behavior 

model. The algorithm has the following steps. 

k-point-2 Algorithm  

Step 1. Read dataset D and find number of attributes i.e. M in D. 

Step 2. i ,  FSi = List of attributes from MI-based Feature 

Selection Function (D). 

Step 3. Initialize S ← Null; 

Step 4. Select k records randomly from D. 

Step 5. IF D ≠ Null THEN  select an unselected record d from D. 

 Nattrib= FS; 

 Dattrib = FSi; 

 Vattrib = xi. 

Step 6. . IF i , |S| < 2 THEN compute simO(xi,kfi,j) 

 ELSE go to Step 8. 

Step 7. IF simO(xi,kfi,j)= 0 THEN 

  Create a cluster Ci with  profile=(Nattrib, Dattrib, Vattrib). 

  Include object d  to Cj and update S and go to Step 5. 

Step 8. IF simC (Ci, d) = 0 THEN   

add record d to Ci and go to Step 5. 

Step 9. IF |S| ≥ 2 THEN 

 ,i j , IF Nattrib.Ci  = Nattrib.Cj  THEN  

IF simCl(Ci,Cj) = 0 THEN  

      Olist.Ci=Olist.Ci+Olist.Cj and update S.  

Step 10. Find the largest cluster by comparing Olist of clusters 

from S. 

Step 11.  Stop. 

3.1.8 Complexity analysis: k-point-2 Algorithm 
Like k-point-1 algorithm, the k-point-2 algorithm also requires 

one pass through the dataset. Each object is required to compare 

with existing clusters one after another until it gets inserted in 

one of the clusters. The similarity computation involves a subset 

of attributes. Therefore, the clustering process has a complexity 

O(ncd), where n is the number of objects in dataset, c is the 

number of clusters, and d is the number of selected attributes. 

Each of the created clusters need to be visited for k number of 

objects for d number of selected attributes. Hence, the maximum 

time complexity of k-point-2 algorithm becomes O(ncd)+O(kd). 
 

4. EXPERIMENTAL RESULTS 
All the experiments were carried out on an Intel workstation 

with configuration of core 2 Quad @2.4GHz, 2 GB RAM, 

160GB HDD. The program was developed in C in a Linux 

environment. 

4.1 Dataset Description 

The proposed algorithms were evaluated with three sets of 

intrusion datasets. 

4.1.1 Real Life Network Intrusion Dataset 
The proposed method was evaluated using our own real life 

network intrusion dataset. The dataset is given in Table 3 and it 

includes two datasets- Packet Level and Flow Level. The 

network traffics of attack and normal were captured using our 

local network within a 4 week period. The attacks were 

generated using attack tools [32] against a local network server 

and collected the produced traffic as known as attack traffic. 

There were generated 16 different types of attacks. The attacks 

along with the corresponding tools for their generation are given 

in Table 4. The network traffics were captured in packet level 

and flow level through two separate port mirroring machines. 

The captured data were preprocessed and filtered to extract 

various types of features.  

Table 3. Real Life Network Intrusion Dataset 

Datasets Normal Attacks Total 

Packet Level 31485 198698 230183 

Flow Level 32616 116096 148712 

Table 4. Attack List 

Attack 
Generation 

Tool 
Attack 

Generation 

Tool 

bonk  targa2.c  1234  targa2.c 

jolt  targa2.c  saihyousen  targa2.c 

land  targa2.c  oshare  targa2.c 

nestea  targa2.c  window  targa2.c 

newtear  targa2.c  syn  Nmap 

syndrop  targa2.c  xmas  Nmap 

teardrop  targa2.c  fraggle  Fraggle.c 

winnuke  targa2.c  smurf  smurf4.c 

The experimental setup of the testbed for network traffic 

capturing includes one router, one L3 switch, two L2 switches, 

one server, two workstations and forty nodes. Six VLANs are 

created from the L3 switch and L2 switch and nodes and 

workstations are connected to separate VLANs. The L3 switch 
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is connected to a router through internal an IP router and the 

router is connected to internet through an external IP router. The 

server is connected to the L3 switch through mirror port to 

observe the traffic activity to the switch. Another LAN of 350 

nodes is connected to other VLANs through five L3 and L2 

switches and three routers. The attacks are launched within our 

testbed as well as from another LAN through the internet. In 

launching attacks within testbed, nodes of one VLAN are 

attacked from nodes of another VLAN and also the same 

VLAN. Normal traffic is created within our testbed in restricted 

condition after disconnecting another LAN. The traffic activities 

to our testbed are observed in the computer connected to the 

mirror port. A diagram of the testbed is shown in Figure 1. 

 

Figure 1: Testbed 

The packet level network traffic were captured by using open 

source software gulp[33]. Gulp has the ability to read directly 

from the network and decaptulate the packets. The packets were 

analyzed using the open source packet analyzing software 

wireshark [34]. The raw packet data were preprocessed and 

filtered before extracting and constructing new features. In 

packet level network traffic, 45 types of features were extracted. 

To extract these features we used open source tool tcptrace [35], 

C programs and perl script. These features are classified as 

basic, time-based, window-based and content-based features. 

The lists of features are given in Table 5-8. 

Table 5. Packet level time-based features 

Sl 

No. 
Features  Description 

1  
count-dest 

Number of frames to unique destination IP 

addresses inside the network in the last T 

seconds from the same source. 

2  count-src 
Number of frames from unique source IP 

addresses inside the network in the last T 

seconds to the same destination. 

3  
count- 
serv-src 

Number of frames from the source IP to the 
same destination port in the last T seconds. 

4  count- 

serv-dest 

Number of frames to the destination IP 

using same source port in the last T seconds. 

The network flow is a unidirectional sequence of packets 

passing through an observation point in the network during a 

certain time interval between source and destination hosts. All 

traffic belonging to a particular flow has a set of common 

properties. The NetFlow protocol (IPFIX standard) [36,37] 

provides a summarization of information about the router or 

switch traffic. Network flow is identified by source and 

destination IP addresses as well as by port numbers. [39] is a 

simple protocol that exports flow records of fixed size (48 bytes 

in total). To identify a flow uniquely, NetFlow also uses several 

fields, viz., types of protocols and types of services (ToS) from 

IP header, and the input logical interface of the router or the 

switch. 

Table 6. Packet level window-based features 

Sl 

No. 
Features  Description 

1  count-dest- 

conn 

Number of frames to unique destination IP 

addresses inside the network in the last N 

connection from the same source. 

2  count-src- 

conn 

Number of frames from unique source IP 

addresses inside the network in the last N 

connection to the same destination 

3  count-serv- 

src-conn 

Number of frames from the source IP to 

the same destination port in the last N 

connection. 

4  count-serv- 

dest-conn 

Number of frames to the destination IP 

using same source port in the last N 

connection. 

Table 7. Packet level content based features 

Sl 

No. 
Features  Description 

1  num packet src dst The number of packets owing from 

the source to destination 

2  num packet dst src 
The number of packets owing from 
destination to source 

3  num acks src dst 
The number of acknowledgement 

packets owing from source to 

destination 

4  num acks dst src 
The number of acknowledgement 

packets owing from destination to 

source 

5  num bytes src dst The number of bytes owing from 
source to destination 

6  num bytes dst src The number of bytes owing from 

destination to source 

7  num retransmit src 

dst 

The number of retransmitted 

packets owing from source to 

destination 

8 num retransmit dst 

src 

The number of retransmitted 

packets owing from destination to 

source 

9 num pushed src dst The number of pushed packets 

owing from source to destination 

10 num pushed dst src The number of pushed packets 

owing from destination to source 

11 num SYNs src dst The number of SYN packets owing 
from source to destination 

12 num FINs src dst The number of FIN packets owing 
from source to destination 
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13 num SYNs dst src The number of SYN packets owing 
from destination to source 

14 num FINs dst src The number of FIN packets owing 
from destination to source 

15 connection status 

(discrete) 
Status of the connection                 
(0-Completed, 1-Not completed; 2- Reset) 

Table 8. Packet level basic features 

Sl No. Features  Description 

1  Time delta  Time since occurrence of first frame 

2  Frame no.  Frame number 

3  Frame length  Length of the frame 

4  Capture length  Captured frame length 

5  Header length  Header length of the packet 

6  Fragment offset  Fragment offset value 

7  ttl  Time to live 

8 Protocol Protocol of layer 3- IP, TCP, UDP 

9 Src IP Source IP address 

10 Dest IP Destination IP address 

11 Src port Source port of machine 

12 Dest port Destination port of machine 

13 Seq. no. Sequence number 

14 CWR Congestion Window Record 

15 ECN Explicit Congestion Notification 

16 URG Urgent TCP flag 

17 ACK Acknowledgement flag 

18 PSH Push flag 

19 RST Reset flag 

20 SYN Syn flag 

21 FIN Fin flag 

22 Window size Sliding window size 

The flows are stored in router or the switch cache and exported 

to a collector under the following constraints (i) flows that have 

been idle for a specified time are expired where default setting 

of specified time is 15 seconds, or the user can configure this 

time to be between 10 to 600 sec., (ii) flows lived longer than 30 

minutes are expired, (iii) if the cache reaches its maximum size, 

a number of heuristic expiry functions are applied to export 

flows, and (iv) a TCP connection has finished with flag FIN or 

RST. A flow collector tool, viz., nfdump [32] receives flow 

records from the flow exporter and stores them in a form 

suitable for further monitoring or analysis. A flow record is the 

information stored in the flow exporter cache. A flow exporter 

protocol defines how expired flows are transferred by the 

exporter to the collector. The information exported to the 

collector is referred to as flow record. NetFlow version 5 [33] is 

a simple protocol that exports flow records of fixed size (48 

bytes in total). To identify a flow uniquely, NetFlow also uses 

several fields, viz., types of protocols and types of services 

(ToS) from IP header, and the input logical interface of the 

router or the switch. The flows are stored in router or the switch 

cache and exported to a collector under the following constraints 

(i) flows that have been idle for a specified time are expired 

where default setting of specified time is 15 seconds, or the user 

can configure this time to be between 10 to 600 sec., (ii) flows 

lived longer than 30 minutes are expired, (iii) if the cache 

reaches its maximum size, a number of heuristic expiry 

functions are applied to export flows, and (iv)  a TCP connection 

has finished with flag FIN or RST. 

Network flow is identified by source and destination IP 

addresses as well as by port numbers. [39] is a simple protocol A 

flow collector tool, viz., nfdump [32] receives flow records from 

the flow exporter and stores them in a form suitable for further 

monitoring or analysis. A flow record is the information stored 

in the flow exporter cache. A flow exporter protocol defines 

how expired flows are transferred by the exporter to the 

collector. The information exported to the collector is referred to 

as flow record. NetFlow version 5 [33] is a simple protocol that 

exports flow records of fixed size (48 bytes in total). 

We used the NetFlow version 5 protocol to export flow records 

and used nfdump to receive flow records. All data are stored on 

disk before analyzing. This separates the process of storing and 

analyzing the data. The data is organized in a time based 

fashion. Nfdump has a flow record capturing daemon process 

nfcapd which reads data from the network and stores the data 

into files. Automatically, in every n minutes, typically 5 

minutes, nfcapd rotates and renames each output file with time 

stamp nfcapd, YYYYMMddhhmm, e.g., nfcapd, 201012110845 

contains data from December 11th 2010 08:45 onward. Based 

on a 5 minutes time interval, this stores results in 288 files per 

day. Analysis of the data is done by concatenating several files 

for a single run. The output is stored either in ASCII or in binary 

into a file and it is ready to be processed again with the same 

tool. We used C programs to filter the captured data to extract 

new features. Unnecessary parameters were removed and the 

retained parameters were flow-start, duration, protocol, source-

IP, source-Port, destination-IP, destination-Port, flags, ToS, 

bytes, packets-per-second (pps), bits-per-second (bps) and bytes-

per-packet (Bps). Network traffic corresponding to attack and 

normal traffic was gathered using our local network within a 4 

week period. We collected 1,48,712 flow records of 16 attack 

types and normal records. The extracted features were of 23 

types and were classified into three groups of features: (i) basic, 

(ii) time-window based, and (iii) connection based features. The 

list of features is given in Table 9-11. 

Table 9. Flow level time-window features 

Sl No. Features  Description 

1  
count-dest 

Number of flows to unique destination IP 

addresses inside the network in the last T 

seconds from the same source. 

2  count-src Number of flows from unique source IP 

addresses inside the network in the last T 



IJCA Special Issue on “Network Security and Cryptography” 

NSC, 2011 

26 

seconds to the same destination. 

3  count- 

serv-src 

Number of flows from the source IP to the 

same destination port in the last T seconds. 

4  count- 

serv-dest 

Number of flows to the destination IP using 

same source port in the last T seconds. 

Table 10. Flow level Connection based features  

Sl 

No. Features  Description 

1  count-dest- 

conn 

Number of flows to unique destination IP 

addresses inside the network in the last N 

flows from the same source. 

2  count-src- 

conn 

Number of flows from unique source IP 

addresses inside the network in the last N 

flows to the same destination. 

3  count-serv- 

src-conn 

Number of flows from the source IP to the 

same destination port in the last N flows. 

4  count-serv- 

dest-conn 

Number of flows to the destination IP 

using same source port in the last N flows.. 

Table 11. Flow level basic features 

Sl No. Features  Description 

1  Duration Length of the flow (in seconds) 

2  Protocol-type Type of protocols- TCP, UDP, ICMP 

3  Src IP Source node IP address 

4  Dest IP Destination IP address 

5  Src port Source port 

6  Dest port Destination port 

7  ToS Type of service 

8 URG Urgent flag of TCP header 

9 ACK Acknowledgement flag 

10 PSH Push flag 

11 RST Reset flag 

12 SYN SYN flag 

13 FIN FIN flag 

14 Source byte 
Number of data bytes transfer from 

source IP to destination IP 

15 Land 
Same source IP/source port are equal 

to Destination IP/Destination port 

4.1.2 KDD Cup 1999 Dataset 
The proposed method was tested on datasets available in the 

KDD Cup 1999 intrusion detection benchmark datasets [13]. 

Each record of the datasets represents a connection between two 

network hosts according to network protocols and is described 

by 41 attributes (38 continuous or discrete numerical attributes 

and 3 categorical attributes). Each record is labeled as either 

normal or one specific kind of attack. Each dataset contains 22 

types of attacks. The two datasets of KDD Cup 1999 : (i) 

Corrected KDD, and (ii) 10% KDD are given in Table 12. 

Table 12. KDD Cup 1999 Dataset 

Datasets  Normal  Attacks  Total 

Corrected KDD  60593  250436  311029 

10% KDD  97278  396743  494021 

4.1.3 NSL-KDD Dataset 
NSL-KDD [14] is a network-based intrusion dataset. It is a 

filtered version of KDD Cup 1999 intrusion detection 

benchmark dataset. In the KDD Cup 1999 dataset, there are 

huge number of redundant records, which can cause the learning 

algorithms to be biased towards the frequent records. To solve 

this issue, one copy of each record was kept in the NSL-KDD 

dataset. The two datasets of NSL-KDD: (i) KDDTrain+, and (ii) 

KDDTest+ are shown in Table 13. 

Table 13. NSL-KDD Dataset 

Datasets  Normal  Attacks  Total 

KDDTrain+  67343  58630  125973 

KDDTest+  9710  12834  22544 

4.2 Performance measures 
Evaluation of performance of a clustering model is based on the 

counts of test records correctly and incorrectly predicted by the 

model. These counts are tabulated in a table known as a 

confusion matrix [40]. A confusion matrix summarizes number 

of instances predicted correctly or incorrectly by a classification 

model and it is given in Table 14.  

Table 14. Confusion matrix for binary classification 

 
Predicted Class 

+ - 

Actual Class 
+ TP FN 

- FP TN 

The following terminology is often used when referring the 

counts tabulated in the confusion matrix. 

 True positive (TP), which corresponds to the number of 

positive examples correctly predicted by the classification 

model. 

 False negative (FN), which corresponds to the number of 

positive examples wrongly predicted as negative by the 

classification model. 

 False positive (FP), which corresponds to the number of 

negative examples wrongly predicted as positive by the 

classification model. 

 True negative (TN), which corresponds to the number of 

negative examples correctly predicted by the classification 

model. 

The counts in a confusion matrix can also be expressed in terms 

of percentages. True positive rate (TPR) is defined as the 

fraction of positive examples predicted correctly by the model, 

i.e., 

TPR = TP/(TP + FN).                          (6) 

Similarly, the true negative rate (TNR) is defined as the fraction 

of negative examples predicted correctly by the model, i.e., 
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TNR = TN/(TN + FP).                          (7) 

The false positive rate (FPR) is the fraction of negative 

examples predicted as positive class, i.e., 

FPR = FP/(TN + FP).                           (8) 

Finally, the false negative rate (FNR) is the fraction of positive 

examples predicted as negative class, i.e., 

FNR = FN/(TP + FN).                        (9) 

Detection Rate: The detection rate (DR) is defined as the number 

of intrusion instances detected by the system divided by the total 

number of intrusion instances present in the test dataset. In 

confusion matrix, detection rate can be represented by TNR. 

4.3 Experimental results 
Three datasets viz. (i) Real Life Network Intrusion Dataset, (ii) 

KDD Cup 1999 Dataset and (iii) NSL-KDD dataset, and are 

used to evaluate the performance of our algorithm. We 

experimented as each of its dataset using two distinct 

approaches (i) over full feature space, k-point-1 algorithm and 

(ii) over reduced feature space (identifying relevant feature 

specific to a particular class, while using approach (ii), k-point-2 

algorithm. Our experiments carried out after preprocessing of 

the above three datasets. Each preprocessing has two phases: 

data normalization and feature reduction phases. After all 

attribute values of each data set are scaled to the range [0-1] by 

dividing every attribute value by its own maximum value, we 

utilize the mutual information based feature selection algorithm 

[30] to select important features for each dataset. The 

performance evaluation over the dataset and its preprocessed 

dataset are presented next. 

4.3.1 Results on Real Life Network Intrusion Dataset 

using k-point-1 Algorithm 
The confusion matrices for two dataset Packet-level and Flow-

level of our Real Life Network Intrusion Dataset are given in 

Table 15 and 16. On Packet Level dataset, the DR for intrusion 

records is 99.29%, TPR for normal records is 98.89% and FPR 

for normal records is 0.71%. Similarly, on Flow Level dataset, 

the DR for intrusion records is 99.53%, TPR for normal records 

is 99.11% and FPR for normal records is 0.47%. 

Table 15. Confusion matrix for Packet level dataset using    

k-point-1 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 31135 350 31485 

Attack 1411 197287 198698 

Sum 32546 197637 230183 

Table 16. Confusion matrix for Flow level dataset using       

k-point-1 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 32325 291 32616 

Attack 546 115550 116096 

Sum 32871 115841 148712 

4.3.2 Results on Real Life Network Intrusion Dataset 

using k-point-2 Algorithm 
In data preprocessing and feature selection of dataset Packet-

level, sixteen numbers of features [7, 8, 9, 11, 15, 16, 17, 18, 19, 

20, 25, 26, 29, 30, 31, 34] are reduced. The confusion matrices 

for dataset Packet-level is given in Table 17. The DR for 

intrusion records is 99.54%, TPR for normal records is 98.25% 

and FPR for normal records is 0.49%. 

Similarly, in data preprocessing and feature selection of dataset 

Flow-level, eight number features [8, 9, 16, 17, 18, 20, 31, 34] 

are reduced. The confusion matrices for dataset Flow-level is 

given in Table 18. The DR for intrusion records is 99.53%, TPR 

for normal records is 99.11% and FPR for normal records is 

0.47%. 

Table 17. Confusion matrix for Packet level dataset using    

k-point-2 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 30935 550 31485 

Attack 911 197787 198698 

Sum 31846 198337 230183 

Table 18. Confusion matrix for Flow level dataset using       

k-point-2 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 32025 591 32616 

Attack 246 115850 116096 

Sum 32271 116441 148712 

4.3.3 Results on KDD Cup 1999 Dataset using k-

point-1 Algorithm 
The confusion matrices for two dataset Corrected KDD and 10 

percent KDD of KDD Cup 1999 Dataset are given in Table 19 

and 20. On Corrected KDD dataset, the DR for intrusion records 

is 97.55%, TPR for normal records is 90.01% and FPR for 

normal records is 2.45%. Similarly, on 10 percent KDD dataset, 

the DR for intrusion records is 95.75%, TPR for normal records 

is 94.76% and FPR for normal records is 4.25%. 

Table 19. Confusion matrix for Corrected KDD dataset using 

k-point-1 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 54540 6053 60593 

Attack 6135 244301 250436 

Sum 60675 250354 311029 

Table 20. Confusion matrix for 10 percent KDD dataset 

using k-point-1 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 92180 5098 97278 

Attack 16846 379897 396743 

Sum 109026 384995 494021 

4.3.4 Results on KDD Cup 1999 Dataset using k-

point-2 Algorithm 
In data preprocessing and feature selection, fourteen numbers of 

features [8, 9, 11, 16, 17, 18, 19, 20, 25, 26, 29, 30, 31, 34] are 

reduced from the two dataset Corrected KDD and 10 percent 

KDD. The confusion matrices for the two dataset Corrected 
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KDD and 10 percent KDD of KDD Cup 1999 dataset are given 

in Table 21 and 22. 

Table 21. Confusion matrix for Corrected KDD dataset using 

k-point-2 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 54540 6053 60593 

Attack 5635 244801 250436 

Sum 60175 250854 311029 

Table 22. Confusion matrix for 10 percent KDD dataset 

using k-point-2 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 92280  4998  97278 

Attack 16846  16846  396743 

Sum 109126  384895  494021 

4.3.5 Results on NSL-KDD Dataset using k-point-1 

Algorithm 
The confusion matrices for two datasets KDDTrain+ and 

KDDTest+ of NSL-KDD Dataset are given in Table 23 and 24. 

On KDDTrain+ dataset, the DR for intrusion records is 97.65%, 

TPR for normal records is 93.89% and FPR for normal records 

is 2.35%. Similarly, on KDDTest+ dataset, the DR for intrusion 

records is 98.88%, TPR for normal records is 96.55% and FPR 

for normal records is 1.12%. 

Table 23. Confusion matrix for KDDTrain+ dataset using     

k-point-1 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 63228  4115  67343 

Attack 1377  57413  58630 

Sum 64445  61528  125973 

Table 24. Confusion matrix for KDDTest+ dataset using      

k-point-1 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 9375  335  9710 

Attack 144  12690  12834 

Sum 9519  13025  22544 

4.3.6 Results on NSL-KDD Dataset using k-point-2 

Algorithm 
Ten numbers of features [8, 9, 11, 18, 19, 20, 25, 26, 30, 34] are 

scaled down in data preprocessing and feature selection for two 

datasets KDDTrain+ and KDDTest+ of NSL-KDD. The 

confusion matrices for the two datasets KDDTrain+ and 

KDDTest+ of NSL-KDD Dataset are given in Table 25 and 26.  

Table 25. Confusion matrix for KDDTrain+ dataset using    

k-point-2 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class Normal 63028  4315  67343 

Attack 1217  57413  58630 

Sum 64245  61728  125973 

Table 26. Confusion matrix for KDDTest+ dataset using      

k-point-2 algorithm 

 
Predicted Class 

Normal Attack Sum 

Actual Class 

Normal 9275  435  9710 

Attack 104  12730  12834 

Sum 9379  13165  22544 

On KDDTrain+ dataset, the DR for intrusion records is 97.92%, 

and TPR and FPR for normal records are 93.59% and 2.08% 

respectively. Similarly, on KDDTest+ dataset, the DR for 

intrusion records is 99.19%, and TPR and FPR for normal 

records are 95.52% and 0.81% respectively. 

4.3.7 Comparison of Results  
The summarized results over the three distinguished datasets are 

made for detection rate (DR) on intrusive records, TPR and FPR 

over normal records for the datasets. The comparison results for 

the datasets for k-point-1 algorithm are presented in Table 27. 

Table 27. Experimental Results of k-point-1 Algorithm 

Data sets Total Attacks Normal 
Detection 
Rate (%) 

TPR 
(%) 

FPR 
(%) 

Corrected 
KDD 

311029  250436  60593  97.55  90.01  2.45 

10% KDD 494021 396743 97278 95.75 94.76 4.25 

KDDTrain+ 125973  58630  67343  97.65  93.89  2.35 

KDDTest+ 22544  12834  9710  98.88  96.55  1.12 

Packet 
Level 

230183  198698  31485  99.29  98.89  0.71 

Flow Level 148712  116096  32616  99.53  99.11  0.47 

Similarly, the summarized results using k-point-2 algorithm are 

made for detection rate (DR) on intrusive records, TPR and FPR 

over normal records for the preprocessed datasets. The 

comparison results are presented in Table 28. 

Table 28. Experimental Results of k-point-2 Algorithm 

Data sets Total Attacks Normal 
Detection 
Rate (%) 

TPR 
(%) 

FPR 
(%) 

Corrected 

KDD 
311029  250436  60593  97.75 90.01 2.25 

10% KDD 494021  396743  97278  95.75 94.86 4.25 

KDDTrain+ 125973  58630  67343  97.92 93.59 2.08 

KDDTest+ 22544  12834  9710  99.19 95.52 0.81 

Packet Level 230183  198698  31485  99.54 98.25 0.49 

Flow Level 148712  116096  32616  99.79 98.19 0.21 
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4.3.8 Performance Comparisons 
The performance of k-point-1 algorithm is compared with other 

four unsupervised anomaly-based intrusion detection 

algorithms: fpMAFIA [8], K-NN [6], fixed width clustering [6] 

and Modified Clustering-TV [16]. The comparison results of 

performance over Corrected KDD dataset for all these 

algorithms are shown in Table 29. In the performance 

comparison, detection rate for intrusion instances by k-point 

algorithms are maximum. 

Table 29. Comparison with Unsupervised Techniques on 

Corrected KDD 

Algorithm  Detection Rate (%) 

fpMAFIA [8]  86.70 

K-NN [6]  89.95 

Fixed width clustering [6]  94.00 

Modified Clustering-TV [16]  97.30 

k-point-1 algorithm  97.55 

k-point-2 algorithm 97.75 

 

5. CONCLUSION AND FUTURE WORKS 
In this paper we have provided a clustering based method and 

applied it in unsupervised anomaly based network intrusion 

detection. We have developed the clustering method by building 

normal behavior model from unlabeled dataset. We evaluated 

the anomaly detection approach by applying it to network 

intrusion detection on evaluated benchmark intrusion dataset as 

well as on real life network intrusion dataset captured in local 

network and compared it to existing method of unsupervised 

network anomaly detection. However, the framework presented 

for network intrusion detection can be applied for broader 

classification problems. For example, the method can be applied 

for error detection in large datasets considering maximum 

instances as normal compared to erroneous instances.  
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