
IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

13

A Graph theoretical approach to Network Vulnerability
Analysis and Countermeasures

Dr.Thaier Hamid

University of Bedfordshire, UK

Prof. Carsten Maple,
University of Bedfordshire, UK

ABSTRACT

Computer networks are certainly vulnerable as long as they

deliver services from different machines. An attack graph is a

security model representing the chains of vulnerability ex-

ploits in a network displays the ways an attacker can com-

promise a network or host. A number of researchers have

admitted attack graph visual complications and a large amount

of source data must be assembled to accurately build an attack

graph, the difficulty scaling to large, enterprise-size networks

with tens of thousands of hosts and the lack comprehensive

understanding. Information on vulnerabilities is present in

public vulnerability databases, such as the National Vulnera-

bility Database and Nessus. But current attack graph tools are

reserved to only limited attributes. The automatic formation of

vulnerability information has been troublesome and vulnera-

bility descriptions were created by hand or based on limited

information. Much vulnerability has still not been discovered

and many others without patches or solutions Our approach to

developing a cost metric exploits the Markov’s model using

combinations well known vulnerabilities (the Common Vul-

nerability Scoring System, CVSS) and Risk Assessment Val-

ues (RAV) and using ranking algorithms (similar to V. Mehta

et al. 2006 and kijsanayothin, 2010) but instead of using vul-

nerabilities. For each host we have developed a cost rank

Markov’s model reducing the complexity in the attack graph,

representing the network topology and dipping the problem of

visibility.

General Terms

Graph theoretical, Algorithms, Experimentation

Keywords

Ranking attack graph, Network security, Security metrics..

1. INTRODUCTION
To define the security effect as applications and operating

systems vulnerabilities on a specific network, one must study

communications among several network components. For a

vulnerability analysis tool to be useful, two features are essen-

tial. First, the model used in the analysis must be able to au-

tomatically integrate recognized vulnerability conditions from

the public vulnerability databases community. Second, the

investigation must be capable of measuring networks with

thousands of machines relying on software providers that are

subject to fault, making them susceptible to malicious attacks.

Although the internet, which has brought many benefits to

organizations and individuals, it has also increased the risks of

having hosts compromised without the need of physical

access. Network vulnerabilities refer to exploitable problems

in configurations (e.g., ports and services enabled) or the

software implemented to provide network services (e.g.,

Apache Chunked-Code on Apache web servers, buffer over-

flow on Windows XP SP2, Vista and 7 other operating envi-

ronments, including TNS Listener on Oracle software

for database servers). Figure 1 reflects the number of pub-

lished vulnerabilities reported by Secunian [6], and the num-

ber of Common Vulnerabilities and Exposures (CVEs) dis-

closed per year since 2005 with a breakdown of the solution

status (“Unpatched”, “patched”, “total”). As shown in figure

1, on average there were 4,464 CVEs per year from 2005 to

2009.

An extrapolation of the data of the first half of 2011 leads us

to expect that 2011 will exceed the number of CVEs of 2009,

but not the average of the last five years. It should be noted

that older vulnerabilities are more likely to have a patch avail-

able than recently found vulnerabilities. We can see that from

2005 to 2011 we had a sharp increase in the number of vulne-

rabilities. In 2005-2006 and from 2006-2007 and 2008-2009,

there was an insignificant decrease in 2006-2007 and from

2008-2009, of 1.8%. This was due in part to the release of

new operating systems at the time. Nevertheless, in 2008

alone, a total of 4,800 vulnerabilities were published. As

shown in Figure 1. Consequently, this volume of vulnerabili-

ties requires management from organizations to determine

which of the daily reported vulnerabilities apply to their situa-

tion according to the software they have installed, their ver-

sion and configuration.

Fig. 1 Number of published vulnerabilities from 2005-

2011.

All in all, solving every vulnerability, for example by patch-

ing nonnative services and hosts, is never a solution for multi-

step attacks. There are basically two types of attack graphs. In

the first type, each vertex represents the entire network state

and the arcs represent state transitions caused by an attacker’s

actions. Examples are Sheyner’s scenario graph based on

model checking [9], and the attack graph in Swiler and Phil-

lips’ work [15]. This type of attack graph is sometimes called

a state enumeration attack graph [9]. In the second type of

attack graph, a vertex does not represent the entire state of a

system but rather a system condition in some form of logical

sentence. The arcs in these graphs represent the interconnec-

tion relations between the system conditions. We call this type

of attack graph a dependency attack graph. Examples are the

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

14

graph structure used by Ammann et al, state enumeration

attack graph in general tend to suffer from the drawback of

the state explosion problem [15]. It means the complexity of

the graph generated grows exponentially O (2n), in terms of

the size of the state space n. The key difference between the

two types of attack graphs lies in the semantics of their vertic-

es. While each vertex in a state enumeration attack graph en-

codes all the conditions in the network, a vertex in a depen-

dency attack graph encodes a single attack asset of the net-

work. A path s1 →s2→ s3 in a state enumeration attack

graph means that the system’s state can be transitioned from

s1 to s2 and then to s3 by an attacker. But the condition that

enables the transition s2→ s3 may have already become true

in a previous state, say s1. The reason the attacker can get to

state s3 is encoded in some state variables in s2, but the arcs

in the graph do not directly show where these conditions were

first enabled. In a dependency attack graph, however, the

dependency relations among various assets are directly

represented by the arcs.

1.1Query independent Link based Ranking-

PageRank

We give the following dentition of PageRank (). Let u be a

web page (a vertex in the graph). Then let Fu be the set of

forward links of u and let Bu be the set of backlinks of u. Let

also du = |Fu| be the out-degree of u. Let also  u be the 

of page u. Then the  values of the pages are calculated as

follows. Initially, each page is assigned a  value of 1/n

where n is the number of pages.

v = Vufor
du

u
Bvu




 

Fig. 3 A simple web graph with vertex weight.

Let P be a row stochastic matrix corresponding to the graph G

of the web pages, assuming that all edges have at least one

outgoing edge. If there is a link from page x to page y, then let

the matrix entry Pxy have the value 1/di. Let all other entries

have the value 0.

Table 1: transition probability matrix

 Then, one iteration of the  computation corresponds to the

vector matrix multiplication [] 1n x [P]nn. Repeated

multiplication of r by P yields the dominant eigenvector r of

the matrix P. Since P corresponds to the stochastic transition

matrix of the graph G, PageRank, which is denoted by r, This

r can be viewed as the stationary probability distribution over

pages induced by a random walk on the web graph [10]. Be-

cause P is stochastic, its dominant eigenvalue is one. This

leads to the following equation:

Ptt *)1()(

)1()0(*  P

Since  models the random walk of a web surfer over the

web pages, the calculation mentioned above also corresponds

to finding a stationary probability distribution for a Markov

chain in which web pages represents the states and the matrix

P represents the state transition matrix for the states in the

chain. Discrete time steps in the chain and corresponds to the

iterations of  calculation. As we see in figure-4 the ranking

after 13 iterations is x=0.16, y=0.22, z=0.33, w=0.27, z in this

case it is the most important web site.

Fig. 4 A simple web graph with vertex weight after 13

iterations.

1.2 Security Metrics
The Common Vulnerability Scoring System, CVSS, calcula-

tor [15, 22], maintained The Forum of Incident Response and

Security Teams, which was launched in 2004 and is currently

on its second version. The CVSS is composed of three metrics

groups: base, temporal and environmental, Base: represents

the basic and fundamental characteristics of vulnerability that

are constant over time and user environments. The Access

Vector, Access Complexity, and Authentication Metrics cap-

ture how the vulnerability is accessed and whether or not extra

conditions are required to exploit it. Risk Assessment Values

(RAV) is the computation of security operations [7], controls,

and limitations, which represents the current state of protec-

tion. The RAV is a derivative from three categories defined

within the scope: Operational Security, Loss Controls and

Security Limitations. We added the Protocol Complexity Cost

to RAV Components as a measure of difficulty that an at-

tacker encounters when trying to bypass channels implement-

ing different protocols (e.g., FTP, SMTP, SSH, VPN) to

progress across network nodes.

PTAVsum PPPPOP sec

)sec1001(logsec 2

sumsum OPOP 

Our methodology combines the CVSS score with the Risk

Assessment Values. A RAV is the computation of security

operations, controls, and limitations, for that we added to the

cost metric calculator CV base as follows:

CV
Base =

 round_to_1_decimal (((0.6*Impact)+(0.4*Exploitability)–

 1.5)*f(Impact)).

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

15

Fig. 5 RAV cost calculator.

2. METHODOLOGIES FOR DEVELOP-

ING COST-CENTRIC APPROACH
Instead of specifying a state by network attributes, we propose

cost-centric model checking, in which each state is specified

by the attributes of a single host. We refer to the correspond-

ing attack graphs, generated with model checking algorithms,

as cost-centric attack graphs.

In our model, the attributes of any host X include:

1- Attacker’s access privilege on host X: Privilege lev-

el, i.e., root or system administrator (2), privileged

user (1), user, guest, or none(0).

2- Security Metrics cost for each host : represent the

CVSS score with the Risk Assessment Val-

ues(RAV) for each host.

3- Exploit mode: The locality of an attacker perform-

ing an exploit.

To illustrate the proposed approach in details, consider a sim-

ple network as shown in figure-6 taken from V. Mehta et al.

(2006) and used by kijsanayothin (2010) to compare the re-

sults , where there are two service hosts: IP1 and IP2, and an

attacker’s workstation, Attacker, connecting to each of the

servers via a central router.

Fig. 6 a simple network taken from V. Mehta et al. 2006.

Fig. 7 cost attack graph with arc weight.

To get the normalized cost matrix we used the following for-

mula:






Ovw

wuc

vuc
vu

),(

),(
),(

 Where)(uoutwOv 

 For example

 410138.0
497989

89
10 




ss

Table 2. Personation cost matrix

let v be the probability of intrusion of attack state v at time t

and d be a damping factor representing the probability of an

attacker to continue penetrating the current path of the attack.

Thus, in the context of network.

state. initialan is When v

),(*)(
1

)()1(vuud
N

d
vv

Bvu

i  


 




Otherwisevuudvv
Bvu

i),(*)()()1( 


 

Where Bv represent the set of pages pointing to v, in(v).

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

16

Table 3. Comparing the Results

The Table shows the ranking result obtained when we applied

the experiential, that is- s4, s1, s0, s3, s2 (i.e., our approach) .

Otherwise, s4, s3, s0, s1, s2 is obtained when Mehta et al.’s

approach is applied and s4, s3, s2, s0, s1 when Kijsanayothin

approach is applied..

2.1 Initial results and discussion
The ranking is in the order of likelihood of intrusion based on

exploitability. For example, all results suggest that s4 has the

highest (relative) likelihood of being attacked (i.e., highest

exploitability and most vulnerable). To further compare the

ranking results, if we omit s0 in all ranking lists, both ranking

orders generally agree except a conflicting case of ranking

order between s1, s2 and s3.

1- { s1, s2} :Consider attackers from the initial state.

As shown in page 21 to reach state s1 (e.g., from s0,

s2 or s3) requires exploiting cost 89 71 85, where as

to reach state s2 (e.g., from s0 or s3) requires ex-

ploiting cost 79 85. However, according to simple

calculations s1 is more vulnerable than s2, in addi-

tion that reach to s1 mean the attacker has the ability

to compromise a host and reach to the root of IP1

this is not the case for s2. Therefore, s1 should rank

higher than s2.

2- {s2, s3}: starting from an initial state s0, to reach s4

through s2 requires three applications of costs of

exploitability value 79 49 70 , whereas to reach s4

through s3 only requires two applications of cost s

of exploitability value 49 70 . Therefore, s3 should

rank higher than s2.

3- {s1, s3} :Consider attackers from the initial state.

To reach state s1 (e.g., from s0, s2 or s3) requires

exploiting cost 89 71 85, where as to reach state s3

(e.g., from s0 or s2 or s1) requires exploiting cost 49

49 66. Therefore, s1 should rank higher than s3 be-

cause s1 is more vulnerable than s3.

4- {s3, s4}. If there is only one way to reach s4 by an

attack path from s0 to s3 to s4 then s3 ranks higher

than s4. However, we can reach s4 by another attack

path from s0 to s2 to s4 and attack path s0 to s3 to

s4 Thus, s4 ranks higher than s3.

From the results above the system administrator should give

first priority to s4 (IP 2,2) { compromised the root of IP2} as

it has the highest (relative) likelihood of being attacked. It has

the highest exploitability and is the most most vulnerable.

Solutions should be immediately implemented then in the

second place s2(IP 1,2) { compromised the root of IP1} then

s3(IP 2,1) then s2(IP 1, 1) as we explained.

 Fig.8 Initial ranking results

3. INVESTIGATES
In the following example network, the attacker is initially

located in host A and wants to reach either host E that is pro-

tectedby a firewall.

Fig. 9 An example network, modified from [16]

In this example network, the attacker is initially located in

host A and wants to reach host E that is protected by a

firewall. The firewall only allows traffic from hosts C or D to

host E. Router (Ro) connects segment 1 & 2. Additionally, all

hosts have a CVE-2003-0818: Microsoft Windows ASN.1

Library Integer vulnerability in the single service they

provide. Successful exploitation of this vulnerability results in

a buffer overflow condition allowing the attacker to execute

arbitrary codes with administrative (system) privileges,

potentially causing a complete impact on its confidentiality

(C), integrity (I) and availability (A).

Table-4 below shows the ranking result obtained

when we applied the experimental approach:

 s12, s11, s10, s7, s9, s6, s8, s5, s3, s2, s1,s4.

Table -4. Ranking Results

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

17

Fig. 9 A worst case attack graph.

4. DISCUSSIONS OF THE RESULTS

0

0.5

1

1.5

2

2.5

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12

 Fig.10 Cost ranking result

1. {s12, s11} we can reach s12 by another attack path to s4

thus, s12 ranks higher than s11.

2. {s11, s10} ∑ cost to reach s11: 87 85 87 88 72 69 69=

557, but the total cost to reach s10 from initial state=482

Therefore, s11 should rank higher than s10 (same

segment).

3. {s9, s7} ∑ 𝑐𝑜𝑠𝑡 to reach s9= 374 and to s7 =528 from

initial state, Therefore, s7 should rank higher than s9.

4. {s9, s8} because s9 (f1) is in the same segment while

s7(c1) in other segment2 across, the firewall only

allows traffic from hosts C or D to host E. Therefore, s9

should rank higher than s8.

5. {s6, s7, s8} total cost ∑ 𝑐𝑜𝑠𝑡 to reach s6= 434, and the

total cost to reach s7 from initial state=528, the total cost

to reach s8 from initial state=407 Therefore s7(cm 2),

should rank higher than s6, s8 and s6 rank higher from s8

(same segment).

{s6,s5} total cost to reach s6= 434, while the total cost

to reach s5 from initial state=334 Therefore, s6 should

rank higher than s5, specially s6= (d, 2) compromised the

root. (same segment).

6. {s5, s4} total cost to reach s4= 209 and to s5 =334

from initial state, Therefore, s5 should rank higher than

s4.

7. {s3, s2} from initial state, Therefore, s3 should rank

higher than s2.

8. {s1, s2} total cost to reach s2= 257 and to s1 = 222

from initial state, Therefore, s2 should rank higher than

s1.

9. {s1, s2} total cost to reach s2= 257 and to s1 = 222

from initial state, Therefore, s2 should rank higher than

s1.

4. CONCLUSIONS
1. Advance a new methodology to represent attack graph

with cost metrics.

2. Develop new methodology to calculate and represent the

cost for each host.

3. Model the problem’s parameters into a mathematical

framework.

4. Model manual cost calculator to be used in our

experiments .

5. Analyze and compare the results of our ranking

algorithms with those of Mehta et al. and Kijsanayothin

approach respectively.

6. Analyze and compare the results of our ranking

algorithms to a medium size network.

5. REFERENCES
[1] L. He and N. Bode. Network Penetration Testing. In

EC2ND 2005: Proc. of the First European Conference on

Computer Network Defense, pages 3-12, London,2006.

Springer-Verlag.

[2] E. W. Dijkstra. A Discipline of Programming. Prentice

Hall, Upper Saddle River, NJ, USA, 1976.

[3] C. S. Wright. A Taxonomy of Information Systems Au-

dits, Assessments and Reviews. SANS Institute, June

2007.

[4] B. Schneier. Attack trees: Modeling security threats. Dr.

Dobb's Journal, December 1999.

[5] W. E. Wesely, F. F. Goldberg, N. H. Roberts, and D. F.

Haasl. Fault Tree

[6] Secunia Half Year Report 2010,

http://secunia.com/gfx/pdf/Secunia_Half_Year_Report_2

010.pdf.

[7] OSSTMM 3 – The Open Source Security Testing Meth-

odology Manual, Creative Commons 3.0 Attribution-

NoDerivs 2001-2010, ISECOM, http://www.isecom.org.

[8] Mehta, V., C. Bartzis, H. Zhu, E. M. Clarke, and J. M.

Wing (2006). Ranking attack graphs. In D. Zamboni and

C. Kr ¨ugel (Eds.), Recent Advances in Intrusion Detec-

tion, Volume 4219 of Lecture Notes in Computer Sci-

ence, pp. 127–144. Springer.

[9] Phongphun Kijsanayothin, Network Security Modeling

with Intelligent and Complexity Analysis, 2010.

[10] ISEGCOM, SCARE 0.1 - The Source Code Analysis

Risk Evaluation 15. November 2007, www.isecom.org.

[11] D. Geer and J. Harthorne. Penetration Testing: A Duet.

In ACSAC'02: Proc. of the 18th Annual Computer Secu-

rity Applications Conference, page 185, Washington,

DC, USA, 2002. IEEE Computer Society.

[12] Python. Programming language. http://www.python.org/.

[13] Tenable network security: The Nessus Security Scanner.

http://www.nessus.org. Visited 10-July-2008.
[14] S. Noel, M. Jacobs, P. Kalapa, and S. Jajodia. Multiple

Coordinated Viewsfor Network Attack Graphs. In

VIZSEC'05: Proc. of the IEEE Workshops on Visualiza-

tion for Computer Security, page 12, Washington, DC,

USA, 2005. IEEE Computer Society.

[15] S. Noel and S. Jajodia. Understanding Complex Network

Attack Graphs through Clustered Adjacency Matrices. In

ACSAC '05: Proceedings of the 21st Annual Computer

Security Applications Conference, pages 160{169,

Washington, DC, USA, 2005. IEEE Computer Society.

Att, 2

A , 1

A , 2 B , 2 B , 1

C , 1 C , 2 D , 2 D , 1

E , 2

F , 1

F , 2 E , 1

IJCA Special Issue on “Network Security and Cryptography”

NSC, 2011

18

[16] R. Sawilla and X. Ou. Googling Attack Graphs. Techni-

cal Report TM-2007-205, Defense Research and Devel-

opment Canada, September 2007.

[17] Brin, S. and L. Page (1998). The anatomy of a large-

scale hypertextual web search engine. Compute. Netw.

ISDN Syst. 30(1-7), 107–117.

[18] Kleinberg, J. M. (1999). Authoritative sources in a hy-

perlinked environment. J. ACM 46(5), 604–632.

[19] Gy¨ongyi, Z., H. Garcia-Molina, and J. Pedersen (2004).

Combating web spam with trustrank. In VLDB ’04: Pro-

ceedings of the Thirtieth international conference on

Very large data bases, pp. 576–587. VLDB Endowment.

[20] ISEGCOM, SCARE 0.1 - The Source Code Analysis

Risk Evaluation 15. November 2007, www.isecom.org.

[21] D. Geer and J. Harthorne. Penetration Testing: A Duet.

In ACSAC'02: Proc. of the 18th Annual Computer Secu-

rity Applications Conference, page 185, Washington,

DC, USA, 2002. IEEE Computer Society.

[22] Tenable network security: The Nessus Security Scanner.

http://www.nessus.org. Visited 10-July-2008.

http://www.isecom.org/

