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ABSTRACT 

We present a successful application of Artificial Intelligence 

(AI) methodologies in the context of a network oriented 

virtual care service for diabetic patients management, 

developed within the public-funded NODDS project. Several 

AI methods have been exploited to implement the NODDS 

functionality. Temporal Abstractions and other Intelligent 

Data Analysis techniques are used to analyse the patient’s 

monitoring data; the Case Based Reasoning (CBR) 

methodology is applied to perform the Knowledge 

Management task. The NODDS service is being tested 

through a small on field trial; the first results, though 

preliminary, seem to substantiate the hypothesis that the use 

of an AI-based risk evaluation system could present an 

advantage in the management of type 1 diabetic patients, 

leading to a more tight control of the patients’ metabolic 

situation, in a cost-effective way. 
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1. INTRODUCTION 
Diabetes Mellitus is a major chronic disease, affecting up to 

3% of the population in the industrialised countries. In 

particular, Insulin Dependent Diabetes Mellitus patients need 

exogenous insulin injections to regulate blood glucose 

metabolism, in order to prevent ketoacidosis and coma, and to 

reduce the risk of later life invalidating complications. Long 

term complications may affect the central or peripheral 

nervous system and give rise to nephropathy, neuropathy, or 

cause blindness. These complications are costly to the health 

system and contribute to loss of productivity. Therefore, there 

is a continuous need for effective monitoring of the patient. In 

many cases, this requires follow up treatment by a number of 

medical professionals. The increase in therapy planning 

complexity and in costs is the obvious drawback [1]. Hence, 

efficient communication between these professionals is of 

paramount importance for effective patient management and 

control.   

 

Diabetic patients management is a complex task as it normally 

consist of visiting patients every 2/4 months; during these 

visits the data coming from home monitoring are analysed, in 

order to assess the metabolic control achieved by the patients. 

Laboratory results and historical and/or anamnestic data are 

verified as well, to finally revise the patient’s therapeutic 

protocol.This has spur the advocacy of the use of current 

advances of information technologies and decision-support 

systems may improve cost-effectiveness of insulin therapy, by 

reducing the number of periodical control visits, while 

increasing the patient/physician communication rate. The 

wireless communication technologies and the applicability of 

the World Wide Web, can make medical information becomes 

available and is processed in a distributed way over a wide-

spread network [2]. This promises to make healthcare an 

automated virtual care environment for those who have 

suffered with chronic diseases such as diabetes and require 

high frequency patient-physician contact. Such an 

environment can provide intelligent and personalized 

monitoring services to patients, best-practice decision support 

to physicians, and cost control.  

 

Several tools and advisory systems for therapeutic plan 

assessment are now available, both on a day-by-day and on a 

visit-by-visit basis [3], and for some of them the capability of 

providing proper decisions has been shown experimentally 

[4]. The exponential growth in the availability and in the use 

of telecommunication services pushes towards the integration 

of such tools in a networking environment, in order to provide 

long-distance assistance to patient, as well as long-distance 

monitoring capability to the physician [5]. The use of 

appropriate Artificial Intelligence (AI) techniques, such as 

knowledge based systems, Intelligent Data Analysis and Case 

Based Reasoning, may enhance the design of the overall 

service: it should be possible to allow the users exploiting an 

intelligent desk for periodic therapy assessment and revision. 

For these reasons, we have worked for the development of a 

an AI integrated network based system, that, reinforced by 

previous experiences, not only able to offer a new integrated 

solution to the Diabetes management problem but also data 

mining applications involving the identification of risk factors 

associated with the onset of diabetes. 

 

2. The NODDS Project 
Driven by the motivation already discussed above, NODDS 

(Network Oriented Diabetes Database Management System) 

is a Public funded project, concerned with the design, 

implementation and applicability of an AI based healthcare 

service to assist diabetes patients, able to provide physicians 

over a network with a collection of AI techniques for 

improving management of patients according to the best 

current medical practice. The aim of the project was to:  

 

1. to provide patients with an effective treatment 

leading to good glycemic control, and to achieve a 

careful balance between insulin therapy, diet and 

physical activity, thus delaying the onset and/or 

slowing the progression of chronic complications; 

2. to provide patients at home or in other non-clinical 

environments with an appropriate level of 

continuous and intensive care through web 

monitoring and AI consultation services, taking 

into account the needs of remote or isolated 
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individuals that are unable to reach frequently the 

hospital institutions;  

3. to allow for a cost-effective monitoring of a large 

number of patients, automatizing data collection 

and the management of a large set of therapeutic 

protocols; 

4. to support a continuous education of patients of 

their current status of exposure to risk & regime 

changing methods through AI consultation 

services; 

5. to provide estimations of the blood sugar level 

based on their regime.   

6. to allow the patient to customise the insulin therapy 

within the bounds established by the physicians.  

 
Fig:1. Overview of NODDS support system. 

 

Patients collect metabolic data together with insulin and food 

intake information every day, through a wireless glucometer 

interconnected with diabetes managing app at their cell and 

that stores data in the Patients data base at web based 

Workstation (WBW). The WBW is a web-based workstation 

in which several distributed servers cooperate in a transparent 

way to make an AI managing diabetes mellitus through: 

consultation and analysis of the patients’ data, communication 

with patients’ home, revision of the therapeutic protocol and 

information repositories consultation. Whenever a probability 

for occurrence of the problem occurs, the AI sends an alarm 

and the regime change instructions to the patient through 

patient’s app.  NODDS is a one year project, which is at its 

final stages of completion. The NODDS services are being 

implemented and extensively tested at the CRIAD 

Laboratories in Junwani. Efforts are being made to make the 

system more users friendly & automatized. 

 

3. Role of AI on NODDS decision  
 

The NODDS System aims to  

(1) Automatically detect problems in Blood Glucose 

(BG) control;  

 

(2) Propose solutions to detected problems;  

(3) Remember which solutions are effective or 

ineffective for individual patients. 

(4) Calculate risk of complications for individual 

diabetic patients. The risk pattern of each diabetic 

patient is obtained using a Case-based Reasoning 

method. 

(5) Updation of incorporated dynamics of glucose and 

insulin in a manner which reflects their clinical 

importance. This defines the relationships between 

changes in insulin dose and site and time of 

injection and glycaemic response. Hence, we can 

draft qualitative predictions of patient outcome of 

blood glucose profile. 

(6) To provide regime change instructions when 

encounter a critical stage based on the prediction of 

glucose & insulin dynamics.  

 

We selected case-based reasoning (CBR) as the initial 

approach because  

 

(a) it provides support for tailored solutions based on 

similarity to known cases;  

(b) diabetes management guidelines are general in nature, 

requiring personalization;  

(c) a wide range of both physical and lifestyle factors 

influence Blood Glucose levels; and 
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(d) CBR has been successfully applied to managing other 

chronic medical conditions. 

 

4. Situation Assessment  
 

The first step in developing NODDS was to build a case base 

as a central knowledge repository. Although, initial BG data 

was available to have a baseline. This is because the life 

events coinciding with BG levels, used by AI to determine 

appropriate therapy, that were routinely recorded. To acquire 

contextualized cases for the system, we conducted a clinical 

research study involving 20 Type 1 Diabetes patients. Each 

patient participated for six weeks, manually entering daily 

BG, insulin, and life-event data into an experimental database 

through a web-based interface. AI reviewed the data, 

detecting BG control problems and recommending therapeutic 

adjustments. Patients implemented the recommended 

adjustments (or not), and AI reviewed subsequent data to 

evaluate the clinical outcomes, in an iterative cycle. Problems, 

solutions, and outcomes were structured into cases and stored 

in the case base. We were able to acquire more than 50 cases 

over the course of the clinical research study.  

 

Internally, a case is represented as an object of a hierarchical 

Java class containing approximately 150 data fields. The case 

records an actual problem of nocturnal hypoglycemia. 

Hypoglycemia, or low BG, leads to weakness, confusion, 

dizziness, sweating, shaking, and, if not treated in time, 

seizures, coma, or death. Hyperglycemia, or high BG, 

contributes to long-term diabetic complications. Extremely 

high BG levels can cause diabetic ketoacidosis, a serious 

condition leading to severe illness or death. It is important to 

note that patients do not know when problems are impending 

and are frequently unaware of problems even once they occur.  

Typically in CBR [6] systems, reasoning begins with a known 

problem that can be readily described and elaborated. Solving 

a given problem entails finding and adapting the most similar, 

or most useful, case in the case base. In this domain, problems 

are not usually given, or known a priori, but must be detected 

in continuous patient data. Our approach was to model 

automated problem-detection routines on AI problem-

detection strategies. We implemented rule-based routines to 

detect 14 common BG control problems identified by 

physicians. 

 

Data retrieval is implemented as a two step procedure: a 

classification step, able to identify the class to which the 

current case could belong, and a proper retrieval step, meant 

to extract the “closest” cases. Classification relies on a Naive 

Bayes [7] strategy, a method that assumes conditional 

independence among the features given a certain class, but 

that is known to be robust in a variety of situations [8, 9] even 

in the presence of conditional dependencies. 

 

 

 

 
Fig 2. Taxonomy of classes of prototypical situations in 

pediatric NODDS patients. 

 

For applying Naive Bayes, we calculate the probability that a 

case belongs to class  , given that the set of its features 

 is , through the following formula: 

 
The method classifies a case as belonging to the class that 

maximises . The conditional probabilities 

 are obtained through the Bayesian update 

formula for discrete distributions [10, 11]; in particular, we 

use a re-parameterised version of the update formula known 

as m-estimate of probability [12], that modifies the prior 

knowledge with the information coming from the cases of the 

case memory as follows: 

 
Where  is the number of cases in the case memory of class 

whose feature assumes the value    , while   is the total 

number of cases in class  The medical knowledge is 

synthesised by the prior probability distribution ) , whose 

reliability is expressed by the implicit number of samples m. 

In other words, the larger is m, the larger is the confidence of 

the expert on the prior. Our initial case library was composed 

by 145 real cases from the histories of 29 pediatric patients. In 

our application, the prior probability value  was derived 

from experts opinion through a technique described in [13, 

14]. Retrieval may be performed just on the most probable 
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class identified by the classification step, or on a subset of the 

most probable classes. In both situations the system relies on a 

Nearest-Neighbour (NN) technique and classical metrics, able 

to treat numeric and symbolic variables, and to cope with the 

problem of missing data, are applied to calculate distances 

[15]. When dealing with a large case base, our application 

implements a non exhaustive search procedure that exploits an 

anytime algorithm called Pivoting-Based Retrieval (PBR) 

[16], whose efficacy has been proved on a 10000 cases 

library.  

 

5. Risk Evaluation 
 

In this section we introduce the CBR method used by NODDS 

to solve the risk evaluation tasks. For each diabetic task the 

case base for the best precedent is searched and infers the risk 

according to that precedent. For a given collection of risk 

classes, a diabetic complication C, and a problem p, the task is 

to obtain the risk   of p concerning C. For each 

complication C, this can be seen as a classification task where 

the goal is to identify the class in R to which p belongs. 

NODDS solves this classification task using following 

algorithm. Given a case base B containing diabetic patients 

classified into the collection of risk classes R for a diabetic 

complication C, and a problem p to be classified, that obtains 

the class   to which p belongs. Intuitively, the algorithm 

follows a top-down strategy to build a description D 

containing the most relevant features of p such that all 

features in D are satisfied by a subset of cases in B. In 

general, cases in this subset belong to different solution 

classes in R. The Algorithm adds relevant features to D until 

the subset of cases satisfying D belong to one unique solution 

class . It takes this class  as the solution for the current 

task, i.e.  is the risk of p concerning C. The algorithm is 

given as: 

  

D: = ; R= {  

Function Risk_evaluation(B, p, D) 

: =  Discriminatory-set (D, B) 

if  then return  

                 else  Select-feature(p, B, R) 

                  D’:=Add-Feature( , D) 

                   Risk_evaluation(B, p, D’) 

end-if 

end-function 

 

The algorithm begins with the whole set of precedents B 

classified into the collection of risk classes R for a 

complication C, a problem p to be solved and the description 

D: = ; (i.e. D has no features). In the following we will 

explain this algorithm using an example.  

Example 1. Let p be a patient with no macrocomplications 

(i.e. feature macro-compl? in Assessment has value false), 

high blood pressure and low albumin. In this example 

NODDS has to determine the risk   for the 

macrocomplication C = stroke. 

 

The set of cases  that are subsumed by the description 

D is called discriminatory set. 

Intuitively, a case c is subsumed by a description D when all 

the information contained in D is also contained in c, although 

c can contain more information. Initially D is an empty 

description, i.e. it is the most general description. Therefore D 

subsumes all the cases in B (i.e.  = B), and consequently D 

has to be specialized. The specialization of a description D is 

achieved by adding features to it. In particular, 

Risk_evaluation function adds a feature f with the value v that 

this feature has in the current problem p. After that, the new 

description D' = D + (f=v) has a smaller discriminatory set 

SD' formed by those cases subsumed by D'. Thus, 

specialization reduces the discriminatory set  at each 

step. The algorithm uses a heuristic measure based on the 

López de Mántaras distance [17] to determine the feature to 

be added. It specializes D by selecting one feature f from all 

the features used in p in the following way. Each feature fi in 

p induces a partition = {  … } in the set  such that 

each    contains those patients in  having the same 

value  in the feature . For instance, the presence or 

absence of macrocomplications will divide the set  

(currently  = B) in two subsets: onecontaining those 

precedents having macrocomplications and the other one 

containing patients without macrocomplications. There is also 

a partition of , called the correct partition , that divides 

 according to the risk (   for the complication C. In the 

example,  is divided in subsets according to the values for 

the risk of stroke being unknown, low, moderate, high, and 

very-high. 

 

For each partition , Algorithm computes the López de 

Mántaras (RLM) distance [17] to the correct partition . 

Intuitively, the RLM distance assesses how similar a partition 

is with respect to a referent partition (i.e. the correct partition), 

in the sense that the lesser the distance the more similar they 

are. The RLM distance was introduced as an alternative to the 

Quinlan’s Gain [18] used in the ID3 inductive learning 

algorithm. The Quinlan’s Gain is a selection measure that 

selects the object feature providing the highest information 

gain. RLM distance shows that normalizing the Quinlan's 

Gain in an appropriate way, we obtain a distance between 

partitions. Formally, given two partitions Pi and Pc of a set 

SD, the RLM distance between them is computed 

as follows:  

RLM( , )=2-  

 

 

where,  

 

 

 
 

 
where  measures the information contained in the 

partition ; n is the number of possible values 

of the feature inducing ; m = Card(R);  is the probability of 

occurrence of class  ( ) i.e. the 

proportion of examples in SD that belong to  ( ); 

is the mutual information of two partitions; and  

is the probability of occurrence of the intersection  Ç  , 
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i.e. the proportion of examples in SD that belong to    and to 

. 

 

6. Conclusion 
The encouraging results we obtained from the NODDS 

project verification phase at CRIAD Laboratories, though 

preliminary, seem to substantiate the hypothesis that the use 

of the diabetes therapy on a network oriented systems in 

association with decision support systems could present an 

advantage in the management of type 1 diabetic patients, 

leading to a more tight control of patient’s metabolic situation, 

in a cost-effective way. As the system is currently used at the 

pediatric clinic, we will be able to collect additional data 

which, in our opinion, will probably enforce such conclusions. 

 

We are tackling these challenges and forging ahead with plans 

to make intelligent diabetes management a reality for patients 

and physicians. We have a waiting list of patients who have 

volunteered to participate in clinical research studies. They 

are counting on us to translate the research into practical tools 

they can use. We envision a number of potential avenues of 

commercialization and use. In summary, diabetes 

management is more than a challenging domain for AI 

research. It is an opportunity for AI applications to impart a 

positive impact on the health and well-being of people with 

diabetes. 
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