
International Journal of Computer Applications (0975 – 8887)

National Conference on “Recent Trends in Information Technology” (NCRTIT-2016)

5

A Study of Performance Analysis on Knapsack Problem

Pushpa S .K.
Information Science Department

BMS Institute of Technology
Bangalore, India

Mrunal T .V.
Information Science Department

BMS Institute of Technology
Bangalore, India

C .Suhas
Information Science Department

BMS Institute of Technology
Bangalore, India

ABSTRACT
The Knapsack problem is a problem in combinatorial

optimization, where we find the optimal solution of the given

problem such that it satisfies the given constraint.

Knapsack problems appear in real-world decision-making

processes in a wide variety of fields, such as finding the least

wasteful way to cut raw materials, selection of investments and

portfolios, selection of assets for asset-backed securitization,

and generating keys for the Merkle–Hellman and other

knapsack cryptosystems [12].

There are various ways to solve the knapsack problem. In this

paper, we present Greedy Algorithm, Dynamic Programming,

Branch and Bound Technique to solve the Knapsack problem,

along with the analysis of its efficiency, and accuracy. The

Greedy, Branch and Bound techniques are modified in

pursuance of potency. The Greedy technique is altered to work

for a 0/1 Knapsack problem. A recursive method is used for the

Branch and Bound technique to expedite the computations and

to reduce the memory consumed.

General Terms
Capacity, Items, Profit, Weight

Keywords
Knapsack, Maximize, Optimal solution, Efficiency

1. INTRODUCTION
The knapsack problem or rucksack problem is a problem, to

determine the number of each item to include in a collection so

that the total weight is less than or equal to a given limit and

the total value is as large as possible. It derives its name from

the problem faced by someone who is constrained by a fixed-

size knapsack and must fill it with the most valuable items. The

problem often arises in resource allocation where there are

financial constraints and is studied in fields such

as combinatorics, computer science, complexity

theory, cryptography, applied mathematics, and daily fantasy

sports [12].

The knapsack problem is interesting from the perspective of

computer science for many reasons. The decision

problem form of the knapsack problem is NP-complete, thus

there is no known algorithm both correct and fast (polynomial-

time) on all cases. While the decision problem is NP-complete,

the optimization problem is NP-hard, its resolution is at least as

difficult as the decision problem, and there is no known

polynomial algorithm which can tell, given a solution, whether

it is optimal [2].

Definition
The 0-1 knapsack problem,restricts the number of copies of

each kind of item Xito zero or one.

Given a set of N items numbered from 1 up to N, each with a

weight Wi and a value Vi, along with a maximum weight

capacity M,

Maximize:

 𝑉𝑖𝑋𝑖

𝑁

𝑖=1

Subject to:

 𝑊𝑖𝑋𝑖 ≤ 𝑀,

𝑁

𝑖=1

𝑋𝑖 ∈ {0,1}.

Here Xi represents the number of instances of item i to include

in the knapsack. Informally, the problem is to maximize the

sum of the values of the items in the knapsack so that the sum

of the weights is less than or equal to the knapsack's capacity.

2. METHODOLOGY

2.1 Greedy Algorithm
2.1.1 Introduction
There are several Greedy techniques to solve a Knapsack

problem. The most efficient technique follows the following

procedure:

 Compute the profit-weight ratio of for the given

items.

 Sort the array containing the ratio of the items in

decreasing order.

 Place the item with the highest ratio into the

Knapsack if it does not exceed the capacity of the

Knapsack, else proceed to the next item.

2.1.2 Algorithm

Algorithm GreedyKnapsack(M, N, W, P, MP)

// Purpose: To find the maximum profit of the Knapsack using

greedy technique.

// Input: M is the capacity of the Knapsack.

 N is the number of items.

 W is an array consisting of weight of all N items sorted in

decreasing order of profit-weight ratio.

 P is the array consisting of profit of all N items.

//Output: MP, the maximum profit.

rc←M

MP←0

fori ←1 to ndo

 if(Wi>rc) continue;

International Journal of Computer Applications (0975 – 8887)

National Conference on “Recent Trends in Information Technology” (NCRTIT-2016)

6

 MP←MP+Pi

 rc←rc-Wi

end for

returnMP

2.1.3 Complexity:
This method uses two steps to solve the problem:

1) Time minimum required to sort the array:

O(N*log(N))

2) Time required to choose the feasible set of items and

find the maximum profit:

 𝟏𝑵
𝟏 = N ≈O(N)

Hence the required time complexity is: O(N*log(N)) + O(N) ≈

O(N*log(N)).

2.1.4 Correctness
The greedy technique is one of the most efficient techniques to

solve the knapsack problem, but the major drawback is its

correctness. The greedy technique produces suboptimum

solutions, which might not always lead to the optimum

solution.

Ex:

P: 9 8 5 4

W: 2 3 2 2

Capacity: 6

The optimum solution to the above problem is 18, but when the

greedy technique is used, it results in 17.

To overcome this drawback, we present different techniques to

solve this problem.

2.2 Dynamic Programming

2.2.1 Introduction
Dynamic Programming is a technique for solving problems

whose solutions satisfy recurrence relations with overlapping

sub-problems. Typically, these sub-problems arise from a

recurrence relating solution to a given problem with solution to

its smaller sub-problems of the same type. Rather than solving

the sub-problems again and again, dynamic programming

suggests in solving each of the smaller sub-problems only once

and recording the results in a table from which we can then

obtain a solution to the original problem.

The solution to the given knapsack problem is achieved in

dynamic programming by finding the recurrence relation that

expresses a solution to an instance of the knapsack problem in

terms of solutions to its smaller sub-instances [1].

Let us consider an instance defined by the first i items, 1 ≤ i ≤

N, and the knapsack capacity j,

1 ≤ j ≤ M. Let V[i, j] be the value of an optimal solution to this

instance, i.e., the value of the most valuable subset of the first i,

items that fit the knapsack of capacity j.

Thus the required initial condition:

V[0, j] = 0, for j ≥ 0 and V[i, 0] = 0, for i ≥ 0.

The recursive condition:

V[i, j] =

𝐦𝐚𝐱 𝐕 𝒊 − 𝟏, 𝒋 , 𝐕 𝒊 − 𝟏, 𝒋 − 𝐖𝐢 + 𝐏𝐢 𝒋 − 𝐖𝐢 ≥ 𝟎

 𝐕 𝒊 − 𝟏, 𝒋 𝒋 − 𝐖𝐢 < 0

2.2.2 Algorithm:
Algorithm DynamicKnapsack(N, M, W, P, V)

// Purpose: To find the maximum profit of the Knapsack using

dynamic programming.

// Input: M is the capacity of the Knapsack.

N is the number of objects.

W is an array that consists of weights of all N

objects.

P is the array consisting of profit of all N objects.

//Output: The optimal solution.

fori← 0 to N do

 forj ← 0 to M do

 if(i = 0 or j = 0)

 V[i, j] = 0

 else if (Wi>j)

 V[i, j] = V[i-1, j]

 else

 V[i, j] = max { V[i-1, j], V[i-1,

j-Wi] + Pi }

 end if

 end for

end for

returnV[N, M]

2.2.3Complexity:
The basic operation is computing the value of V[i, j]. The

number of times this is being executed can be calculated as

shown below:

 𝟏𝐌
𝟎

𝐍
𝟎 = M – 0 + 1

 = (M + 1) 𝟏𝑵
𝟎

 = (M + 1) (N + 1)

 = MN + N + 1

 ≈ MN (for very large values of M and N)

Hence the time complexity of the dynamic knapsack

algorithm is given by Θ (MN).

2.2.4Correctness:
The dynamic programming always produces the optimum

solution. This is illustrated below:

Initial conditions:

 V[i , j] = 0, if i or j = 0;

 V[i , j] = -∞, if j< 0;

To form the remaining table dynamically, we use the following

two conditions:

 V[i , j] = V[i-1, j];

International Journal of Computer Applications (0975 – 8887)

National Conference on “Recent Trends in Information Technology” (NCRTIT-2016)

7

\\ Leavingith element.

 V[i , j] = max{ V[i-1, j], V[i-1, j-Wi] + Pi }

\\ Including the ith element, when j ≤ Wi.

Hence, the solution is obtained in each sub-problem is the

suboptimum solution, which eventually leads to the optimal

solution.

2.3 Branch and Bound

2.3.1 Introduction
Branch and bound is a technique used only to solve

optimization problems. It is an improvement over exhaustive

search, because unlike it, branch and bound constructs

candidate solutions one component at a time and evaluates the

partly constructed solutions. If no potential values of the

remaining components can lead to a solution, the remaining

components are not generated at all. This approach makes it

possible to solve some large instances of difficult

combinatorial problems, though, in the worst case, it still has

an exponential complexity [3].

Branch and bound is based on the construction of a „state space

tree‟. A node‟s bound value is compared with the value of the

best seen solution so far. If the bound value is not better than

the best seen solution so far, i.e., not smaller for minimization

and not larger for maximization, the node is non-promising and

can be terminated because no solution obtained from it can

yield a better solution than the one already available. This is

the principle idea of the branch-and-bound technique [3].

To solve the knapsack problem in this technique, the upper

bound (ub) has to be calculated. This can be computed by

adding the total profit of the items that are already selected, say

p, the product of the remaining capacity of the knapsack, M-w,

and the best profit-weight ratio, which is Pi+1 / Wi+1 [1].

i.e.,ub = p + (M - w) (Pi+1 / Wi+1)

In the algorithm described below, a recursive function is used

to reduce the total amount of data consumed by the program,

instead of the original branch and bound algorithm which

generates all the nodes of the state space-tree, and places it in

the priority queue.

2.3.2 Algorithm:

Algorithm Branch&BoundKnapsack(N, M, W, P, i , w, p)

// Purpose: To find the maximum profit of the Knapsack using

branch and bound technique.

// Input: M is the capacity of the Knapsack.

N is the number of items.

W is an array consisting of weight of all N items

sorted in decreasing order of profit-weight ratio.

P is the array consisting of profit of all N items

sorted in decreasing order of profit-weight ratio.

idenotes the index pointing to the above arrays (i ←

1 initially).

pdenotes the current sum of profit (p ← 0 initially).

wdenotes the current sum of weight (w ← 0

initially).

//Output: The optimal solution.

whileM ≥ w

 dow = w + Wi

 p = p + Pi

 i ← i + 1

end while

ub = p + (M - w) (Pi+1 / Wi+1) //

Find the upper bound.

if(ub ≥ p)

 if(i < N)

Branch&BoundKnapsack(N, M, W, P, (i +1) , w, p)

end if

2.3.3 Complexity
During the worst case scenario, all the nodes of the tree are

formed, and hence can go up to (2N-1) nodes. But this method

is more efficient than the Exhaustive Search method, in which

N * 2N iterations take place for every problem. Hence the

required time complexity is O(2
N
).

2.3.4 Correctness
Since the tree is formed by finding the upper-bound of each

node, and then finding the profit of each node whenever the

solution is feasible, the optimal solution always lies within the

generated nodes. Since we select the node with the highest

profit value within the given constraint, this technique always

produces the optimal solution.

3. ANALYSIS
A 1998 study of the Stony Brook University Algorithm

Repository showed that, out of 75 algorithmic problems, the

knapsack problem was the 18th most popular and the 4th most

needed after kd-trees , suffix trees , and the bin packing

problem[12].

Aspects such as the capacity and the number of items of the

knapsack play a vital role in the computation of the number of

basic operations and the total memory consumed by the

algorithms used. Hence, the analysis of the above algorithms

have been made by varying the number of inputs and the

capacity of the knapsack.

First, the No. of computations, i.e. the number of basic

operations in the algorithms have been computed. Then, the

total memory consumed by the data structures used in the

algorithms have been computed. The results are presented

below.

3.1 No. of computations
The analysis of the number of computations is done by

generating the number of basic operations made by the

algorithms by varying the number of items, and using random

values for the profit and weight of each item included. The

capacity of the knapsack is kept constant at each case. The

results obtained are tabulated and are presented below:

1. Varying the number of Items and having fixed

Capacity = 10

International Journal of Computer Applications (0975 – 8887)

National Conference on “Recent Trends in Information Technology” (NCRTIT-2016)

8

Table. 1

No. of items Greedy Branch &

Bound

Dynamic

10 22 28 73

25 65 77 168

50 110 168 329

100 235 253 623

200 538 1057 1279

300 835 2993 1899

500 1545 5012 3192

Table. 1 suggests that the number of computations of the three

techniques increase with different rates with the increase in the

number of items.

The graph of Table. 1 is plotted below, with the No. of items

on the X-axis and the No. of computations on the Y-axis:

Graph. 1

The above graph shows that the Branch & Bound technique has

a non-linear rate of increase in the No. of computations. For

small capacities, Dynamic Programming technique has the

better efficiency, in terms of the number of basic operations.

2. Varying the number of Items and having fixed

Capacity = 100

Table. 2

No. of items Greedy Branch &

Bound

Dynamic

10 27 78 973

25 82 342 2418

50 134 576 4829

100 266 913 9623

200 582 1687 19279

300 888 4425 28899

500 1614 11417 48192

Table.2 suggests that the number of computations of the

Dynamic Programming technique increases with a high rate

with increase in the number of items, for higher capacities, but

it remains constant in the Greedy, Branch & Bound techniques.

This demonstrates the time complexity of the latter two

techniques, which are independent of the capacity of the

knapsack.

The graph of Table. 2 is plotted below, with the No. of items

on the X-axis and the No. of computations on the Y-axis:

Graph. 2

3.2 Memory required
The analysis of the memory required for the algorithms is made

by varying the total capacity of the knapsack, and the total

number of items available. The total memory consumption of

each of the algorithms is computed in various cases, and are

presented below:

1. Varying the number of Items and having fixed

Capacity = 10

Table. 3

No. of

items

Greedy Branch &

Bound

Dynamic

10 120 200 480

25 300 500 1140

50 600 1000 2240

100 1200 2000 4440

200 2400 4000 8840

300 3600 6000 13240

500 6000 10000 22040

Table. 3 shows that the Dynamic Programming technique has

the highest memory requirement. This illustrates the working

of this technique, using memoization, the process of storing

solutions to the sub-problems instead of recomputing them.

The graph of Table.3is plotted below, with the No. of items on

the X-axis and the Memory utilized by the algorithm on the Y-

axis:

0

1000

2000

3000

4000

5000

6000

0 200 400 600

N
o

. o
f

co
m

p
u

ta
ti

o
n

s

No. of items

Greedy Branch & Bound

Dynamic

0

10000

20000

30000

40000

50000

60000

0 200 400 600

N
o

. o
f

co
m

p
u

ta
ti

o
n

s

No. of items

Greedy Branch & Bound

Dynamic

International Journal of Computer Applications (0975 – 8887)

National Conference on “Recent Trends in Information Technology” (NCRTIT-2016)

9

Graph. 3

The rate of increase of the memory utilization with the increase

in the number of items is linear for all the three techniques, as

shown in Graph. 3.

2. Varying the number of Items and having fixed Capacity =

100

Table. 4

No. of

items

Greedy Branch &

Bound

Dynamic

10 120 200 4400

25 300 500 10500

50 600 1000 20600

100 1200 2000 40800

200 2400 4000 81200

300 3600 6000 121600

500 6000 10000 202400

Table. 4 consists of the memory utilization of the algorithms

for a high capacity (= 100). The table above shows that the

memory utilized by the Dynamic programming technique is

very high compared to the other algorithms at high capacities.

This proves that this technique is inefficient when the capacity

of the knapsack is high.

The graph of Table.4is plotted below, with the No. of items on

the X-axis and the Memory utilized by the algorithm on the Y-

axis:

Graph. 4

4. CONCLUSION
The most efficient technique is the Greedy Algorithm, but it is

inappropriate under certain conditions since it does not result in

the optimal solution.

The Dynamic programming technique proves to be very

efficient in terms of number of computations for lesser

capacities, but as the capacity of the knapsack increases, this

technique proves to be inefficient. The memory utilized by this

technique is also the highest among the three approaches

considered.

Thus, the most efficient approach for the Knapsack Problem is

the Recursive Branch and Bound technique. It is simple and is

easy to apply, and can be applied to solve the knapsack

problem under all the circumstances.

For future work, genetic algorithms could be applied for the

given problem, and a comparative analysis of the performance

of the original algorithms and the modified algorithms could be

implemented.

5. REFERENCES
[1] Levitin, Anany. The Design and Analysis of Algorithms.

New Jersey: Pearson Education Inc., 2003.

[2] Knapsack problem- Wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Knapsack_problem.

[3] Hristakeva, Maya and DiptiSrestha. “Different

Approaches to Solve the 0/1 Knapsack Problem”, MICS

2005

proceedings.www.micsymposium.org/mics_2005/papers/

paper102.pdf.

[4] Martello, Silvano; Toth, Paolo (1990). Knapsack

problems: Algorithms and computer interpretations.

Wiley-Interscience.

[5] Gossett, Eric. Discreet Mathematics with Proof. New

Jersey: Pearson Education Inc., 2003.

[6] 0/1KNAPSACKPROBLEMhttp://www.swatijain.tripod.c

om/knapsack2.htm

0

5000

10000

15000

20000

25000

0 200 400 600

M
em

o
ry

 u
ti

liz
ed

No. of items

Greedy Branch & Bound

Dynamic

0

50000

100000

150000

200000

250000

0 200 400 600

M
em

o
ry

 u
ti

liz
ed

No. of items

Greedy Branch & Bound

Dynamic

International Journal of Computer Applications (0975 – 8887)

National Conference on “Recent Trends in Information Technology” (NCRTIT-2016)

10

[7] CSCI 5454, CU Boulder. Crowd Source Lecture.

DharanijaRamaswamyThatham, Pate Motter. 1 April,

2013. 1. Knapsack

Problem.http://tuvalu.santafe.edu/~aaronc/courses/5454/cs

ci5454_spring2013_CSL2.

[8] Knapsack Problem- Wiki

Groups.http://wiki.gametheorylabs.com/groups/kb/wiki/fa

460/Knapsack_Problem.html.

[9] Dynamic Programming, 0/1 Knapsack Problem. Dr. Steve

Goddard.http://www.cse.unl.edu/~goddard/Courses/CSCE

310J/Lectures/Lecture8-DynamicProgramming.pdf.

[10] S. Dasgupta, C. H. Papadimitriou and U. V. Vazirani.

Algorithms.

[11] David Pisinger. “What are the hard Knapsack Problems?”

Computers & Operations Research 32

(2005)www.dcs.gla.ac.uk/~pat/cpM/jchoco/knapsack/pap

ers/hardInstances.pdf.

[12] The Info List- Knapsack

Problem.http://theinfolist.com/php/SummaryGet.php?Find

Go=Knapsack%20Problem.

[13] S. P. Sajjan, Ravi kumarRoogi, Vijay kumarBadiger,

SharanuAmaragatti. “A New Approach To Solve

Knapsack

Problem”.http://www.computerscijournal.org/vol7no2/a-

new-approach-to-solve-knapsack-problem/.

[14] Sanjay Rajopadhye, joint work with R. Andonov and V.

Poirriez, Université de Valenciennes. “Parallel and VLSI

Implementation of the Knapsack

Problem”.http://www.irisa.fr/cosi/Rajopadhye/knapsack.ht

ml.

IJCATM : www.ijcaonline.org

http://www.univ-valenciennes.fr/limav/andonov
http://www.univ-valenciennes.fr/limav/poirriez
http://www.univ-valenciennes.fr/limav/poirriez
http://www.univ-valenciennes.fr/limav/poirriez

