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ABSTRACT 

In this paper, it is shown that Multilayer perceptron Neural 

Network can elegantly perform nonlinear regression of 

transfer characteristic of electronic devices. After rigorous 

computer simulations authors develop the optimal MLP NN 

models, which elegantly perform such a nonlinear regression. 

Results show that the proposed optimal MLP NN models have 

optimal values of MSE (mean square error), r (correlation 

coefficient) when it is validated on the and transistor non-

linearity is observed in the transfer characteristics. The 

datasets are obtained by performing experiments on a typical 

p-n junction diode 1N4007, transistor BC107 and Field Effect 

transistor (FET) BFW10. The number of readings is treated as 

samples.  

Optimal MLP NN (Multilayer Perceptron Neural Network) is 

developed for regression of electronic devices characteristics. 

Other NN configuration Jordan Elman Neural Network has 

also been considered for this regression.  

visual inspection of the plots that the outputs of the estimated 

MLP NN models closely follow the real one. It is seen that the 

performance of the proposed MLP NN models clearly 

outperforms the best Jordan Elman NN models. The simple 

NN models such as the MLP NN can be employed to solve 

such a nonlinear regression problem, is a major contribution 

of this research work. 
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1. INTRODUCTION 
Literature survey [1, 2, 3, 4] shows that Neural Networks 

(NN) have been effectively used for nonlinear regression. 

However, there is still enough scope to choose an appropriate 

NN model so that the performance measures are optimized to 

approach zero and unity for MSE (mean square error) and 

correlation coefficient (r), respectively. In regression, both the 

input data and desired response are experimental variables 

(normally real numbers) created by a single unknown 

underlying mechanism. The goal in regression is to find the 

parameters of the best linear approximation to the input and 

the desired response pairs. In nonlinear regression, 

conventional techniques such as least square approach 

generally do not work reasonably [5]. Therefore NN approach 

is worth considering for solving nonlinear regression problem 

[6]. In the electronic devices such as PN junction diode  

This paper deals with the nonlinear regression using NN 

approach. Here datasets are obtained, which are used for 

regression. As shown in Table 1, there are 32, 33 and 121 

training patterns for PN junction diode, transistor and FET 

respectively. For these datasets (80%) samples are used to 

train the NN models and (20%) different independent samples 

are used to assess the performance of estimated network 

models. 

Table 1- Electronic devices datasets used for NN based 

Models 

 

Independent validation method in statistics is used to evaluate 

the NN in which the available data are divided into a training 

set and a cross validation (CV) set. The training data is used 

to update the weights, in the network. The CV data are then 

used to assess how well the network has generalized. The 

learning and generalization ability of the estimated NN model 

is assessed on the basis of performance measures such as 

MSE, NMSE (normalized mean square error) and correlation 

coefficient, r. 

The network has been trained at least 15 times starting from 

different initial weights.  

2. COMPUTER SIMULATION   

2.1 MLP NN 
MLP based NN model is used in this study because it has 

solid theoretical foundation. The main reason for this is its 

ability to model simple as well as very complex functional 

relationship. This has been proven through a large number of 

practical applications [7]. It is shown that all continuous 

function can be approximated to any desired accuracy in 

terms of the uniform norm with a network of one hidden layer 

of sigmoidal or hyperbolic tangent, hidden units as well as 

output unit [8]. MLPs are feedforward Neural Networks 

trained with the standard backpropagation algorithm. They are 

supervised networks so they require a desired response to be 

S.

N. 

Device 

type 

No.of 

total 

samples 

No. of 

training 

Samples 

 

No. of 

cross 

validation 

Samples  

1 P-N 

junction 

Diode 

32 (80%)26(

2 to 27) 

(20%)06(2

8 to 33) 

2 Transistor 33 (80%)26(

2 to27) 

(20%)07(2

8 to 34) 

3 Field 

Effect 

Transistor 

121 (80%)97(

2 to98) 

(20%)24(9

9 to 122) 
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trained. The configuration of MLP NN is determined by 

number of hidden layers, number of the neurons in each of 

hidden layer as well as the type of activation function used for 

the neurons. Backpropagation algorithm with momentum is an 

improvement to the straight gradient-descent search in the 

sense that a memory term (the past increment to the weight) is 

used to speed up and stabilize convergence. Table 2 shows 

various parameters of the MLP NN models, which are varied 

for obtaining optimal parameters. PEs are varied from 1 to 20 

for the hidden layers. 

Optimal values of MSE, r-correlation coefficient are obtained 

with 4 PEs for transistor in the single hidden layer. For P-N 

junction diode best results are obtained using two hidden 

layers. First and second hidden layers contain 9 and 6 PEs 

respectively. In case of FET 6 PEs with single hidden layer is 

used. Different supervising learning rules are attempted such 

as momentum, conjugate gradient, quick propagation, 

Levenberg Marquardt, step and delta bar delta. In each case, a 

NN model is trained for fifteen times with different 

initialization of connection weights. The best results are 

obtained for Levenberg Marquardt learning rule in hidden as 

well as output layers. In addition ‘linear’, ‘lineartanh’ and 

‘tanh’ transfer functions are varied in the output layer. The 

optimal values are found for linear transfer function for PN 

diode and transistor whereas in FET it is Tanh. For the MLP 

NN models, are used. 

 

Table 2 – Variable parameters of MLP NN Model 

supervised learning epochs= 1000, Error threshold = 0.01, Transfer function in hidden layer= tanh, No. of PEs in input 

layer = 01, No. of PEs in output layer =1 

 

For transistor dataset the performance measures are found 

better for single hidden layer and that of for PN junction diode 

it is for two hidden layers as shown in Table 3. With increase 

in number of hidden layers the performance of the network 

has not improved significantly for transistor. In case of P-N 

junction diode two hidden layers give optimal performance. 

Table 3– Number of Hidden layer and r 

No. of 

Hidden 

layer 

r 

P-N junction 

diode 

Transistor 

 

 

FET 

1 0.9926 0.9929 0.9748 

2 0.9966 0.9787 0.9707 

3 0.9894 0.9908 0.9685 

4 0.9742 0.9874 0.9546 

 

The number of epochs for training the datasets is also varied 

to obtain optimum response. Table 4 illustrates that optimum 

performance for 1000 epochs, as there is no significant 

improvement in performance in case of P-N junction diode 

whereas in transistor dataset there is deterioration  

Table 4 – Number of epochs and performance measures 

S.N. No. of 

epochs 

r 

P-N Junction 

Diode 

Transistor 

 

 

FET 

1 1000 0.9966 0.9929 0.9748 

2 2000 0.9955 0.9732 0.9749 

3 3000 0.9931 0.9898 0.9743 

4 4000 0.9967 0.9731 0.9254 

5 5000 0.9954 0.9880 0.9745 

 

 

 

Parameter Typical Range Optimal parameter 

PN junction Diode Transistor 

 

FET 

1 Hidden Layer 1 to 4 2 1 

 

1 

2 PE 1 to 20 Hidden I- 9 

HiddenII-6 

4 6 

3 Learning Rule Momentum (Mom), Conjugate 

gradient (CG), Levenberg 

Marquardt (LM), Quick 

propagation (QP), Step, Delta 

bar delta 

LM LM LM 

4 Transfer 

Function in 

output layer 

Linear, Lineartanh, Tanh Linear  Linear Tanh 
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Figure 1,2 and 3 give regression capability of MLP NN on 

cross validation datasets of P-N junction diode, transistor and 

FET respectively, which portray desired output and actual 

output of the MLP NN on cross validation data set. It is seen 

that actual output follows the desired output very closely. 
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Fig. 1 Regression capability of MLP NN on cross 

validation Dataset of P-N junction Diode [r=0.9966] 
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Fig. 2 Regression capability of MLP NN on cross 

validation Dataset of Transistor [r=0.9929] 
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Fig. 3 Regression capability of MLP NN on cross 

validation Dataset of FET [r=0.9948] 

2.2 Jordan Elman Neural Network 
Recurrent networks are neural networks with one or more 

feedback loops. The Recurrent networks are used as input-

output mapping networks and also as associative memories 

[9]. By definition, the input space of a mapping network is 

mapped onto an output space, a recurrent network responds 

temporarily to an externally applied input signal. Recurrent 

networks can be considered as dynamically driven recurrent 

networks. Because of global feedback memory requirement 

reduces significantly [10]. 

Jordan and Elman networks extend the multilayer perceptron 

with context units, which are processing elements (PEs) that 

remember past activity. Context units provide the network 

with the ability to extract temporal information from the data.  

Table 5 shows various parameters of the Jordan Elman NN 

models, which are varied for obtaining optimal parameters. 

Here also different supervising learning rules are attempted.  

It is found that the best results are obtained for Levenberg 

Marquardt learning rule in hidden as well as output layers. 

Transfer functions are varied in the output layer and optimal 

parameters are found for linear transfer function. 

 

Table 5 – Variable parameters of Jordan Elman NN Model 

 

S.N. Parameter Typical Range Optimal parameter 

P-N Diode Transistor FET 

1 Learning Rule  Momentum (Mom), Conjugate 

gradient (CG), Levenberg 

Marquardt (LM), Quick 

propagation (QP), Step, Delta 

bar delta  

Levenberg 

Marquardt 

Levenberg 

Marquardt 

 

Quick 

propagation 

2 Transfer Function 

in output layer  

Linear, Lineartanh, Tanh Linear Linear Tanh 

3 Context Unit 

Transfer Function 

Integrator Axon, Tanh Integrator 

Axon, Sigmoid Integrator Axon, 

Context axon, Tanh Context 

axon, Sigmoid Context axon 

Integrator Axon Integrator 

Axon 

Sigmoid 

Integrator 

Axon, 

4 Context Unit time 

constant 

0.1 to 0.9 0.6 0.7 0.8 
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In Jordan Elman NN, context unit transfer functions are varied 

for the optimal performance and it is found for integrator 

axon. Time constants are varied from 0.1 to 0.9 and optimal 

performance is obtained with time constant 0.8 for FET 

whereas for P-N junction diode and transistor it is optimal for 

0.6 and 0.7 respectively. For the given dataset Jordan Elman 

NN model is trained for five times. Fig 4,5 and 6 depict 

regression capability of Jordan Elman NN on cross validation 

dataset for all the three devices. It is seen that actual output 

barely follows the desired output. 

For the given dataset MLP NN model is trained for five times. 

The performance measures such as MSE, NMSE and r on 

training dataset and cross validation dataset are obtained 
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Fig. 4 Regression capability of Jordan Elman NN on 

CV Dataset for PN junction diode [r=0.9966] 
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Fig.5 Regression capability of Jordan Elman NN on CV 

Dataset for  Transistor[r=0.9872] 
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Fig. 6 Regression capability of Jordan Elman NN on 

CV Dataset for FET[r=0.9687] 

 

The optimal performance of architectures of every NN for 

every device is shown in Table 6. The optimal performance is 

obtained for MLP NN.  

For FET, it is observed that for MLP NN the time required for 

training the network per epoch per exemplar is 20.5 

microseconds. Connection weights (free parameters) are 7 for 

all the NN architectures. 

In case of PN junction diode, free parameters are 85 and time 

elapsed per epoch per exemplar is 884 microseconds, which is 

largest amongst all the NNs. However the percentage error is 

4.6% that is the least for MLP NN.  

When transistor dataset is considered, free parameters are 13 

and time elapsed per epoch per exemplar is 38.5 

microseconds. For MLP NN 0.87% error is the least amongst 

all other NNs. 

Table 6: Comparison of all the NN Architectures on cross validation dataset of the three devices 

P= No. of connection weights, N= Total no. of exemplars in training dataset 

 

3. CONCLUSION 
Results show that a MLP NN is able to solve Nonlinear 

Regression of the transfer characteristics of electronic devices 

problem with sensible accuracy. When the performance of 

MLP and Jordan Elman NN based regression are carefully 

examined for PN junction diode, transistor and FET data sets, 

MLP NN has clearly outperformed its Jordan Elman  NN 

counterpart with respect to the performance measures such as 

MSE, NMSE, and r. Moreover, from visual inspection of 

graphs the actual output of the estimated MLP NN model 

follows the desired output more closely when compared with 

S.N. Device Type 

 

NN % Error Time elapsed /epoch/ 

Exemplar in microseconds 

N/P 

1 PN junction 

Diode 1N4007 

MLP       (1-9-6-1) 4.6 884 0.31 

Jordan Elman (1-4-1) 5.5 38.5 2 

2 Transistor 

BC107 

MLP      (1-4-1) 0.87 38.5 2 

Jordan Elman (1-4-1) 2.5 38.5 2 

3 FET MLP       (1-6-1) 0.09 20.5 0.196 

Jordan Elman  (1-4-1) 0.07 10.3 0.134 
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other NN models.  It is also seen that the time elapsed per 

epoch per exemplar is sensibly less for MLP NN amongst all 

the networks except in PN junction diode. In case of transistor 

the time elapsed per epoch per exemplar is same for both the 

NNs. For PN junction diode it is 22.96 times higher in MLP 

NN model than that of Jordan Elman NN model. In FET, the 

time elapsed per epoch per exemplar for MLP NN model is 

1.99 times than that of Jordan Elman NN model. The MLP 

NN models for all the three devices have achieved the least 

percentage error on cross validation dataset. Ratio of number 

of exemplars to in training dataset to number of connection 

weights is higher for MLP NN among all devices except PN 

junction diode. This ratio gives the complexity of NN. 

Proposed MLP NN models are able to accomplish the  

Nonlinear Regression of the transfer characteristics of 

electronic devices.  
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