
MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

10

An analysis on Fine-grained Access Control in
Databases

Prasanna M. Rathod

Student M.E. First Year H.V.P.M.
COET, Amravati

Vrundan R. Parode

Student M.E. First Year
H.V.P.M.COET, Amravati

R.R.Keole

Asst. Prof. H.V.P.M. COET,
Amravati

ranjeetkeole@gmail.com

ABSTRACT
Today, there are countless terabytes of data processed by IT

systems, and we store a measurable portion of that data in the

relational database management systems (RDBMS). Access

control in these IT systems, is one of the cornerstones of any

Information Security Policy. The granularity of such access

control can be on different levels, like on directories or folder

level, database level, table level, and even on individual

record (tuple) and data field level.

In this report, I survey various models and mechanisms of

fine-grained access control in databases. Different models

exist for providing access control at level finer than tables.

This paper considers existing and upcoming theoretical

models as well as models currently implemented in various

database systems.

Keywords
RDBMS, IT System, Fine-grain access, Tuple

1. INTRODUCTION
Access control is an integral part of databases and information

systems. Granularity of access control refers to the size of

individual data items which can be authorized to users. There

are many scenarios that demand _ne-grained access control:

1. For an academic institution's database that stores

information about student grades, it may be desired

to allow students to see only their own grades. On

the other hand, a professor should get access to all

grades for a course she has taught.

2. For a bank, a customer should be able to query

his/her account balance, and no one else's balance.

At the same time, a teller should have read access to

balances of all accounts but not the addresses of

customers corresponding to these balances.

3. Who would consider opening production systems,

such as order entry, inventory and customer support,

to customers and partners without the ability to

strictly limit data access?

4. A Web hosting company may wish to run the HR

and Payroll business of other companies. Different

companies want different personalization. Some

want access to raw data to run business analysis

reports that best suit their corporate standards.

As seen in above scenarios, there's need to apply security

policies to data rather than through what means it is accessed.

This report is structured as follows; Section 3 discusses ASP

based SCM as a larger example. Section 4 explains how

current generation systems use application-tier access control

and it's drawbacks. Next, Section 5 touches upon the basic

access schemes. Section 6 provides the recently introduced

concept of Database-tier firewall. Section 7, discusses query

modification based models including Oracle's VPD. Further

Section 8, discusses a model based on algebraic manipulation

of views and extended Non- Truman model based on

authorization views. Finally, the paper concludes with a

summary and pointers to the references

2. APPLICATION SERVICE

PROVIDER BASED SUPPLY CHAIN

MANAGEMENT
B2B partners usually form a chain for providing a service or

manufacturing a product. The partners along the chain are

either inventory buffer points or value adding points. This

chain is referred to as a supply chain or supply web. The

network of suppliers and consumers is modeled as a graph

with nodes representing entities such as suppliers,

manufacturers, wholesalers, retailers etc. A supplier-consumer

relationship is represented as an arc from the supplier to the

consumer. The graph is a multi-stage or multi-partite graph

with each stage comprising entities of a given type. Goods or

products flow from a node to one connected to it from

supplier to consumer while orders and payments flow in the

reverse direction. The graphs linking suppliers and customers

for various products are represented and stored in tables in a

RDBMS.

Business process support is assumed to be provided by an

Application Service Provider. This is often employed when

the client is a small or medium enterprise which lacks the

resources or manpower to support such an application. In such

a model, the ASP provides the database as a service; it hosts

the shared database and allows for custom applications to be

deployed. Thus, every application logging in the database as a

particular supplier or customer should be able to get access

only to data it is allowed to access.

Some access constraints expected to be posed by various

customers and suppliers are as follows;

1. A node requires that its sales and inventory levels of

item x should be visible to only its direct and

indirect suppliers of item x and no one else.

2. A node requires that the orders placed by it of item

x be visible to only its direct or indirect suppliers of

item x. However, the price information should be

visible only to its direct supplier of x.

One solution for the above situation is to develop custom

applications for suppliers and customers and allow access to

data using only these applications, where these applications

internally make sure all security constants are met. That is,

each application has access to all data but allows manipulation

based on authorization of users. Of course, this implies no

node can wish to use its own application to access data, all

applications are to be provided by the ASP.

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

11

3. APPLICATION-TIER ACCESS

CONTROL
Current generation Information systems bypass DB access

control facilities and embed access control in application

programs used to access the DB. For example, an application

may authenticate the user using a password and then provide

access to data user is authorized to manipulate.

Although widely used, this approach has several

disadvantages:

1. Access control has to be checked at each user-

interface. This increases the overall code size. Any

change in the access control policy requires

changing a large amount of code.

2. All security policies have to be implemented into

each of the applications built on top of this data (e.g.

OLTP and decision support applications using the

same underlying data).

3. Given the large size of application code, it is

possible to overlook loopholes that can be exploited

to break through the security policies, e.g.

improperly designed servlets.

4. Also, it is easy for application programmers to

create trap-doors with malicious intent, since it is

impossible to check every line of code in a very

large application.

For the above reasons, _ne-grained access control should

ideally be specified and enforced at the database level.

4. BACKGROUND ON ACCESS

CONTROL MECHANISMS
Access control determines whether access to a resource is

permitted. Permissions and authorization of users or processes

are defined according to the policies of the business. An

access control policy basically specifies a set of rules that

describe the methods in which a client can access a server.

4.1 Access Control Matrix
An access control matrix is a simple mechanism for the

storage of access control information. It is a table in which

each row represents a subject (user), each column represents

an object (the object can be a _le or a record etc.) and each

entry is the set of access rights for that subject to that object.

In general the access control matrix will be sparse, because

most users will not have access rights to most objects. Every

subject will, however, be mapped with every object (subject,

object, rights).

This approach can provide very fine grained security control.

The problem is the more fine grained the control becomes the

more entries are required in the table. In a big system the table

can quickly become very big and difficult to manage and slow

to search.

4.2 Access Control Lists
A different approach is to use capabilities and access control

lists. The first method is to specify only the objects that a user

may access. This approach is called a capability. It can be

seen as a token giving the possessor certain rights to an object.

The capability can be stored with the subject.

A second method is to create a list that specifies which

subjects can access an object, including their access rights.

This approach is called an access control list (ACL). The ACL

can be stored with the object or the resource.

These methods also have some problems: Firstly, it is very

restrictive, because a user can only access the objects

explicitly named in its capability, and object can only be

accessed by a specified set of users in its ACL. Secondly, the

management and administration of these approaches become

impractical and near impossible; for example, in a big system

with many objects it becomes impossible to update and check

all the object's ACLs when one subject leaves the system.

4.3 MoFAC: Model for Fine-grained

Access Control
MoFAC requires various queries to be executed to be pre-

specified as transactions and thus is more suited for particular

applications like banking, however still keeping the access

control at DB-tier increases security and flexibility.

The basic unit of grouping records is called a Record

Group(RG) which is a collection of record IDs and certain

other information relevant to records belonging to that RG.

The other information may be aspects like What transactions

may be executed on records belonging to this RG; and What

business roles may access the records belonging to the RG etc.

Various similar type of user needs are classified as role

profiles eg: a generic 'Teller' profile at a bank. With each role

a list of what transactions it can access is added. Further, Role

Profile Assignment records are kept which describe which

user can log on as under which profile and it's level, for

example, X may be a manager , level 2.

As a user logs under a specific role, and requests a transaction

to execute, the system checks whether the current role can

execute the transaction or not, access may be denied at this

point. If the required transaction can be accessed, then the

transaction is checked for affected rows, using their IDs

various RGs are listed, and each of that RG is checked for

whether this Transaction under this profile can be executed.

Only then the final execution takes place or the query is

rejected.

The basic idea behind MoFAC, lies in the fact that access to

different records in the same file can be treated differently

through a subject wanting access to record possessing

(offering) certain rights, and the resource (object) to which

access is required, demanding certain rights. Only if the

offered rights satisfy the demanded rights, is the access

granted.

Although, by requiring a lot of pre-specifications, extra

management is still needed. However the method more

elegant than the brute force method of having an Access

Control List for individual records. Also, addition & deletion

of users and records is much easier than in simple models

4.4 View Based Security
Currently, authorization mechanisms in SQL permit access

control at the level of complete tables or columns, or on

views. It is also possible to create views for specific users,

restricting access to data by granting rights only to certain

views & tables for each user. These allow those users access

to only selected tuples of a table. However, complex role

based access control conditions are difficult to implement. In

some cases view security can be bypassed (if users have

access to base tables).

Also, administration of security policy becomes complex by

views. When a security policy is added, changed, or removed,

it's difficult to determine what exactly to do with each view.

An administrator cannot tell whether, by changing security

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

12

policies through altering or dropping a view, he/she is

breaking an application.

Again this approach is not scalable with large numbers of

users.

5. CONCEPT OF DB-TIER FIREWALL
The database tier firewall, as envisaged in [2], is a security

mechanism that validates and then transforms an application

generated SQL query to produce a query understood by the

database and in keeping with the access restrictions implied

by the security policy. For this purpose it uses abstract-to-

logical schema mappings, internally created view definitions,

security policy _les and information from the session context.

To facilitate ease of programming, it offers the programmer a

set of APIs that complement the provision for expressing

queries in SQL.

The principal building blocks of the database tier firewall

include:

1. Query Validator: It checks whether the input query

submitted by the application is valid with respect to

the abstract schema i.e. whether the table objects

and attributes referred in the query are all contained

in the abstract schema visible to the application

developer. It also contains a parser which checks

whether the given query conforms to standard SQL

syntax.

2. Query Generator: The application program has the

liberty of intimating its queries to the database in

the form of API calls as published by the database

firewall. Whenever the firewall receives such a

request, it transforms the request into an appropriate

query statement involving tables in the abstract

schema and delivers the query to the query

transformer.

3. Query Transformer: This block transforms a query

on the abstract-schema into an equivalent query

containing internally defined view names or tables

in the logical-schema. The query transformer would

then substitute one or more order tables in the

logical schema for the single orders table in the

abstract schema.

4. Query Filter: This is the most security-aware

component in the firewall, performing operations

such as appending a predicate to a query and

projecting out only the columns that the current user

is authorized to see. For this purpose, it consults the

security policies administered by the security

manager. In addition, it may also consult attributes

in the session or application context. In effect, this

block does both row-level and column-level

filtering.

One of currently implemented solution for Query filtering or

providing fine access control is Oracle Virtual Private

Database, explored next.

6. QUERY MODIFICATION BASED

MODELS

6.1 Oracle's Virtual Private Database
The Virtual Private Database (VPD) is the aggregation of

server-enforced, fine-grained access control, together with a

secure application context in the Oracle9i database server.

Fine-grained access control in VPD relies upon dynamic

query modification to enforce security policies on the objects

with which the policies are associated. Here, query refers to

any selection from a table or view, including data access

through a query for update, insert or delete statements, or a

sub-query. From the user's point of view, the set of rows that

he or she has access to only exists inside the table. Each user

should only be allowed to do modifications on the rows that

follow the security rules. Based upon these security rules,

Oracle generates a predicate clause that transparently appends

to the user s SQL statement. This concept is called Virtual

Private Database.

6.1.1 ARCHITECTURE OF ORACLE VPD

Figure 1: Architecture of Oracle VPD

As shown in Figure 1, whenever a user connects to the

database, the database logon trigger fires, which calls the

Context stored procedure to set the defined context.

Policy rules are defined according to the user context. After

connection, when the user issues a query or DML statement

against a policy-linked table, Oracle determines which policy

needs to be linked according to the statement type. In other

words, you can link various policies depending on the select,

insert, update, or delete statement. The policy further indicates

which function to call to implement security rules. If you have

different policy rules for selecting, updating, inserting, or

deleting data, you can create different functions to form a

predicate.

Depending upon the policy rules defined in the predicate

procedure, the resultant predicate is appended to the user's

query. The server process now executes this predicated query

and sends the results back to the user.

Thus the process of query modification is entirely transparent

to the user.

6.1.2 LIMITATIONS OF VPD
Oracle VPD currently provides no mechanism to project out

certain attributes i.e., no column level security is present.

It is difficult to write predicates involving cases of cross-ref,

joins of tables etc., in complex cases the user may be

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

13

authorized to view certain data, but a correct query is

transformed into an invalid one by attaching of predicate.

The user's query is relatively simple with the onus of ensuring

secure access resting squarely with the author of the security

policy. Writing policy functions corresponding to business

policies is a lot of work.

6.2 Truman Models
The idea behind the Truman security model is to provide each

user with a personal and restricted view of the complete

database. User queries are modified transparently to make

sure that the user does not get to see anything more than her

view of the database. The returned answer is correct with

respect to the restricted view, if we assume the database has

no other data.

In the Truman model, the DBA defines a parameterized

authorization view for each relation in the database. This view

defines all that the user can access from this database relation.

The user query is modified transparently by substituting each

relation in the query by the corresponding parameterized view

(the user can write queries on base relations in addition to the

authorization views). Values of run-time parameters like user-

id, times etc. are plugged in before the modified query is

executed.

The parameterized view framework provides a more general

way to express authorization policies than the technique of

adding where clause predicates used in VPD, since it can

additionally perform other actions such as hiding or falsifying

specific attribute values which cannot be done by VPD (for

example, if an authorization policy permits a student to see

her grades tuple but only after the grade attribute has been

modified as - all A and B grades to High, and all other grades

to Low).

6.2.1 QUERY MODIFICATION SCHEME OF

INGRES
As discussed in section 5, in INGRES queries are handled by

a "query modification" algorithm. Essentially, the algorithm

searches for permitted views whose attributes contain the

attributes addressed by the query, and the qualifications

placed on these attributes are then conjoined with the

qualifications specified in the query. The algorithm is

attractive because when a query exceeds it's permissions, it

delivers the data that is within the permissions.

However, there are a few limitations. First, permissions are

granted for actual relations or views of single relations, and it

is not possible to grant permissions to views of several

relations. Secondly, the algorithm does not handle rows &

columns symmetrically. That is, if a request exceeds

permissions in rows, rows within permissions are returned.

However, if an extra column is asked for, the full query is

denied rather than projecting out extra columns. Also, there

are few cases in which the algorithm delivers less than what

user is permitted to view.

6.3 Limitations Of Query Modification

Approach
Following are the various limitations of existing query

modification based models;

1. A major drawback of VPD and Truman models

results from the fact that the query that is executed

on the database is a transparent modification of the

user query. This may cause inconsistencies between

what the user expects to see and what the system

returns.

2. Due to queries being modified transparently, it may

not return the results exactly expected by the user.

For example, there may be tuples excluded from the

result due to user not having authorization to access

them, however the successful execution of query

may lead the user to interpret that these are only

tuples which exist leading to possibly wrong

misinterpretation, which could be avoided if the

query is rejected or user informed of access

constraint not being met.

3. The rewritten query executed by the system may be

different from the query posed by the user, and may

have very different execution characteristics. For

example, if each base relation is substituted by a

view, and the views are complex (as they may be, if

they express complex authorization policies), the

rewritten query may be quite expensive to execute.

In the case of VPD, equivalently, the conditions

introduced in the where clause may have complex

sub-queries, which may be expensive to execute. In

the case of VPD, equivalently, the conditions

introduced in the where clause may have complex

sub-queries, which may be expensive to execute.

A user query and an authorization view used to replace a

relation in the query may both contain the same test, leading

to redundant tests. If the test involves a join, the Truman-

modified query may also contain redundant joins. Removal of

redundant joins is an extra task for the query optimizer, and if

not removed, the redundant joins would result in wasted

execution time.

7. NON-TRUMAN & OTHER MODELS
Under the Non-Truman model, the query is subjected to a

validity test, failing which, the query is rejected and the user is

notified about this (this can be handled like an exception by

the user application). If the query passes the test, it is allowed

to execute normally, without modification.

Here, First method based on algebraic manipulation of view

definitions is described. Then, a model based on notions of

conditional & unconditional validity of queries is discussed

7.1 Model Based On Algebraic

Manipulations of View Definitions
This model allows the administrator to describe the access

permissions using views that are defined by conjunctive

relational calculus expressions 1. The basic principles of this

model are:

1. Database access is specified in terms of views: a set

of views is defined, and each user is granted

permission to access one or more views.

2. Users direct queries at the actual database, not at

any particular view.

3. When a request is presented to the database system,

it is performed both on the meta-relations (holding

definitions of views), resulting in a mask, and on

actual relations, resulting in an answer.

4. The mask is then applied to the answer, yielding the

data that may be delivered to the user. This reply

may be accompanied by statements describing the

portions delivered.

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

14

However, the model has a few limitations in that firstly, it

handles only specific types of retrieval queries. It does not

handle views with disjunctions and aggregate functions.

Secondly, extending the model is difficult as by allowing

partial answers, set difference and aggregation can result in

wrong answers. Finally, the algorithm yields only permitted

views (masks) that can be expressed with attributes requested.

Views expressed using additional attributes are not handled.

7.2 Non-Truman Model Based On

Validity Notion of Queries
A fine-grained access model is based on authorization an view

that allows authorization transparent querying; that is, user

queries can be phrased in terms of the database relations, and

are valid if they can be answered using only the information

contained in these authorization views.

7.2.1 KEY FEATURES OF THE MODEL
1. Access control is specified using Authorization

views. A parameterized authorization view is an

SQL view definition which makes use of parameters

like user-id, time, user-location some of which may

be taken out from the session context. The DBA can

create several authorization views, one for each

access policy and any of those views can testify for

the validity of the user's query. The model works

within the basic SQL framework and does not

require the DBA to encode policies using a separate

rule language.

2. Queries to allow to be written in an authorization-

transparent manner, that is, queries can be written

against the database relations without having to

refer to the authorization views. Given a user query

(phrased in terms of database relations or views),

the system checks if the query is valid, that is, it can

be answered using the information available in the

authorization views that are accessible to the user. If

found to be valid, the query is allowed to execute as

originally specified, without any modification,

otherwise it is rejected.

7.2.2 QUERY VALIDITY AND INFERENCE

RULES
A user query q can be answered using the information

contained in the authorization views available to the user if

there is a query q' using only the authorization views that is

equivalent to q, i.e., the two queries give the same result on all

database states. Such queries q are classified as

unconditionally valid.

The certain queries can be answered using the information

contained in a set of authorization views, even if they cannot

be rewritten using the views. They characterize such class of

queries, called conditionally valid queries, that can be

answered using the information contained in a set of views in

a given database state.

A set of powerful inference rules which can be used to infer

the unconditional and conditional validity of queries are given

in the model and also mechanism to efficiently check the

validity of a query by incorporating these rules into a query

optimizer are provided.

Unlike the Truman model, the Non-Truman model avoids the

pitfalls of the query modification approach and allows a great

deal of flexibility in authorization, such as authorization of

aggregate results.

However, the inferencing mechanisms described are quite

complex to implement. Also, in some cases the algorithm

provided may not be able to infer validity of some

unconditionally valid queries.

8. CONCLUSION
This paper highlighted the approaches taken to provide _ne-

grained access control to data in Relational DBMS. There are

simple to implement basic schemes which fail as the size of

data & users grow. Fine-grained control, on tuple or field

level increases management function significantly, and also

makes it more complex for these basic schemes.

The currently implemented market solution, Oracle's VPD

leaves much to be desired. The other query modification

approaches are also not complete and do not handle all cases.

Further, performance issues in query modification approaches

may also of concern to large applications.

On the other hand, methods which modify(or mask) results

rather than modifying the query handle only a subset of

operations and language desired while the complexity of

complete implementation of validity based models is quite

high.

Thus, while a lot of applications requiring _ne-grained access

control are emerging and can gain much from a db-tier access

model, no one model is still in place and more work can be

done in the areas of implementing generic models as well as

customizing existing methods for various applications.

9. ACKNOWLEDGMENTS
I express my sincere thanks to Prof Mrs. A.B. Raut, HOD of

CSE dept of HVPM, COET, Amravati for allowing me to

present this paper also I express my heartiest thanks to Prof.

R.R.Keole Assist. Prof. of HVPM, COET, Amravati for his

valuable guidance while preparing this paper and guiding me

time to time.

Also all the friends and Staff who help me in preparing this

paper.

10. REFERENCES
[1] The virtual private database in oracle9ir2: An oracle

technical white paper.

http://otn.oracle.com/deploy/security/oracle9ir2/pdf/v

pd9ir2twp.pdf.

[2] Santosh Dwivedi, Bernard Menezes, and Ashish

Singh. Database access control for e-business a case

study. In 11th International Conference on

Management of Data COMAD (to be presented),

2005.

