
MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

33

Data Structure for Advance Planning and Reservation in

Grid System

Rusydi Umar
Dept. of Information and

Computer Sciences, Univ. of
Hyderabad, Hyderabad, India.

Dept. of Informatics
Engineering, Ahmad Dahlan
Univ., Yogyakarta, Indonesia

Arun Agarwal
Department of Information and
Computer Sciences, University

of Hyderabad.

Prof CR Rao Road,
Gachibowli, Hyderabad,

500046 India

CR Rao
Department of Information and
Computer Sciences, University

of Hyderabad.

Prof CR Rao Road,
Gachibowli, Hyderabad,

500046 India

ABSTRACT

In Grid system, we need an advance reservation to ensure that

specified resources are available for applications in a

particular time in the future. The impact of advance

reservations is decreasing resource utilization due to

fragmentations. To mitigate this problem in our previous work

we have proposed a novel advance reservation scheduling

namely First Come First Serve – Ejecting base Dynamic

Scheduling (FCFS-EDS) with advance planning. In order to

implement reliable FCFS – EDS scheduling, it is important to

store information in data structures about future allocations

and to provide fast access to the available information. This

paper proposes a novel data structure used by FCFS – EDS

scheduling strategy to increase the throughput in a grid

environment.

General Terms

Data Structure, Algorithm.

Keywords

Data Structure, FCFS-EDS, Advance Reservation.

1. INTRODUCTION
Ian Foster et al. [1] defined a grid computing as “A

computational grid is a hardware and software infrastructure

that provides dependable, consistent, pervasive, and

inexpensive access to high-end computational capabilities”.

Grid computing system has the ability to provide the quality

of service (QoS) requirements given by their users. Example

of QoS is the availability of resources needed by a user [2].

Grid computing technology is well-suited for Bag-of-Tasks

(BoT) applications. In BoT applications each application

consists of independent tasks or jobs [3, 4]. In most grid

systems, submitted jobs are initially placed into a queue if

there are no available resources. Therefore, there is no

guarantee as to when these jobs will be executed. This causes

problems in time-critical or parallel applications, such as task

graph, where jobs may have interdependencies [5].

Advance reservation is a mechanism for requesting a resource

for use at a specific time in the future from multiple

scheduling systems. Currently, several grid systems are able

to provide advance reservation functionalities, such as GARA

[6], ICENI [7], Maui Scheduler [8], Portable Batch System

PBS Pro [9], DSRT [10, 11], Sun Grid Engine [12], and

GridSim [13]. The impact of advance reservations is

decreasing resource utilization due to fragmentations [14].

Several strategies have been proposed to mitigate the impact

of advance reservation, i.e. to increase resource utilization.

We have proposed advance reservation strategy to increase

resource utilization namely First Come First Serve – Ejecting

base Dynamic Scheduling (FCFS – EDS) with advance

planning[15]. In order to implement reliable FCFS – EDS

scheduling, it is important to store information in data

structure about future allocations and to provide fast access to

the available information. This paper proposes a novel data

structure used by FCFS – EDS scheduling system.

2. RELATED WORKS
There are several data structures for administering advance

reservation. In general there are two types of data structure for

administering advance reservation i.e. time slotted data

structure and continuous data structure. In time slotted data

structure each request is stored in a certain number of

consecutive time slots, where in continuous data structure

each request defines its own time scale. Time slotted data

structure approach has the advantage of restricting the amount

of data that must stored, i.e., the memory consumption is

bounded and, furthermore, it can be easily implemented [16].

The majority of current implementations in the field of

advance reservations support time slotted data structure [17, 8,

18, 19, 20, 21 and 25]. Consequently, the data structure

presented here is designed to support slotted time.

A tree-based data structure is commonly used for admission

control in network bandwidth reservation [20, 22, and 23].

Brown et al. [21] have proposed Calendar Queue

(CalendarQ), as a priority queue for future event set problems

in discrete event simulation. Qing Xiong et al. [24] have

proposed a linked-list data structure for advance reservation

admission control. Sulistio et al. [25] have proposed GarQ

(Grid Advance Reservation Queue) for administering advance

reservation in grid system. GarQ was partly influenced by

Calendar Queue data structure. GarQ has buckets with a fixed

δ, which represents the smallest slot duration, as with the

Calendar Queue. Sulistio et al. [25] also implemented all data

structures aforementioned above in grid system and compare

the performance of GarQ and the other data structure. They

had a result that GarQ performed better among the other data

structure.

3. PROPOSED DATA STRUCTURE
All existing data structure can not be used for our scheduling

strategy (FCFS-EDS [15]) for administering advance

reservation. Our proposed data structure for administering

advance reservation using FCFS-EDS scheduling strategy is

influenced by GarQ data structure, because it has better

performance among other data structure reported in the

literature. The proposed data structure has buckets with a

fixed time (our assumption in 5 minutes), which represents the

smallest slot duration, as with the Calendar Queue.

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

34

Our proposed data structure can be seen in Fig. 1. It is an

array of a record that contains of a variable named free that

holds the amount of free compute node in the time slot and

pointer p to a linked list of nodes. Name of the array is tslot.

The index of the array is the number of time slot. Each time

slot contains a list of nodes of reservation that starts in that

time slot. The node contains this information:

userID : this information is useful for identification the user

jobID : user can submit more than one independent job,

jobID can identify them

tes : the earliest start time that the job can be started

tls : the last start time that the job can be started

te : the execution time of the job

next : pointer to a node of reservation

Fig 1: Proposed Data Structure for FCFS-EDS Scheduling

Strategy

We define k as the number of nodes (reservation) in each

timeslot and tr as the relax time (the earliest start time – the

latest start time) or tr = tls – tes.

Let us see the following illustration. Wa have a total number

of compute node maxCN = 5, and a sequence of incoming

reservation is depicted in Table 1. For example the given

parameters for userId = 3 in the Table 1 implies the following:

“User 3 reserved 3 time slots at time slot 12 up to 14, and

cannot be delayed/shifted. (tes=tls=12, te=3)”. Data structure

for storing all reservation in Table 1. Can be seen in Fig. 2.

FCFS-EDS (First Come First Serve - Ejecting base Dynamic

Scheduling) strategy takes an advantage of shifting earlier

reservations made (subject to given flexible constraints) to

make room for new incoming reservation request.

Definition of variables is explained in lines 4-9. Lines 10–14

initialize the variables.

Table 1. Parameters of reservation request.

userID jobID tes tls te

1 1 11 11 1

1 2 11 11 1

2 1 11 11 3

3 1 12 12 3

4 1 15 16 1

5 1 15 15 1

5 2 15 15 1

6 1 11 11 2

7 1 13 13 1

8 1 16 16 2

9 1 11 11 2

10 1 15 15 3

Fig 2: Data Structure for storing reservation request from

Table 1.

Let us assume that earlier “n-1” reservation requests made to

FCFS-EDS, specified by the following parameters: tes, tls,

te, userId, jobId, have been successfully scheduled.

Incoming “nth” reservation request is scheduled based on first

fit strategy (iteration of lines 16-25). It tries to search for

resources within the given constraints (tes and tls) and without

disturbing plan for previous “n-1” reservation requests that

were made.

Let us call this as plan Pold. If within the given flexible

constraints the search fails to allocate resources the algorithm

tries to move around previous “n-1” reservations to

accommodate “nth” reservation request (lines 31-44). If the

resources are found then the search is declared successful and

the algorithm outputs a new plan Pnew that depicts ”n”

reservation requests as a logical view. If the search is a failure

then the “n-1” reservation request plan has to be restored to its

previous state i.e. Pold.

The time complexity of FCFS-EDS algorithm is O(n.m)

where n is tr (where tr is time of relax is equal to tr = tls-tes) and

m is te.

Algorithm 1: FCFS-EDS

1 Function searchAndAlloc(userId, jobId, tes, tls, te : integer) → boolean

2 //search and allocate job with given tes, tls, te

3 Dictionary :

4 start : integer /*start time of the job*/

5 finish : integer /*finish time of the job*/

6 min : integer /*min free within interval start - finish*/

7 t : integer /*timeslot of minimum available node between start to finish*/

8 tr : integer /*relax time, length between of tes and tls*/

9 relax : integer /*different between start and tes time (start - tes + 1)*/

Algorithm :

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

35

10 tr ← tls – tes

11 succeed ← false

12 start ← tes

13 finish ← tes + te – 1

14 relax ← start - tes

15

16 while (!succeed and (relax≤tr)) do /*searching by first fit strategy*/

17 /*searching minimum free node between start to finish*/

18 min,t ← minFreeNode(start, finish)

19 if(min > 0) then

20 allocate(userId, jobId, tes, start, tls, te)

21 succeed ← true

22 else

23 start ← t + 1

24 finish ← start + te - 1

25 relax ← start - tes

26 /*end while, the state is succeed = true or succeed = false (relax > tr)

27

28 start ← tes

29 finish ← tes + te – 1

30 relax ← start - tes

31 while (!succeed and (relax≤tr)) do

32 /*searching minimum free node between start to finish*/

33 min,t ← minFreeNode(start, finish);

34 if(min > 0) then

35 /*push or schedule the job to data structure using our lemma below and

36 update free node between start to finish*/

37 allocate(userId, jobId, tes, start, tls, te)

38 succeed ← true

39 else

40 /*try to shift a job that start at t time slot*/

41 if(!shiftNode(t)) then //can't be shifted, move start to index+1

42 start ← t + 1

43 finish ← start + te - 1

44 relax ← start - tes

45 /*end while, the state is succeed = true or succeed = false (relax > tr)*/

46 if (!succeed)

47 putBackAllShiftedJob()

48 return succeed

Algorithm 2. shows an algorithm for allocating/adding the

reservation in the data structure. Here new reservation is put

in an ascending order by userId and jobId. Lines 12-19 is

adding reservation in the head of the list (insert fist). Lines 22-

29 are finding the right place in ascending order by userId, if

the list is already having the userId then lines 31-40 are

finding the right place for jobId (ascending order by jobId).

Updating the free field of tslot array is done by line 42-43.

Deleting an existing reservation is shown in Algorithm 3. If

the reservation will be deleted, is in head node of the list then

it is done by lines 10-12. If the reservation will be deleted is

not in head node of the list then it is done by lines 13-18.

Updating the free field of tslot array is done by line 20-21.

Algorithm 2. Allocating/Adding a reservation

1 Procedure allocate(int userId, int jobId, int

tes, int start, int tls, int te)

2 //allocate a reservation with userID, jobID,

eStartTime=tes, lStartTime=tls,

3 //execTime=te at timeslot start

4 Dictionary :

5 finish : integer /*finish time of the job*/

6 n : node /*record of reserevation*/

7 pn : pointer to node

8 Algorithm :

9 finish ← start + te – 1

10 n = new node(userId, jobId, tes, tls, te)

11

12 if (tslot[start].p = nil) then

13 tslot[start].p ← n //insert first

14 else if (tslot[start].p.userId > n.userId) then

15 n.next ← tslot[start].p

16 tslot[start].p ← n //insert first

17 else if (tslot[start].p.userId = n.userId and

tslot[start].p.jobId > n.jobId) then

18 n.next ← tslot[start].p

19 tslot[start].p ← n //insert first

20 else

21 pn ← tslot[start].p

22 while (pn.next!=nil AND pn.next.userId <

n.userId) do

23 pn ← pn.next

24 //here pn.userId < n.userId or pn.userId =

n.user.Id or pn.next = nill

25 if (pn.next = nil) then

26 pn.next ← n //insert last

27 else if (pn.next.userId > n.userId)

28 n.next ← pn.next //insert new userId

29 pn.next ← n

30 else //the same userId is found or

pn.next.userId = n.user.id

31 while(pn.next!=nil and

pn.next.userId=n.userId and pn.next.jobId<n.jobId)

do

32 pn ← pn.next

33 if(pn.next = nil) then

34 pn.next ← n //insert last

35 else if(pn.next.userId != n.userId) then

36 n.next ← pn.next //insert last for old

userId

37 pn.next ← n

38 else if (pn.next.jobId > n.jobId) then

39 n.next ← pn.next

40 pn.next ← n //insert old userId

41

42 for(int i=start; i<=finish; i++)

43 tslot[i].free ← tslot[i].free -1 //update a

free node

Algorithm 3. Deleting a reservation

1 Procedure delete(int userId, int jobId)

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

36

2 //delete a reservation with userId, jobId

3 Dictionary :

4 finish : integer /*finish time of the job*/

5 pn : pointer to node

6 pdel : pointer to node

7 Algorithm :

8 finish ← start + te – 1

9 pn ← tslot[start].p

10 if(pn.userId = userId and pn.jobId = job.Id)

//delete first

11 tslot[start].p = pn.next

12 delete pn //delete pn from memory

13 while (pn.next.userId != userId or pn.next.jobId

!= jobId) do

14 pn ← pn.next

15

16 pdel ← pn.next

17 pn.next ← pdel.next

18 delete pdel

19

20 for(int i=start; i<=finish; i++)

21 tslot[i].free ← tslot[i].free -1 //update a

free node

Suppose User 11 wishing to reserve 3 time slots from 12 up

to 14, for his/her 3 independent jobs as depicted in Table 2.

Table 2. User 11’s Parameters of reservation request.

userID jobID tes tls te

11 1 12 14 3

11 2 12 14 3

11 3 12 14 3

 Fig 3: Data Structure for storing reservation request

from User 11.

The result of FCFS-EDS for scheduling reservations from User

11 is a data structure as depicted in Fig 3.

Our proposed data structure has search time complexity

O(te.tr) where te is execution time and tr is the relax time (the

earliest start time – the latest start time). Allocating/Adding

reservation has time complexity O(k+te), where k is the

number of reservation in the list in for each timeslot. For

deleting reservation our proposed data structure has time

complexity O(k+te).

4. RESULTS
User requests that are input for our FCFS-EDS, are generated

randomly. The input specifications are:

a. The rate of incoming reservation requests are assumed to

follow poison distribution with mean 2.0,

b. Execution time (te) for reservation requests are between 5 to

48 timeslots distributed uniformly,

c. Earlier starting time (tes) is between 0 to 48 timeslots

distributed uniformly,

d. Percentage of user request that are for flexible advance

reservation is assumed to at most 50% (selected randomly),

e. Relax time (tr) is between 1 to 24 timeslots distributed

uniformly and tls = tes + tr

f. In the experiment it is assumed that a time slot is equal to 5

minutes (clock time).

Fig 4: Comparison of percentage of utilization factor

between scheduling with Advance Planning (FCFS – EDS)

and flexible advance reservation without Advance

Planning

We compare the performance of the proposed method (FCFE-

EDS with advance planning) and an existing approach

(flexible advance reservation strategy without advance

planning). With above inputs and total number of compute

node is 30 (maxCN=30), the utilization factors of both

strategies are measured. The comparison of resource

utilization of both strategies is shown in Fig 4. Percentage of

utilization factor is calculated within sliding window of size

12 time slots (1 hour). Fig 4. shows that FCFS-EDS yields

better utilization than the traditional strategy (without advance

planning).

5. CONCLUSION
We have discussed the impact of advance reservation in Grid

Computing. Advance reservation will decrease the resource

utilization due to a lot of fragmentations. We have proposed a

novel data structure for our strategy to increase resource

utilization FCFS-EDS [15]. Our results show that this data

structure for FCFS-EDS can increase resource utilization due

to fragmentations caused by advance reservation.

6. REFERENCES
[1] Foster, I., and Kesselman, C. Computational Grids.

Morgan Kaufmann, 1998.

[2] Joshy Joseph and Craig Fellenstein, Grid Computing,

Prentice Hall PTR, New Jersey, December 30, 2003

[3] W. Cirne, F. Brasileiro, J. Sauve, N. Andrade, D.

Paranhos, E. Santos-Neto, and R. Medeiros. Grid

computing for bag of tasks applications. In Proc. of the

3rd IFIP Conference on E-Commerce, E-Business and E-

Government, Sep 2003

[4] D. Abramson, J. Giddy, and L. Kotler. High

performance parametric modeling with Nimrod/G: Killer

application for the global grid? In Proc. of the 14th

MPGI National Multi Conference 2012 (MPGINMC-2012) 7-8 April, 2012 “Recent Trends in Computing”

Proceedings published by International Journal of Computer Applications® (IJCA)ISSN: 0975 - 8887

37

International Symposium on Parallel and Distributed

Processing (IPDPS), Cancun, Mexico, May 1–5 2000.

[5] Sulistio A., Buyya R., A Grid simulation infrastructure

supporting advance reservation. In Proceedings 16th

International Conference on Parallel and Distributed

Computing and Systems, Cambridge, USA, November

9–11 2004.

[6] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt,

and A. Roy. A distributed resource management

architecture that supports advance reservations and co-

allocation. In Proc. of the 7th International Workshop on

Quality of Service, London, UK, 1999.

[7] S. McGough, L. Young, A. Afzal, S. Newhouse, and J.

Darlington. Workflow enactment in ICENI. UK e-

Science All Hands Meeting, pages 894–900, September

2004.

[8] Maui Cluster Scheduler.

http://www.clusterresources.com/pages/products/maui-

cluster-scheduler.php, Last Accessed June 2009

[9] B. Nitzberg, J. M. Schopf, and J. P. Jones. PBS Pro: Grid

Computing and Scheduling Attributes. In Grid Resource

Management: State of the Art and Future Trends, pages

183– 190. Kluwer Academic Publishers, Norwell, MA,

USA, 2004.

[10] K. Kim. Extended DSRT Scheduling System. Master’s

thesis, Department of Computer Science, University of

Illinois at Urbana-Champaign (USA), Aug. 2000

[11] G Garimella, Advance CPU Reservations With The

DSRT Scheduler. Master’s thesis, Department of

Computer Science, University of Illinois at Urbana-

Champaign (USA), 1999.

[12] Sun Grid Engine. http://gridengine.sunsource.net, 2008

[13] R. Buyya and A. Sulistio, Service and Utility Oriented,

Data Centers and Grid Computing Environments:

Challenges and Opportunities for Modeling and

Simulation Communities, Keynote Paper, In Proceedings

of the 41st Annual Simulation Symposium (ANSS’08),

April 13–16, 2008, Ottawa, Canada.

[14] W. Smith, I. Foster and V. Taylor, “Scheduling with

Advanced Reservations”, In Proc. of the 14th IEEE

International Symposium on Parallel and Distributed

Processing (IPDPS’00), 2000, pp. 127-132.

[15] Rusydi Umar, Arun Agarwal, CR Rao, Advance

Planning and Reservation in a Grid System, The Fourth

International Conference on Networked Digital

Technologies, NDT 2012, April 24 – 26, 2012, Dubai.

To Appear in CCIS/LNCS Vol 7899

[16] L.-O. Burchard. Analysis of data structures for admission

control of advance reservation requests. IEEE

Transactions on Knowledge and Data Engineering,

17(3), 2005.

[17] L.-O. Burchard and H.-U. Heiss, “Performance

Evaluation of Data Structures for Admission Control in

Bandwidth Brokers,” Proc. Int’l Symp. Performance

Evaluation of Computer and Telecommunication

Systems (SPECTS ’02), Soc. for Modeling and

Simulation Int’l, pp. 652-659, 2002.

[18] R. Guerin and A. Orda, “Networks with Advance

Reservations: The Routing Perspective,” Proc. IEEE

INFOCOM ’99, pp. 118-127, 2000.

[19] O. Schelen, A. Nilsson, J. Norrgard, and S. Pink,

“Performance of QoS Agents for Provisioning Network

Resources,” Proc. Seventh Int’l Workshop on Quality of

Service (IWQoS ’99), pp. 17-26, 1999.

[20] A. Brodnik and A. Nilsson. A static data structure for

discrete advance bandwidth reservations on the internet.

In Proc. of Swedish National Computer Networking

Workshop (SNCNW), Stockholm, Sweden, September

2003.

[21] R. Brown. Calendar queues: A fast O(1) priority queue

implementation for the simulation event set problem.

Communications of the ACM, 31(10):1220{1227, 1988.

[22] T. Wang and J. Chen. Bandwidth tree – a data structure

for routing in networks with advanced reservations. In

Proc. of the 21st Intl. Performance, Computing, and

Communications Conference (IPCCC), pages 37–44,

Phoenix, USA, 2002.

[23] L. Yuan, C.-K. Tham, and A. L. Ananda. A probing

approach for effective distributed resource reservation. In

Proc. of the 2nd International Workshop on Quality of

Service in Multiservice IP Networks, pages 672–688,

Milan, Italy, February 2003. Springer-Verlag.

[24] Q. Xiong, C. Wu, J. Xing, L. Wu, and H. Zhang. A

linked-list data structure for advance reservation

admission control. In Proc. of the 3rd International

Conference on Networking and Mobile Computing

(ICCNMC), Zhangjiajie, China, August 2-4 2005.

[25] A. Sulistio, U. Cibej, S. Prasad, and R. Buyya, GarQ: An

Efficient Scheduling Data Structure for Advance

Reservations of Grid Resources, International Journal of

Parallel, Emergent and Distributed Systems (IJPEDS),

DOI: 10.1080/17445760801988979, April 4, 2008,

Taylor & Francis Publication, UK.

