
International Journal of Computer Applications (0975 – 8887)

National Conference on Research Issues in Image Analysis and Mining Intelligence (NCRIIAMI-2015)

5

Validating Data Integrity in Steganographed Images

using Embedded Checksum Technique

Jagan Raj J
MTS, Storage R&D Department,

VMware Software India Pvt Ltd, Kalyani Vista,
165/1, Doraisanipalya, Bengaluru, KA, India - 560076

Prasath S
Asst. Professor, Dept. of Computer Science,

Erode Arts and Science College,
Rangampalyam, Erode, TN, India -638009

ABSTRACT

In this paper, discuss on validating the data integrity of an

image that carries secret information across the network.

Validating the data integrity has been always a difficult task

on steganographed image files. To discuss a way through

which data integrity is verified for possible image tampering

by intruders using md5 checksum in self embedded technique.

Keywords

Image steganography, md5checksum, data integrity, data

tampering, message digest, data security

1. INTRODUCTION
Pictures are the most common and sophisticated means of

conveying or transferring information. A picture is worth a

thousand words and they are concisely convey information

about various positions, sizes and inter-relationships among or

between objects. They portray several information that we can

recognize as objects. Human beings are good at deriving any

information from these images, because of our innate visual

and mental abilities. About 75% of the information received

by human are in pictorial form.

The word steganography is of Greek origin and means

“covered, or hidden writing”[9]. It is the science of hiding

information. On the other hand, cryptography is used to make

data under transmission to unreadable by any intruder, the

goal of steganography is to hide the secret data from a third

party. In steganography, the information can be hidden in any

medium such as images, audio files (jpg, png, bmp etc.,), text

files (doc, ods, docx etc.,) and video transmissions (mp4, avi,

mkv etc.,). When message is hidden in these medium a stego

carrier is formed, which is called as stego-image. It will be

perceived to be as close as possible to the original carrier or

cover image by the human. Steganography and cryptography

are closely related in the data security. Cryptography

scrambles the given messages so that they cannot be

understood. On the other hand, Steganography, will hide the

given message in given media file so that there is no

knowledge of the existence of secret message in the first

place. Steganography includes the hiding of information

within computer files. In digital steganography, electronic

communications may include steganographic coding inside of

a transport layer, such as a document file, image file, program

or protocol. [1]

However, today Steganography is very sophisticated than the

examples above suggest, allowing a user to hide huge amount

of information within image or audio files. These types of

steganography are often used in conjunction with

cryptographic techniques so that the information is doubly

protected; at first it is encrypted and then hidden so that an

adversary has to first of all find the information and then

decrypt it.

One of the main constraint on steganographic techniques are

to verify the data integrity of media file, which carries the

original message and the file, which is predominantly image

file. There are possibilities, where an intruder can capture the

image on transmission and do some manipulations so that the

file is altered in such a way that would benefit the intruder's

intention and also lead to the possibility of misinterpreting the

original information to a wrong one.

The first step in steganography is to pass both the secret

message and the cover message ie., the image file, into the

encoder. In the encoder, protocols will be implemented to

embed the given secret message into the media file. The type

of protocol to use will depend on what kind of information

you are trying to embed and where you are embedding it in.

For example, you can use an image protocol to embed

information inside any image file. A key is often needed in

sender's end for embedding process. This can be a public or

private key, so that you can encode the secret message with

your own private key and then the recipient can decode it

using his/her public key. When embedding the information in

this way, you can reduce the chance of a third party attacker

getting hold of the stego object and decoding the same to find

out the secret message. In general, the embedding process

inserts a mark in an object.

Having passed through the encoder, a stego image will be

produced. A stego image is the original cover object with the

secret information embedded inside in it. This object should

or always look identical to the cover object as otherwise a

third party attacker can see embedded information. Having

produced the stego image, it will then be sent through some

communications channel, such as secure copy, ftp or email to

the intended recipient for decoding. The recipient will decode

the stego object in order to view the secret information. The

decoding process is simply the reverse of encoding process

followed. It is the extraction of secret data from a stego

image.

In the decoding process, the stego image is fed in to the

system. The private or public key can decode the original key

that is used during the encoding process is also needed so that

the secret information can be decoded in receiver's end. It

depends on the encoding technique, where sometimes the

original cover object is also needed during the decoding

process. Otherwise, there may be no way of understanding or

extracting the secret message from the stego image. Once

decoding process is completed, the secret message embedded

in the stego-image can then be extracted and seen. The generic

decoding process again requires object, I’. The result will be

either the retrieved secret message from the object or

indication of the likelihood of M being present in image I.

Different types of robust marking systems use different inputs

and outputs. A formula for this process can be:

International Journal of Computer Applications (0975 – 8887)

National Conference on Research Issues in Image Analysis and Mining Intelligence (NCRIIAMI-2015)

6

Cover medium + Secret message = Stego-Image

The typical flow of a steganography process is as mentioned

in figure-1.

Fig 1: Steganography Process

There are more number of algorithms available for image

steganography like masking, LSB (Least significant bit

method), and filtering etc. Least significant bit method is one

of the simplest and popular method for data hiding in

steganography. Researchers focus for a long time is on

security aspect. A hash function is any algorithm that maps

data of variable length to data of a fixed length[3]. The values

returned by a hash function are called hash values, hash sums,

hash codes, checksums, digests or simply hashes. an example

for practical use in data structure is a hash table where the

data is stored associatively. Almost all the programming

languages has similar data types for programming ease. In this

paper our effort to produce a highly secured stego images

under human visual system (HVS). In the proposed method,

we are using marker technique[8] to insert hash value.

2. IMPORTANCE OF DATA

INTEGRITY IN STEGANOGRAPHED

FILES
Data integrity refers to maintaining and assuring the accuracy

and consistency of data over its entire life-cycle,[2] and it is a

significant aspect of any system which is storing, managing,

processing, or retrieving data. The term data integrity is broad

in scope and have widely different definitions depending on

the specific context – even in a single field of computing.

Data integrity is the antonym of data corruption, which is a

form of data loss. The overall goal of any data integrity

technique is the same: ensure that the data is recorded exactly

as intended in any given file or medium and upon later

retrieval, ensure the data is same as it was when it was

originally stored. In short, data integrity aims to prevent

unintentional changes to information by anyway. Data

integrity shouldn't be confused with data security, which is the

discipline of protecting data from unauthorized access. Data

integrity is about technique for making sure that the data you

entered are accurate. It is important to double check all the

information that you passed on the sender's end should be

same in the reciever's end.

To create a digest of the message, we use hash function[3]-

[5]. The hash function creates a fixed digest from a variable –

length message as shown in below figure

Fig 2: Message digest generation process

The two most common hash functions are called

MD5(Message Digest 5), SHA-1 (Secure Hash Algorithm 1)

and SHA-2 (Secure Hash Algorithm 2). The first one

produces a 128-bit digest. The second produces a 160-bit

digest. Thr third one produces 224, 256, 384, or 512 bits

digest. Hash functions have two properties to guarantee its

success.

1. The digest can only be created from message, but

not vice-versa.

2. It is one-to-one function and there is little

probability that two message will have the same

digest.

One practical use in a data structure is called as hash table

where the data is stored associatively. Searching for a person's

information using name in a list is slow, but the hashed value

can be used to assign a reference to the original data and

retrieve constant duration. Another use case is in

cryptography, the science of safeguarding the data. It is easy

to generate hash values from the input data and easy to verify

the data matches the hash, but hard to 'imitate' a hash value to

hide the malicious data.

3. EXISTING APPROACH FOR

STEGANOGRAPHY
The existing approach allows the user to embed their secret

message in images in such a way that it is invisible and

doesn't degrade or affect the quality of the original

image[6],[7] to the normal human eye.

1. Input Image- An input interface (see figure.1) is

provided so that a user can input a (gif, bmp, jpg, or tiff

etc.) image in which the user wants to hide their personal

data for privacy purposes.

2. Input Secret Text- Input the text file containing the

Secret Text, which the user wants to code in to the

image. The input text file is read by our system (see

figure.1).

3. Coding Data in Image- For coding text data in the

image, several encoding techniques like LSB, marker

techniques are used in steganography.

4. Decoding Data from Image- For decoding secret

data in the image. The corresponding algorithms are used

and generated characters are concatenated to form a

complete secret message

4. PROPOSED METHODOLOGY
In this method I have proposed two steps for Steganography

1. Encoding,

2. Decoding

3. Integrity verification

International Journal of Computer Applications (0975 – 8887)

National Conference on Research Issues in Image Analysis and Mining Intelligence (NCRIIAMI-2015)

7

Fig 3: Proposed steganography process with data Integrity

check

4.1 Encoding Algorithm
Proposed Algorithm for Encoding Data in Image:

Step-1: Read the RGB image of any size.

Step-2: Read the secret text (ST) and store the data in the

given Image file (I) using any steganographic

algorithm(SA)

 I=addTextUsingSteg(I,ST,SA)

Step-3: Find hash digest (D) for file (I) from any one of the

hash algorithms(MD5/SHA1/SHA2)

 D=hash(I)

Step-4: Specify start of marker(SOM) at the end of image file,

append the digest (D) calculated in the image file(I)

and then specify end of marker(EOM) in the image

 I=I+(SOM+D+EOM)

Step-5: Now, the output image (I) containing coded data and

hash is ready for transit.

4.2 Decoding Algorithm
Proposed Algorithm for Decoding Data in Image:

Step-1:Read the RGB image (I) at the receiving end.

Step-2:Extract the secret text (ST) and store it using

steganographic algorithm used in encoding

 ST=extractTextUsingSteg(I, SA)

4.3 Integrity verification Algorithm
Proposed Algorithm for Data Integrity verification for secret

text in Image file:

Step-1: Traverse the image file and fing start of marker(SOM)

at the end of image file, read the digest in file (DIF)

stored from image file (I)

Step-2: Truncate the hash section(SOM+D+EOM) from the

image file(I)

I=I-(SOM+D+EOM)

Step-3: Find new hash digest (NHD) for new image file (I)

using the same hash algorithm used for encoding

NHD=hash(I)

Step-4: If digest in file(DIF) and new hash digest(NHD) are

equal, the secret text(ST) obtained is valid else invalid

5. SAMPLE RESULTS
In our proposed methodology have taken three different color

images 256x256-Person, 950x534-Peacock and 1024x768-

Nelumno_nucifera of different sizes. Simulation results are

performed in Microsoft's File Checksum Integrity Verifier

version 2.05 version and Virtual Steganographic Laboratory-

1.1 version

Figure-4: Original Images

Figure-5: Encoded Images with text data and checksum

The comparison of results with data transfer without

corruption/intruder's intervention are shown in Table-I. The

files which have changed during transmission by size and

content are described in Table-II and Table-III respectively

with their corresponding checksums.

Table I - Comparison of checksum for the steganographed

image, which transferred without any corruption

Image(256x256-Person) with 256x256 dimension and

undisturbed during the file transit

Image

stage

Checksum

value(md5) (D)

Secret Text (ST)

After

Encoding

3845e97369852af

8c7741ba0ed5ae5

39

This is a secret text, which

is hidden in a image file

using steganography and

having embedded

checksum in it

International Journal of Computer Applications (0975 – 8887)

National Conference on Research Issues in Image Analysis and Mining Intelligence (NCRIIAMI-2015)

8

After

Decoding

3845e97369852af

8c7741ba0ed5ae5

39

This is a secret text, which

is hidden in a image file

using steganography and

having embedded

checksum in it

Table II - Comparison of checksum for the

steganographed image, which transferred with corruption

because of image resize

Image(950x534-Peacock) with 950x534 dimension and

disturbed during the file transit by resizing the image

dimension to 475x267

Image

stage

Checksum

value(md5) (D)

Secret Text

(ST)

After

Encoding

c965b6c78382dcaf81

037fd28fd6fe37

This is a secret text,

which is hidden in a

image file using

steganography and

having embedded

checksum in it

After

Decoding

67cb60d47fbec5b947

43ca7706477892

Secret text got

corrupted

Table III - Comparison of checksum for the

steganographed image, which transferred with corruption

because of image color change

Image(1024x768-Nelumno_nucifera) with 1024x768

dimension and disturbed during the file transit by changing

the image to black and white

Image

stage

Checksum

value(md5) (D)

Secret Text (ST)

After

Encoding

e64d69492b460cd2

5dbb42f970409f23

This is a secret text,

which is hidden in a

image file using

steganography and having

embedded checksum in it

After

Decoding

e1c2e6f45c57978c8

6a78df764295972

Secret text got corrupted

Table IV - Qualitative Comparison of proposed

methodology with Discrete Cosine Transform(DCT) for

below given six parameters

Parameters

DCT

methodology

(Existing)

ECT

Methodology

(Proposed)

Digest Inclusion on Stegno

files No Yes

Capability to identify

MITM(Man In The

Middle) attack No Yes

IPv4 Header Checksum

check Yes Yes

Digest size used(md5) 0 bit 128 bits

Robustness Less data loss No Data loss

Data Integrity Check at

receiving end No Yes

6. CONCLUSION AND FUTUR WORK
The proposed method is good for security aspect because if

any unauthorized users or intruders tampered the image in any

aspect and if the data is lost, this can be verified by the

embedded checksum. Through this method, we are ensuring

the image & the text are intact and the message can't be mis-

interpreted in the receiving end. Even though if intruder found

the algorithm used for steganography in the stego image by

steganalysis and changed the content of the secret text and if

the same is received at the receiver's end the tampering can be

found by comparing the checksum.

In this methodology, rather than having constant checksum

using marker method, we can have the checksum in reserved

bytes of file header or the location information from where the

checksum starts and its offset.

7. REFERENCES
[1] Compression Algorithms for Real Programmers, Wayner

Peter. Publisher: Morgan Kaufmann, 11 Oct 1999 ISBN-

10: 0127887741

[2] Boritz, J. “IS Practitioners' Views on Core Concepts of

Information Integrity”. International Journal of

Accounting Information Systems. Elsevier. Retrieved 12

August 2011.

[3] From Wikipedia, “Hash function,” Jan 2014, URL:

http://en.wikipedia.org/wiki/Hash_function

[4] Behrouz A. Forouzan,”Data communication and

networking,” Tata McGraw-Hill Publication, 2nd ed.,

2003, pp.799-800.

[5] William Stallings,” Cryptographic and network

security,” Pearson Prentice Hall Publication, 4th ed.,

2006, pp.320-375

[6] Holub V, Fridrich J: Digital image steganography using

universal distortion. In 1st ACM Information Hiding and

Multimedia Security Workshop. Montpellier; 17–19 June

2013.

[7] W. Bender, “Techniques for Data Hiding,” IBM Systems

Journal, Vol. 35, no. 7, Pgs 313-336, 1996

[8] Wang Qian, et .al,”Steganography and Steganalysis

based on digital image,” IEEE 4th International

Conference on Image and Signal Processing, Shanghai,

15-17 Oct. 2011, pp.252-255.

[9] Adity Sharma, Anoo Agarwal and Vinay Kumar, “ A

simple technique for steganography”, arXiv:1307.8385v1

[cs.MM] 31 Jul-2013.

[10] Vojtěch Holub, Jessica Fridrich, Tomáš Denemark

“Universal distortion function for steganography in an

arbitrary domain”, EURASIP Journal on Information

Security, January 2014.

[11] Denemark T, Fridrich J, Holub V: Proceedings SPIE,

Electronic Imaging, Media Watermarking, Security, and

Forensics 2014. Edited by: Alattar A, Memon ND,

Heitzenrater CD. San Francisco; 2–6 February 2014

IJCATM : www.ijcaonline.org

