
International Journal of Computer Applications (0975 – 8887)

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE 2015)

13

Generation of Test Cases based on Analysis of
Simulink Stateflow Models

Basanti Minj

S. o. S. in CS & IT
Pt. R. S. U., Raipur (C. G.)

ABSTRACT
Embedded systems are mainly modeled by using Matlab's

Simulink and Stateflow tools. Matlab's Simulink is a tool for

modeling, simulating and analyzing software systems and

Simulink Stateflow is a control logic tool used to model

event-driven systems (Reactive systems) through state

machines and flow charts within a Simulink model. In real

time, systems undergo frequent changes, thus complexity of

the systems grows and testing of the systems become time

consuming and expensive even if changes occur in small parts

of the system. So, these models need formal verification. In

this paper, we focus on event-driven systems which are

captured by Simulink Stateflow model. For this, we propose

an algorithm generateFSM in which we first generate an

XML file for the Simulink Stateflow model of a system. Then,

we parse that XML file following top-down approach by

using an XML parser. Next, we generate a Finite State

Machine (FSM) for the model, using the parsed information.

By using this FSM, we generate test cases for the models of

the embedded systems.

Keywords

Simulink tool, Simulink Stateflow tool, Simulink Stateflow

model, Finite State Machine (FSM), Test cases.

1. INTRODUCTION
Every software product undergoes changes during their

lifetime. These changes occur due to various reasons such as

enhancing functionalities of the existing one, detecting defects

in the software product, modification in existing

functionalities etc. Every time whenever the changes occur in

the software product, the changed software product is to be

tested so that the modified code does not negatively affect the

behavior of unmodified code. Due to changes, the software

product size increases and becomes complex during testing,

so the use of appropriate design models for software tasks has

become important. Models can be used to represent the

desired behavior of a system under test (SUT) or to represent

testing strategies and we can test this model through model

based testing. Hence, we need formal verification of the

models against, stated specifications. Matlab's

Simulink/Stateflow (SL/SF) is a software tool for modeling,

simulating and analyzing dynamic systems. Simulink is an

add-on library for Matlab containing a number of blocks with

the help of which one can design dynamic behavior of a

system under consideration. To capture discrete control states,

one generally uses Stateflow. It provides a graphical editor

where we drag Stateflow graphical objects on it from the

design palette to create finite state machines. However, since

SL/SF doesn't have a published formal semantics, SL/SF

model needs to be translated to an intermediate format and

from this we can generate intermediate FSM. Using this FSM,

we generate test cases for the models of embedded systems.

2. BASIC CONCEPTS
In this section, we discuss the basic concepts required to

understand our work.

2.1 Model based testing
It is an application of model based design for designing and

also executing artifacts to perform system testing. Here,

models are used to represent the desired behavior of a System

Under Test (SUT), or to represent testing strategies. This

model based testing using models for the generation of system

testing procedures. From these models, test cases are derived

which are executed against systems under test. Model based

testing is very useful for small and large systems. Model

based testing has ability to accommodate frequent changes in

the requirements.

2.2 Simulink
Simulink is a software tool from the Mathworks for modeling,

simulating and analyzing dynamic systems. Most of the

embedded and real-time systems that we encounter in real life

are hybrid systems. Hybrid systems exhibit both continuous

and discrete behavior. These kinds of hybrid systems can be

modeled, simulated and analyzed using Simulink. Systems

can be modeled in Simulink by creating a network of blocks

dragged from the Simulink block library and dropped into the

GUI editor and connecting the appropriate port.

2.3 Simulink/Stateflow libraries
 Source library - It contains blocks that generate

signals.

 Sink library - It contains blocks that display output.

 Discrete library - It contains blocks that define

discrete-time components.

 Linear library - It contains blocks that describe

linear functions.

 Connection library - It contains blocks for

implementation of external input/output that passes

data to other parts of the model, create subsystems,

and perform other functions.

 Non-linear library - It contains blocks that

describe nonlinear functions.

2.4 Simulink Stateflow
It is an interactive graphical design tool that works with

Simulink to capture the event-driven behavior of the systems.

Event-driven systems where the system makes a transition

from one state to another state based on transition condition. It

provides a graphical editor on which the Stateflow graphical

objects dragged from the design palette to create finite state

machines. Simulink Stateflow enables hierarchical states.

International Journal of Computer Applications (0975 – 8887)

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE 2015)

14

States has the following labels:

 Entry actions - It define the action to be taken

when the state is entered or activated.

 During actions - It defines the set of actions to be

taken when the state is already active and some

event occurs.

 Exit actions - It define the actions to be taken when

the transition condition become true and the state

becomes inactive from active.

 On event actions - It defines the actions to be taken

when a state is active and the mentioned event

occurs.

Transition
Transition in Stateflow means a jump from some source state

to any target state.

Transition label consists of the followings:

Event [condition] {condition action} /transition action

 Event - It specifies the event that should cause the

transition to occur.

 Condition - It specifies a boolean expression that

needs to be evaluated to true for the transition to

take place.

 Condition action - It specifies the actions to be

immediately executed when the condition evaluates

to true.

 Transition action - It specifies the action to be

executed when the transition destination has been

determined to be valid provided the condition is

true, if specified.

2.5 Graph visualization software
Graph visualization software (Graphviz) is a package of open

source tools initiated by AT and T Labs Research for drawing

graphs specified in DOT language scripts. It consists of tools

that process DOT files. DOT is a language that describes

graphs.

2.6 sourceNode
It is a node that contains the ID of state which is the source

state of the transition.

2.7 TransitionNode
It is a node that contains the ID of state which is the

destination state of the transition.

2.8 stateEntered
It is a linked list that contains TransitionNode which is

already traversed while generating test cases.

3. RELATED WORK
In this section, we discuss some existing related work on test

case generation using SL/SF models.

3.1 Automated Translation of MATLAB

Simulink/Stateflow Models to an

Intermediate Format in HyVisual
This approach [1] specifies the requirements of the

intermediate format. Most of the real world

Simulink/Stateflow models are hybrid system. They exhibit

continuous as well as discrete behavior. So there is an

observation lead us to choose an intermediate format to

represent these hybrid systems.

The MoBIES team [4] has done considerable research on

defining an interchange format for hybrid systems and the

result of it is an interchange format called Hybrid System

Interchange Format (HSIF). In HSIF, hybrid systems are

represented as a network of communicating hybrid automata.

In this process huge model can be broken into simple

communicating hybrid automata. Hybrid automata

communicate with each other through signals and shared

variables. If an output signal of hybrid automata A is an input

signal of hybrid automata B, then hybrid automata B is said to

be data dependent on hybrid automata A.

HyVisual
In HyVisual, They developed a parser for MATLAB

model files. The Model Object generated by the parser is used

by a Java class called GenMoMLCode which gets the model

specific information and generates a HyVisual model

represented in Modeling Markup Language (MoML). The

generated HyVisual model emulates the Simulink model as a

network of hybrid automata. Hence, they choose Network of

Hybrid Automata representation as the intermediate format.

HyVisual models are represented in an XML based language

called Modeling Markup Language (MoML).

3.2 Regression Test Selection Based on

Analysis of Simulink/Stateflow Models
The approach [2], presents Simulink/ Stateflow Dependency

Graph (SLDG) metamodel. This model comprises of nodes

representing different Simulink/Stateflow (SL/SF) model

elements along with dependencies capturing the relations

between SL/SF elements. They used Model Extractor to parse

the mdl file of SL/SF model and generate an intermediate

representation of the Simulink Stateflow blocks and the

interconnection network of the model named as

Simulink/Stateflow Dependency Graph (SLDG).

3.3 A Metamodel for Simulink/Stateflow

Models and its Applications
Approach [3], has developed a prototype tool for change

impact visualization based on the static analysis of a

constructed Simulink/ Stateflow Dependency Graph (SLDG)

for the SL / SF model.

3.4 Operational semantics of hybrid

systems
Edward and Zheng discuss an interpretation of Hybrid

systems as executable models. Hybrid systems are

heterogeneous systems that include continuous-time

subsystems interacting with discrete events.

In this paper, they focus on the simulation tools, they view

that hybrid systems are not much simulated as executed. They

view the semantics of hybrid systems as a parallel model of

computation and the simulation tools like compilers or

interpreters that happen to have a hybrid systems semantics.

The executable computational view of hybrid systems was

simulated by the DARPA MoBIES (model based integration

of embedded software), which begins the challenging task of

founding an interchange format for hybrid systems. The aim

was to facilitate interchange of models and techniques

between tools. The result of this work was a formalism called

Hybrid Systems Interchange Format (HSIF).

4. PROPOSED WORK
In this work, we deal with the following issues.

 To decide an intermediate format for representing

systems.

 2. To translate Matlab SL/SF model for the chosen

International Journal of Computer Applications (0975 – 8887)

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE 2015)

15

intermediate format.

 To generate an intermediate Finite State Machine

(FSM) by parsing the intermediate format file.

 To generate Test cases from the FSM.

To decide an intermediate format for representing systems we

choose an XML file as an intermediate format for

representing Matlab SL/SF model. We decide this because

Matlab SL/SF model is stored in mdl file which does not give

a textual view only graphical view of the model. The XML

based language syntax is simple and the model information

can be easily retrieved by existing parsers.

To translate Matlab SL/SF model for the chosen intermediate

format we use Matlab command to generate XML file for

Matlab SL/SF model. We use this XML file as input in our

proposed algorithm generateFSM.

To generate an intermediate Finite State Machine (FSM) by

parsing the intermediate format file we use our proposed

algorithm generateFSM which take an XML file as an input.

The algorithm focus on the Simulink Stateflow part of the

SL/SF model which captures the reactive states of the model

and generate FSM for it. Then, we use the generated FSM for

producing Test Cases.

To generate Test cases from the FSM, we first traverse each

sourceNode present in linked list containing transition source

ID. For each sourceNode we find the transition destination id

node TransitionNode. Then, adding that TransitionNode to

a new linked list stateEntered and we have to add

TransitionNode to a linked list stateEntered till each

TransitionNode stored in the stateEntered linked list.

4.1 Algorithm
In this algorithm, we provide an approach that how we

generate test cases by using the Simulink Stateflow model. In

this work we have proposed three algorithms, generateFSM,

extract and GenerateTestCases. In generateFSM algorithm

we parse the XML file (input file) to create Nodelist of

transition source node, transition destination node and

transition condition node. The extract algorithm is used to

extract the attributes of the state to maintain its Nodelist.

Through these Nodelists we are generating FSM for the XML

file of the Simulink Stateflow model. This generated FSM is

visualized and validated through an open source tools package

named as Graphviz. After this, finally, we are calling another

algorithm GenerateTestCases for generating test cases of the

dynamic systems.

Algorithm 1: generateFSM
Input: XML file.

Output: FSM of the stateflow part of the model.

Variables:

S-list: state node list.

T-list: transition node list.

P-list: P node list.

S-ID: state ID.

S-Name: state label.

T-Name: transition label.

T-ID: transition ID.

SIdList: state ID node list.

SnameList: state labelstring node list.

p-attr: attributes of p.

TconditionList: transition labelstring nodelist.

TIdList: transition ID node list.

Tsource: src tag of transition.

TranSidList: source-state ID list of transitions.

Tdestination: dst tag of transition.

TranDidList: destination-state ID list of transitions.

Tdestination-ID: Transition's destination-state ID node.

Tsource-ID: Transition's source-state ID node.

1: begin

2: parse the XML file to maintain S-list and T-list.

3: for all s ϵ S-list do

4: read elements of s to maintain P-list.

5: for all p ϵ P-list do

6: if p-attr == S-ID then

7: Add S-ID in SIdList.

8: end if

9: if p-attr == S-Name then

10: Add S-Name in SnameList.

11: call extract(S-Name)

12: end if

13: end for

14: end for

15: for all t ϵ T-list do

16: read elements of t to maintain P-list.

17: for all p ϵ P-list do

18: if p-attr == T-Name then

19: Add T-Name in TconditionList

20: end if

21: if p-attr == T-ID then

22: Add T-ID in TIdList

23: end if

24: end for

25: read elements of t for Tsource

26: for Tsource do

27: read elements of Tsource to maintain P-list

28: for all p ϵ P-list do

29: if p-attr == Tsource-ID then

30: Add Tsource-ID in TranSidList

31: end if

32: end for

33: end for

34: read elements of t for Tdestination

35: for Tdestination do

36: read elements of Tdestination to maintain P-list

37: for all p ϵ P-list do

38: if p-attr == Tdestination-ID then

39: Add Tdestination-ID in TranDidList

40: end if

41: end for

42: end for

43: end for

44: call GenerateTestCases(TranSidList, TranDidList,

TconditionList)

45: Exit

Algorithm 2: extract
Input: String S-Name

Output: Tokens of state

Variables:
t = “ ”

t1 = “ ”

Tokenlist: Token node list.

1: begin

2: for all S-Name do

3: StringTokenizer(S-Name,“delimiter”)

4: t = getToken

5: Add t in Tokenlist.

6: while hasMoreTokens do

7: t1 = getToken

8: Add t1 in Tokenlist.

9: end while

10: end for

International Journal of Computer Applications (0975 – 8887)

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE 2015)

16

Algorithm 3: GenerateTestCases
Input: TranSidList, TranDidList, TconditionList

Output: Test Cases for the Stateflow model.

Variables:
trans = “ ”

stateEntered: Tdestination-ID node already traversed.

index = 0

1: begin

2: if TranSidList.get(0) == “start” then

3: trans = TranDidList.get(0)

4: add trans in stateEntered

5: index = TranSidList.indexof(trans)

6: if TranSidList.get(index) == trans then

7: repeat

8: perform entry action

9: perform during action

10: until TconditionList.get(index-1) == false

11: get a valid input at S-ID = TranSidList.get(index)

12: if TconditionList.get(index-1) == true then

13: perform exit action

14: perform condition action

15: get a valid input at S-ID = Tran-DidList.get(index)

16: end if

17: end if

18: trans = TranDidList.get(index)

19: if stateEntered.contains(trans) == false then

20: add trans in stateEntered

21: repeat steps 4 to 19

22: else

23: All states are traversed.

24: end if

25: end if

26: Exit

4.2 Working of the algorithm
In this subsection we explain our algorithms in a theoretical

manner.

Algorithm: generateFSM
In this algorithm we have taken an XML file as input. Here,

we parse the XML file for comparing string “state” with the

tags in the XML file. If it matches, then we maintain an S-list

of tags. Then, for each s ϵ S-list we parse the entire element

belong to s for string “P” tag and add to P-list. Then for each

p ϵ P-list, we parse all the attributes to get S-Name and S-ID.

Then, we create SnameList and SIdList for storing S-Name

and S-ID respectively. This process continues till all the s ϵ
S-list are parsed.

In the same way we parse the XML file for comparing string

“transition” with the tags in the XML file to maintain T-list,

which contains transition tags. Then, for each t ϵ T-list we

parse the entire element belong to t for string “P” tag, src tag

and dst tag. The found P tag must be stored in a P - list. Then

for each p ϵ P-list we parse all the attributes to get T-Name

and T-ID. Then, we maintain a TconditionList and TIdList for

T-Name and T-ID respectively. Then parse elements of src tag

for string “P” tag to maintain a P-list. Then for each p ϵ P-list,

we parse all the attributes to get a Tsource-ID and add to

TranSidList. Then parse the elements of dst tag for string “P”

tag to maintain a P-list. Then for each p ϵ P-list we parse all

the attributes to get a Tdestination-ID and create a

TranDidList. Now all the above lists are used for generating

FSM.

Algorithm: extract
In this algorithm, we are taking S-Name as input. Here we use

the tokenizer to get tokens of the S-Name to maintain a

Tokenlist. This Tokenlist is sent to the calling algorithm.

Algorithm: GenerateTestCases
In this algorithm, we take TranSidList, TranDidList and

TconditionList as input. Here we traverse first Tsource-ID in

TranSidList and first Tdestination-ID in TranDidList. Then

we add Tdestination-ID in stateEntered. Then we find the

index of Tdestination-ID in TranSidList . We perform an

entry action and during action until T-Name in TconditionList

is true. If the T-Name is true, then we perform exit action and

condition action. Then we get the test case at S-ID =

TranSidList.get(index) to reach the Tdestination-ID at

TranDidList.get(index) and again we add this Tdestination-ID

in stateEntered. This process continues till all Tdestination-ID

in TranDidList is traversed once. In this way we get test cases

for Fan Stateflow model.

5. IMPLEMENTATION
We are explaining our implementation by taking one example

of the Simulink Stateflow model.

5.1 Construct Fan Simulink model
It is the model which is drawn in Simulink software tool by

dragging Simulink blocks from the Simulink library and

dropping into a GUI editor and connecting ports to the blocks

for external input and output. This Simulink model also

contains chart block which is used to capture reactive systems

in the Simulink model. This chart block is in a Stateflow

library from which we drag it and drop into a GUI editor.

Fig. 1: Fan Simulink model

5.2 Construct Fan Simulink Stateflow

model
It is the model which is drawn with the help of interactive

graphical design tools that works with Simulink. Here we drag

states and transitions from design palette to draw the

Stateflow of the reactive systems.

International Journal of Computer Applications (0975 – 8887)

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE 2015)

17

Fig. 2: Fan Simulink Stateflow model

5.3 Generate XML file of the Fan Simulink

model
In this we generated XML file of Simulink model. Here we

have chosen XML file as an intermediate format so that we

have a specification of the Simulink model. Through this

specification, we are generating intermediate Finite state

machine of the Simulink Stateflow model. The advantage is

that XML language is easy to understand thus analyzing it

also become easy.

Fig. 3: XML file of Fan Simulink model

5.4 Generate Finite State Machine for Fan

Stateflow model
Here we parse the generated XML file to transform the model

into a Finite State Machine (FSM). This finite state machine

represents a possible configuration of the systems. From this

finite state machine we fine Test cases by searching the

executable transitions.

Fig. 4: Finite State Machine for Fan Stateflow model

5.5 Generation of Test Cases for Fan

Stateflow Model
Here we generate Test Cases by analyzing finite state machine

and searching the executable transitions.

International Journal of Computer Applications (0975 – 8887)

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE 2015)

18

Fig. 5: Test Cases for Fan Stateflow Model

6. RESULT
This table below shows the generated Test Cases in tabular

form.

Table 1: Test Cases in tabular form

State Input Expected

Output

start0 speed=0 Off

Off speed=0 On

On speed=1 One

One speed=2 Two

Two speed=3 Three

Three speed=4 Four

Four speed=1 One

7. COMPARISON
Ray, Rajarshi [1] work on intermediate format of SL/SF

model named as hybrid automata represented in XML file.

N. Vamshi Vijay [2] work on the intermediate format of a

SL/SF model named as Simulink/Stateflow Dependency

Graph (SLDG) represented in the mdl file. Nayak, Suraj [3]

work on the intermediate format of a SL/SF model named as

SLDG represented in mdl file and used a Matlab script for

visualization. These comparisons are given in tabular form.

Table 2: comparisons

Paper Model Interme-

diate

format

Intermed-

iate file

format

Matlab

script

Ray et al Simulin

k State-

flow

model

Hybrid

auto-mata

XML based

language

Modelling

Markup

Language

(MoML)

Not

used

N.

Vamshi

Vijay et

al

Simu-

link

State-

flow

model

Simulink/

State-flow

Depend-

ency

Graph

mdl file Not

used

Nayak et

al

Simu-

link

State-

flow

model

Simulink/

State-flow

Depend-

ency

Graph

mdl file Used

8. CONCLUSION
Model based testing is growing more popular in testing area,

especially in real time because with the increase in size and

complexity of software products an appropriate design models

are required for software tasks which can be tested for

expected results. Matlab Simulink Stateflow is a software

which helps in modelling dynamic systems, but a Simulink

Stateflow model may have several levels of hierarchy with

several types of implicit dependencies between elements of

the model that makes the model complex and difficult to

perform any analysis on it. So, the xml file of a model

captures all implicit dependencies and represents them

International Journal of Computer Applications (0975 – 8887)

National Conference on Knowledge, Innovation in Technology and Engineering (NCKITE 2015)

19

explicitly, thus making it possible to perform several types of

analysis.

9. REFERENCES
[1] Ray, Rajarshi. “Automated translation of matlab

Simulink/Stateflow models to an intermediate format in

hyvisual.” Computer Science Department (2007).

[2] N. Vamshi Vijay. “Regression test selection based on

analysis of Simulink/stateflow models.” Computer

Science Department (2012).

[3] Nayak, Suraj. “A Metamodel for Simulink/Stateflow

models and its applications.” Computer Science

Department (2013).

[4] Lee, Edward A., and Haiyang Zheng. “Operational

semantics of hybrid systems.” Hybrid Systems:

Computation and Control. Springer Berlin Heidelberg

(2005), pp. 25-53.

[5] Agrawal, Aditya, Gyula Simon, and Gabor Karsai.

“Semantic translation of Simulink/Stateflow models to

hybrid automata using graph transformations.” Electronic

Notes in Theoretical Computer Science 109 (2004), pp.

43-56.

[6] Bringmann, Eckard, and A. Kramer. “Model-based

testing of automotive systems.” In Software Testing,

Verification, and Validation, (2008) 1st International

Conference on, pp. 485-493. IEEE, (2008).

[7] Reicherdt, Robert, and Sabine Glesner. “Slicing

MATLAB simulink models.” InSoftware Engineering

(ICSE), (2012) 34th International Conference on, pp.

551-561. IEEE, (2012).

[8] Andries, Marc, Gregor Engels, Annegret Habel, Berthold

Hoffmann, Hans-Jörg Kreowski, Sabine Kuske, Detlef

Plump, Andy Schürr, and Gabriele Taentzer. “Graph

transformation for specification and programming.”

Science of Computer programming 34, no. 1 (1999), pp.

1-54.

[9] Korel, Bogdan, Inderdeep Singh, Luay Tahat, and Boris

Vaysburg. “Slicing of state-based models.” In Software

Maintenance, (2003). ICSM (2003). Proceedings.

International Conference on, pp. 34-43. IEEE, (2003).

[10] Utting, Mark, Alexander Pretschner, and Bruno Legeard.

“A taxonomy of model-based testing.” (2006).

[11] MathWorks, “Mathworks MATLAB Simulink.”

\\http://www.mathworks.com/products/simulink/

IJCATM : www.ijcaonline.org

