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ABSTRACT 

Facial expressions are a kind of nonverbal communication. 

They carry the state of emotion of a person. Facial expression 

plays an important role in face-to face human-computer 

communication. Automatic facial expression synthesis 

became popular research area nowadays. It can be used in 

many areas such that physiology, education, murder squad, 

analysis of tendency to crime to get a clue about mental 

signals of a person.  Although considerable efforts have been 

made to enable computers to speak like human beings, how to 

express the rich semantic information through facial 

expression still remains a challenging problem. This paper 

presents a novel approach using artificial neural network. This 

paper   proposes two different approaches with different 

methods for facial expressions synthesis based on artificial 

neural networks (ANN). Firstly, Modeling using Hidden 

Markov Models is proposed. Secondly, modeling using 

Recurrent Neural. 
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1. INTRODUCTION 
With the development of CAD/CAM software, modeling of 

mechanical objects becomes easier than ever before. On the 

other hand, non-mechanical objects remain a problem both in 

shape modeling and motion control. Usually, the shape of a 

non-mechanical object is irregular and asymmetric .  A typical 

shape modeling method for such objects is free from 

deformation, which requires tedious work from an expert 

artist or modeler. When non-affine transformation is applied, 

the control parameters should be reset for each model. As one 

of the representative object, we discuss animated human face 

modeling in this paper .Many research efforts have been 

focused on the achievement of realistic representation of 

human face since the pioneer work of Parke [15]. However, 

the irregular shape of the head, the complex facial anatomical 

structure and various facial tissue behaviors make it still a 

formidable challenge in computer graphics. The challenge of 

modeling an animated human face can be described from 

several parts as follows: 

Shape modeling: To create a human head model for a 

specific person is a tedious task because of the variety of 

facial features and appearance. The development of the 3D 

range scanner helps to capture the shape information of 

complex object. But holes or gaps may appear due to the 

variant reflective properties on facial surface, overlapped or 

folded surfaces produced by merge procedure may result in 

visual artifacts. For human head, hairy surface cannot be 

appropriately recognized by laser scanner. Lips are not 

separated and eyes are not recognized as an individual part of 

human head. These noisy and incomplete data increases the 

processing difficulty. 

Expression synthesis: Differing from body animation, the 

human facial expression cannot be synthesized by skeleton-

skinning techniques. Point-based approach does not help a lot 

either because it does not provide enough controls for the skin 

dynamics. The facial expression is driven by muscle 

contractions. The muscle forces are applied on the interior 

layer of soft tissue. The soft tissue has a multi-layer structure, 

which consists of properties such as visco elasticity, 

incompressibility and nonlinearity. These properties result in 

dynamic stress-strain behavior. The various thickness of skin 

tissue at different regions also increases the complexity of the 

dynamics. Because of the dynamic behavior, bulge and 

wrinkles can be noticed among expressions. Facial motion 

from one expression to another cannot be simply described as 

linear interpolation between two expressions, either. 

Photo-realistic rendering: To mimic human face in the real 

world under specific light condition, advanced rendering 

technique and shading model should be applied on the face 

model. These techniques include texture mapping, normal 

mapping, shadow casting and ray tracing, etc. The challenges 

here include high-resolution full head texture creation, an 

appropriate shading model to represent the resolution and 

refraction on the skin and high-efficiency model to represent 

skin bumps. 

Real-time performance: Based on the aforementioned 

challenges, it can be understood that to create an accurate 
dynamic personalized human expression synthesis. sizer with 

photo-realistic skin appearance, comprehensive computational 

model will be employed. However, getting an interactive 
updating rate is a practical requirement for applications such 

as virtual surgery training, video conference and human-

computer interactive virtual avatar. This leaves us challenge 

to balance between the interactive performance and synthetic 

quality. Taking advantage of the modern hardware such as 

Graphic Processing Unit (GPU), Ray-tracing Processing Unit 

(RPU) and Physics Processing Unit (PPU) and merging into a 

practical system is also a research topic. 

1.1 Applications 
There is sufficient proof of the great vital force of computer 

facial animation and its extensive application. In the next 

decade, computer facial animation will be indispensable. 

Entertainment: There are increasing interest of putting 

virtual characters in films   and videos (Shrek Series, Final 

Fantasy VII: Advent Children 2005, etc.,). Even in movies 

acted by real human beings, computer-aided facial morphing 
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is a highly demanded technique. Computer games always try 

to mimic a "real" world in purpose of player experience. In 

movie industry, high quality realistic human motion is 

normally the essential concern. Oppositely, in game industry 

real-time performance is the key factor to consider. 

Virtual Surgery: Surgeons expect to get the realistic human 

brain model so they can make an anticipation to reduce the 

risk of surgery to a relatively lower point. An intern can get 

trained on the virtual surgery system before they do the real 

operation. These kinds of systems always require an 

accurately rendered facial model and the anatomically correct 

tissue reaction. Volume rendering technique is normally used 

to display different structure in human head. Koch [6] 

designed a virtual surgery model using Finite Element Model 

(FEM). Maciel et al. [8] also modeled the biological behavior 

of soft tissue using FEM to assist orthopedic diagnosis and 

surgery planning. 

Video Conference: Traditionally, in video conference 

system, we need to transfer the whole video data of the face. 

This requires a stable high-rate broadband. In a computer-

synthesized animation system, the animation control 

parameters will be transferred so that a narrow-band video 

conference system can be expected. Eisert [30] has developed 

an advanced video conference system using MPEG-4 which 

encodes high quality head and shoulder motion sequences at a 

bit rate about 1-kbit/s. The low bandwidth requirements of the 

system make it easier to integrate wireless devices such as 

PDAs, cellular phones and notebooks into a video-based 

communication system. Similarly, Fedorov et al. presented 

their system in [13]. 

Lip Reading: For the physically challenged, such as the deaf 

people, lip reading is important to communicate with normal 

people. Even for normal people, lip reading will enhance the 

comprehension of sentence in a noisy environment. For 

xample, 

ViSiCAST [33] is a project that translates English text to the 

motion of virtual avatar and provides services for deaf 

citizens. 

Education: Text-to-speech talking head is also suitable for 

kids and adults to learn how to speak a special word in a 

sentence. Furthermore, using motion capture mechanism a 

comparison between the trainee and the source can be 

achieved and comment will be made. Virtual Human Interface 

[21] is a product designed by Digital Elite Inc. which delivers 

information to the end user by photo-realistic animated 

characters. It supports What, Where, How forms of 

communication paradigm and can be used for interactive 

education, communication and marketing. 

1.2. Emotions and Emotional Facial 

Expressions 
Emotions are definitively part of our life and condition our 

behaviors, feelings, reactions to events and to people. 

Emotions have been widely studied from different 

perspectives by many researchers in several fields 

(anthropology, sociology, psychology, cognitive science, 

philosophy, computer science). Although the definitions of 

emotion diverge considerably, most researchers agree that 

emotions are a process with various components, such as 

physiological responses (visceral and muscular states), 

autonomic nervous system and brain responses, memories, 

feelings verbal responses, and facial expressions. From a 

theoretical point of view emotions can be distinguished in 

four classes: a) Primary Emotions; b) Secondary Emotions; c) 

Tertiary Emotions; and d) Basic Emotions. 

a. Primary Emotions are innate, produced by reactive 

mechanisms mapping external stimulus patterns to 

reorganized behaviors, enabling fast reactions to 

environmental changes. Primary emotions are those that we 

feel first, as a first response to a situation. They are instinctive 

responses. For example, the reaction (hiding or ducking the 

head) to objects flying overhead at a certain speed is a typical 

primary emotion ([19], [14]. 

b. Secondary Emotions (e.g. anxiety, sorrow) are learned 

associations between recognized stimulus patterns generated 

by primary emotions and analyzed situations where these 

patterns occurred [29]. The processes involved in learning and 

analysis of these situations are named “deliberative 

mechanisms”. These mechanisms are cognitive processes 

taking into consideration goals, belief, standards and 

expectations, enabling reasoning about situations, plan 

making, and understanding of action consequences [12]. 

c. Tertiary Emotions (e.g. shame, guilt, envy) might be 

consequences of meta-management mechanisms that enable 

the cognitive awareness of internal processes or states and 

provide the possibility to reason about these internal states 

and processes. Tertiary emotions are “cognitive perturbances” 

arising from goal conflicts in an information processing 

architecture [15]. 

d Basic Emotions (e.g. happiness, fear, surprise) are 

discussed by Ortony and Turner [14]. They mean “basic” as 

psychologically and biologically primitive. Psychologically 

basic emotions aim to build a set of “psychologically 

irreducible emotions”. That means that these emotions would 

be building blocks for other emotions. Biologically, basic 

emotions are innate and serve survival functions kept through 

evolution. One consequence of this argument is that basic 

emotions should be found across human cultures and across 

species of higher animals. The main arguments in favor of the 

existence of basic emotions are presented by Ekman [11] and 

Izard [8], who show that facial expressions of basic emotions 

are universally recognized. Emotions are linked to facial 

expressions in some undetermined loose manner ([21], [19]). 

Emotions are linked to facial expressions in some  

undetermined loose manner ([20], [22]). Emotional facial 

expressions are the facial changes in response to a person’s 

internal emotional states, intentions, or social 

communications. 

2.  MODELING APPROACHES 
In the last years, many works of face modeling have been 

carried on, more for analysis rather than synthesis, and in the 

last case more for speech synthesis than facial synthesis. 

Among these, only someone models emotional facial 

expressions. In most of the early face synthesis systems, such 

facial expressions were modeled by rules (symbolic 

approach). Among these, some of the most relevant works are 

the following: 

2.1.1 Emotional facial expressions 
Humans express a lot of emotions and do so in several ways 

(by means of speech, gaze, facial muscles, head motions, 

gestures, etc.). In order to reduce the modeling space we 

decided not to consider all possible emotions but only a 

limited set and in particular conditions. We oriented our 

attention to approaches based on “basic emotions”. Among 

several possible solutions in this area, we choose the Ekman’s 
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set ([3] an[33). This set includes six basic emotions (called 

also “the big six”) consisting of anger, disgust, fear, 

happiness, sadness, and surprise. Such emotions are 

considered “basic” for two main reasons: a) according to a 

Darwinian perspective, they represent survival-related 

patterns of responses to events in the world which have been 

selected over the course of our evolutionary history; b) all 

other emotions are thought to be somehow derived from them 

by combinations and mixtures [34]. This set of emotions has 

also a “universal” valence established by evolutionary, 

developmental, and cross-lingual studies . 

Also other researchers advocate the concept of “basic 

emotions”(some alternatives to the Ekman’s set are 

summerised in [11) and propose similar or bigger sets of 

emotions, according  to different theories 

2.1.2 Modeling dynamics 
The dynamic aspect of emotional expressions is related to 

their temporal course. As stated by Ekman in [4],[5], and 

described in [12] and [10], each emotional expression is 

characterized by three temporal phases :  

onset: it is the time interval in which the expression, starting 

from a neutral state, reaches maximal intensity; 

 apex: it is the time interval during which the expression 

maintains its maximal intensity; 

 offset: it is time interval in which the expression, starting 

from maximal intensity, returns to neutral state. 

 
Fig 1: Temporal course of an emotional expression 

In other words, a single expression can have different 

expressivity depending on the manner it appears (onset), the 

time it remains on the face (apex) and finally the speed it 

disappears (offset). For the sake of simplicity, let assume that 

is possible to show different emotional states having exactly 

the same intensity4 but different temporal evolution. This case 

is depicted in Figure 2 where there are different trapezoidal 

functions, with same height but different onset, apex and 

offset values. 

 
Fig.2: Emotional expressions with different Onset, Apex 

and Offset 

By comparing temporal courses of different emotional facial 

expressions it becomes evident that different emotions have 

different speeds of generation. So, for example, “fear” and 

“surprise” have an onset shorter than other emotions, while 

“sadness” is typically slower and its offset is longer [5]. 

2.2. Connectionist and Markovian Models 
The dynamics of the facial expressions through time can be 

formally described as a discrete-time sequence of random 

feature vectors, drawn from a distribution in a properly 

defined feature space. In other words, we are facing a random-

process  modelling problem in which some kinds of statistical 

inference, or learning, has to be accomplished from a corpus 

of training data samples. 

The most popular machine learning approaches to sequence 

modeling rely on Hidden Markov Models (HMMs), as well as 

on Artificial Neural Networks (ANNs). The former are rooted 

in statistics, on the basis of a maximum-likelihood parametric 

estimation assumption. ANNs, on the contrary, are a 

“universal” non-parametric estimator, trained from labeled 

samples via application of the gradient method. While HMMs 

are effective in several applications, e.g. speech recognition, 

their generative capabilities cannot be fully exploited within 

the present scenario,as we will see shortly. In this respect, a 

particular ANN topology,referred to as the Recurrent Neural 

Net (RNN), will help to a significant extent. The following 

Sections shortly describe HMMs and ANNs from a theoretical 

viewpoint, introducing their architectures, principles and 

fundamental algorithms. For a detailed discussion see [8], 

[20]. 

2.2.1 Hidden Markov Models 
An HMM is a pair of stochastic processes: an hidden Markov 

chain and an observable process which is a probabilistic 

function of the states of the former. This means that 

observable events in the real world (e.g. xyz marker 

coordinates) are modeled with (possibly continuous) 

probability distributions, that are the observable part of the 

model, associated with individual states of a discrete-time, 

first-order Markovian process. The semantics of the model 

(conceptual correspondence with physical phenomena) 

is usually encapsulated in the hidden part: for instance, in 

Acoustic Speech Recognition (ASR) an HMM can be used to 

model a word in the task-dependent vocabulary, where each 

state of the hidden part represents a phoneme (or sub-

phonetical unit), whereas the observable part accounts for the 

statistical characteristics of the corresponding acoustic events 

in a given feature space (e.g. a sampled acoustic signal, 

represented in a proper way). 

More precisely, an HMM is defined by: 

1. A set S of Q states, S = {S1, …., SQ}, which are the 

distinct values that the discrete, hidden stochastic process 

can take. 

2. An initial state probability distribution, i.e π={ {Pr (Si|t 

π= 0), Si S},  where i is a discrete time index. 

3. A probability distribution that characterizes the allowed 

transitions between states that is is aij =        {Pr (Sj at 

time t|Si at time t-1), Si S}   where the transition 

probabilities are assumed to be         independent of time 

t. 

4. observation or feature space F, which is a discrete or 

continuous universe of all possible observable events 
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(usually a subset of of of d,, where d is the 

dimensionality of the observations). 

5. A set of probability distributions (referred to as emission 

or output probabilities) that describes the statistical 

properties of the observations for each state of the model: 

         bx = {bi(x) = Pr (x _Si), Si S, x F} 

 
HMMs represent a learning paradigm, in the sense that 

examples of the event that is to be modeled can be collected 

and used in conjunction with a training algorithm in order to 

learn proper estimates of π, a and bx. 

These algorithms belong to the class of unsupervised learning 

techniques, since they perform unsupervised parameter 

estimation of the probability distributions without requiring 

any prior labeling of individual observations (within the 

sequences used for training) as belonging to specific states. 

Once training has been accomplished, the HMM can be used 

for decoding or recognition. Training and decoding 

algorithms suffer from some major intrinsic limitations (see 

[15]). In short, the classical HMMs rely on strong 

assumptions on the statistical properties of the phenomenon at 

hand. For instance, the stochastic processes involved are 

modeled by first-order Markov chains, and the parametric 

form of the probability density functions that represent the 

emission probabilities associated with all states is heavily 

constraining. In addition, the number of parameters in HMMs 

does strongly limit their implementability, and increases the 

model complexity (in time and space). Given these 

limitations, the use of ANNs with their generative output 

capabilities, their capability to perform non-parametric 

universal estimation over whole sequences of patterns, and 

their limited number of parameters appeared definitely 

promising. 

2.2.2 Artificial Neural Networks 
For the sake of simplicity, let us start introducing a feed-

forward connectionist model trainable with supervision by 

providing, for each training input sample, the corresponding 

desired output (more sophisticated models will be described in 

the next Sections). This means that input vectors are presented 

at the input of the network one at a time. Based on the input, 

the network computes an output vector. 

Let us consider the training training T {(x , y ) | k 1,...N} k k 

where  x 1,..., xN  are N input samples with their 
corresponding desired (target) outputs N y ,..., y 1The aim is 

to build a model able to compute for each input of the training 

data an output close to the desired one, according to some 

optimality criterion. A particular family of such models is 

represented by Simple Linear Perceptrons (SLPs). 

 

Fig 3: Simple Linear Perceptron 

An input signal is propagated forward along the connections, 

and multiplied by the corresponding connection weight. All 

the incoming weighted signals to a given output unit are 

summed together, to form the input to the unit itself. The unit 

reacts by producing an activation response which is equal to 

its input. This model is usually referred to as a layered 

network, with the obvious meaning that units are arranged 

into subsequent layers: the computation proceeds from one 

layer to the next in bottom-upborder, but never in a lateral or 

backward manner. For this reason the network is called 

“feedforward”.The family of models considered in this section 

fits the training data as summarized by the following equation 

(written for the generic i-th output component): 





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Ift xwxy .
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This is a homogeneous linear transformation, but an additive 

bias can be easily added to the model. SPL can thus be seen as 

linear regression models or linear discriminators for 

classification. Nevertheless, the way these networks learn 

from the training set is quite general, and can be extended to 

the study of other, more complex, ANN architectures. 

Once a training set T and a SLP are given, with the obvious 

assumption that the number of input and output units matches 
the dimensionality of the input and target vectors, 

respectively, the learning problem can be stated as the search 

for the network weights w which optimally fit the data, 

according to a certain criterion. The latter is usually expressed 

as a functional of the training data (and of the model) that 

represents a gain to be maximized or a loss (or risk) to be 

minimized. A common choice for the criterion function is the 

sum of squared differences between target outputs and actual 

outputs, as expressed: 
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Where ykn is the k-th component of the n-th target, kn yˆ is 

output of the k-th output unit when the network is presented 

with the nth input vector, and the multiplicative factor 1/2 is 

introduced for computational convenience, as we shall see 

below. The minimization of 3-2 is known as the least square 

criterion. A general and broadly used optimization technique 

for the minimization of expression 3-2 is the gradient descent 

method. Most network training algorithms are based on it. 

Although it is not guaranteed that the approach will eventually 

reach the global minimum of the criterion function, these 

techniques often produce practically useful behavior. Gradient 

descent iterative algorithms are used also for training more 

complicated ANN architectures 

2.2.3 Multi-layer Perceptrons 
The most popular neural network architecture is the 

MultiLayer Perceptron (MLP), also known as feed-forward 

neural network.This is an extension of the SLP with additional 

layers of units,called hidden layers 
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Fig 4: Multi-layer Perceptron 

In the hidden layers an internal, intermediate representation of 

data is formed. An MLP is fed by an input vector and 

subsequent computations are passed from layer to layer in the 

usual feedforward manner. This produces an output vector of 

values of the units of the last (output) layer of the network. 

Activation functions associated to hidden and output units can 

be linear or non-linear, and can be different for different units. 

Input units still act as placeholders for the components of the 

current input vector. A training algorithm estimates a set of 

weights to be assigned to the connections between each pair 

of units belonging to adjacent layers, in order to optimize a 

training criterion. 

Training is generally supervised. Let us consider a training set 

T ={( xk,yk)|k= 1,..., N} The learning problem for MLPs is to 

find the weights that result in a (generally non-linear) model 

that best fits the training data, given a certain criterion 

function 

The most common choice for the criterion is the sum of 

squared differences between target and actual outputs, just as 

in the case of SLPs. An on-line gradient descent technique 

[15] is used to minimize 

The cost function: 


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computed after the presentation of a certain input pattern x 

associated with a desired output vector y of a layered network 

with a set of input units I S , hidden units H S , and output 

units O S . Extension to more hidden layers is straightforward. 

The learning algorithm is similar to the one for SLPs. weight 

change ij w of the connection strength between the j-th 

hidden unit and the i-th output unit is computed as follows: 

if

if
w

C
w




   

2.2.4 Neural Nets for Sequence Processing: 

TDNNs and RNNs 
There are problems, such modeling facial movements, in 

which samples are temporal sequences of patterns, instead of 

individual independent samples. To take these temporal 

dependencies into account, two major classes of neural 

networks have been proposed, namely Time-Delay Neural 

Network, and Recurrent Neural Networks. While the former is 

still an MLP with units fed by an input value and a number of 

its predecessors, the latter generalizes the basic feed-forward 

architecture of MLPs by allowing arbitrary connections 

between units, e.g. loops and backward connections. 

Time-Delay Neural Networks 
Time-Delay Neural Networks (TDNNs), also known as 

tapped delay lines, represent an effective attempt to train a 

static MLP for time-sequence processing, by converting the 

temporal sequence into a spatial sequence over corresponding 

units. As shown in Figure , the input layer has been enlarged 

to accept as many input patterns as the (fixed) sequence length 

to be processed at each time step. Input vectors enter the 

network from the leftmost set of input units. At each time 

step, inputs are shifted to the right through the unit delay line 

that links each set of input units to the right-adjacent one, and 

the next input pattern is fed into the leftmost position. The 

same extension can also be applied to subsequent layers, 

introducing tapped-delay mechanism between hidden units 

(e.g. only the first block of units in the tapped line actually 

receives input from the previous layer), giving the ability to 

deal with more complicated time dependencies. 

 
Fig 5: The BP algorithm can be used to train such a   

network. 

2.2.5 Recurrent Neural Networks 
Recurrent Neural Networks (RNN) provide a powerful 

extension of feed-forward connectionist models by allowing 

connections between arbitrary pairs of units, independent of 

their position within the topology of the network. Self-

recurrent loops of a unit onto itself, as well as backward 

connections to previous layers, or lateral links between units 

belonging to the same layer are all allowed  

 
Fig 6: Recurrent Neural Networks (RNN) 

RNNs behave like dynamic systems. Once fed with an input, 

the recurrent connections are responsible for an evolution in 

time of the internal state of the network. RNNs are 

particularly suited for sequence processing, due to their ability 

to keep an internal trace, or memory, of the past. This memory 

is combined with the current input to provide a context-

dependent output. A first type of RNNs is applied to static 

patterns (i.e., the input is fixed) and its dynamic converges to 

specific attractors. For instance, in Boltzmann Machines [34] 
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the recurrent connections are symmetric (bidirectional 

propagation of signal is allowed along the connection, i.e. 

pairs of adjacent units have an influence on each other). 

Limitations of Boltzmann Machines reside in the requirement 

of symmetric (non-directional) recurrent connections, and in 

the considerable computation time required to perform the 

simulated annealing. In addition, although they are 

historically and conceptually relevant, they are practically not 

feasible for sequence processing. 

 Another family of RNNs is sometimes referred to as partially 

recurrent nets. They were introduced in [33] and resulted in a 

wide range of applications in sequence processing (both in 

recognition and in generation). 

In this case the basic architecture is that of a standard MLP, 

with the addition of a set of recurrent connections from the 

units in a given layer to the corresponding units of a previous 

layer (or in the same layer). Recurrent connections propagate 

the signal back to the units of one of the layers of the MLP, or 

to an additional context or state layer. The units that receive 

signal from the recurrent connections act either as pre-

processors, filtering the current (forward propagated) input 

with the previous signal, or as a register that keeps a memory 

of previous history. The weights of the recurrent connections 

are generally fixed and set equal to a constant, chosen in order 

to calibrate the amount of previous information to be taken 

into account. The standard BP algorithm is used to train the 

underlying MLP architecture, but without the computation of 

the full gradient on the parameters, since the effect of the past 

activities through recurrent connections is not taken into 

account 

A training method for general recurrent architectures is now  

briefly described. It can be easily derived from the standard 

BP algorithm for feed-forward networks. In spite of its 

apparent simplicity, this technique is quite effective whenever 

the length of the sequences to be learned is not too large, and 

we are willing to wait for the end of a sequence before 

updating parameters. This is often the case when a whole 

training set with many sequences is available, i.e. when no on-

line learning is required. The algorithm is called Back-

Propagation through Time (BPTT) or unfolding in time [12] 

3. MODELING USING HIDDEN 

MARKOV MODELS 
 HMMs are one of the most widespread statistical tools to 

model sequences of data. One of their distinctive features lies 
in the fact that they can handle sequences of varying sizes, 

through the use of an internal state variable. They may be 

used in a generative framework in which a different HMM for 

each class of data to be modelled is defined. In the present 

framework, HMMs have been used as follows. At first we 

defined an HMM for each emotional state and viseme. An 

ideal, simplified HMM topology is depicted in Figure 3. 

 

Fig 7: An example of HMM for an emotional state. 

This HMM features continuous-density emission probability 

distributions, associated with the state transitions of the 

model. It has only 3 states, corresponding, for example, to On-

set, Apex,Off-set . The input observations are represented by 

the vectors of XYZ marker coordinates . models were required 

in order to obtain suitable performance in the present scenario. 

So, different families of HMMs have been defined for each 

individualemotional state that has to be modeled. Then, within 

each such a family, different left-to-right HMMs were 

introduced for modeling individual visemes6. This modeling 

includes longer leftto- right hidden Markov chains and herein 

Mixture of Gaussian pdfs have been used to model the 

emission probabilities. Training samples, clustered by 

emotional states (without any distinction of intensity) were 

used, along with the Baum-Welch algorithm, to estimate the 

model parameters. Due to the continuous nature of the feature 

space (namely, the space of XYZ vectors), a CDHMM was 

required. 

 According to the original plan, the intensity modelling would 

have been introduced in a second step, enlarging the set of 

HMMs, namely defining an HMM for each emotion-intensity 

(E.g. Happiness-Low, Happiness-Medium, Happiness-

High,Surprise-Low, Surprise-Medium, Surprise-High, etc.). 

As well as,on the other side, the modeling of the transition 

from an emotional state to another one would have been done 

by the concatenation of corresponding HMMs of the two 

basic individual emotional expressions 

However, unfortunately there are severe drawbacks in the 

application of HMMs as a facial expression generator: (i) the 
HMM makes a local stationarity assumption within each one 

of its states, that is not matched in this scenario; (ii) the 

underlying Markovian assumption, as well, does not hold for 

XYZ trajectories in feature space: there may be quite long-

term time dependencies between xyz vectors, i.e. the 

stochastic process at time t does not depend only on the state 
at time t-1, ..., t-n; (iii) the reduction of the process to a 

discrete and finite state chain is arbitrary and not natural: a 

continuous space of states would better fit the task at hand; 

(iv) even if the generative mode is made available from the 

simulator, its application does suffer from computational 

complexity problems, mostly due to the need of a Monte 

Carlo-like simulation in order to generate the random 

quantities associated with the probabilistic parameters of the 

HMM. The resulting process is so slow, on average, that its 

real-time application (that is required in the present task, 

given the final goal of application of this modeling in a 

talking head) is not feasible in practice. 

3.1. Modeling using Recurrent Neural Nets 
As alternative to HMMs we considered ANNs. The choice 

was guided by the fact that it is well-known that they are 

particularly suited for sequence processing, given their ability 

to keep an internal trace (memory) of the past. 

At the beginning we considered the use of TDNNs because 

they are effective under several circumstances but, after a 

thorough study, it was evident that they cannot be used in the 

present modeling task. The reason is twofold: first of all, they 

can handle only a limited portion of the time sequences 

involved in the process (while long-term time dependencies 

have to be taken into account, as discussed above in the HMM 

framework). Then, TDNNs can hardly be used in a generative 

manner: they require a window of input frames, and they yield 

the corresponding, individual output. This is feasible during 

the training step, but it is not realistic during the test (i.e., 
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during the application of the model on the field), since no 

such a window of input frames is available at test time 

Afterwards, the choice fell on RNNs, for several reasons, in 

this particular paradigm, the memory of neural nets is 

combined with the current input to provide a context-

dependent output. RNNs behave like dynamical systems. 

More specifically, RNNs are a viable alternative to HMMs 

and TDNNs that mostly tackle their corresponding limitations. 

They can act as generative models: actually, if backward 

connections are introduced, they enter a self-feeding loop in 

which discrete-time outputs are a function of an evolving 

internal state of the RNN, without even needing any further 

inputs. The length of the generated sequence is not 

constrained a-priori, i.e. they can be easily used to yield 

sequences of any required length. No strong statistical 

assumptions are made. Furthermore, the internal state of 

RNNs is described in terms of a set of activation values for 

the recurrent neurons: since activation functions are real-

valued, the state itself varies with continuity and it is not 

constrained within a finite/discrete set. In other words, they 

are “infinite state” machines. Finally, they are universal 

models that may take long term time dependencies into 

consideration (although training the RNN to model such 

dependencies via gradient-descent is known to be difficult. 

4. CONCLUSIONS 
The dynamics of the facial expressions through time can be 

formally described as a discrete-time sequence of random 

feature vectors, drawn from a probability distribution in a 

properly defined feature space. The modeling of such 

dynamics can be accomplished by facing a random-process 

modeling problem in which some kinds of statistical inference 

are carried out from a corpus of training data samples. Besides 

intrinsic limitations of this technique, we found out that, in the 

present scenario, HMMs suffer from other drawbacks. These 

concern their specific generative behavior in relation to the 

facial expression synthesis (where a realistic facial animation 

is sought). As a matter of fact, the experiments showed that 

the trajectories (in the xyz space) generated by HMMs, albeit 

satisfying in modeling the prototypical behavior of an 

emotional facial expression, result in a sort of "piecewise" 

animation In alternative to HMMs we considered ANNs, and  

in particular RNNs. The choice was guided by the fact that 

ANNs are nonparametric, universal approximates. In addition, 

RNNs are suitable for sequence processing tasks, carrying out 

estimation over whole sequences of patterns, and they may be 

used in a generative fashion. From a theoretical point of view, 

RNNs appeared to be a promising approach to the present 

synthesis framework, but in practice they turned out to be 

limited (as the experiments showed). In fact, although RNNs 

tackled the HMM major drawbacks (in particular, they 

overcome the HMM piecewise behavior at animation time), 

yielding smoother and more realistic expressions, after a short 

period of time these expressions became flat (i.e., their 

dynamics tend to exhaust and to reach a steady state). This 

behavior  was due to their limited capability in dealing with 

long-term time sequences. 
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