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ABSTRACT 

The Least Mean Square Adaptive Filter is frequently 

encountered in wide variety of applications like signal 

processing, measurement and analysis of continuously 

changing parameters and signal analysis. The direct form of 

LMS Adaptive Filter does not support pipelining due to its 

recursive behavior. Thus modified Delayed LMS Adaptive 

Filter is preferred in which delays are decomposed so that 

pipelining is applied to power consuming blocks. Literature 

survey on the architectures of LMS Adaptive filter reveals 

that earlier works focused on the implementation using 

systolic architectures that gave rise to large adaptation delay. 

This arise a need for designing the LMS Adaptive filter with 

low adaptation delay. In this project, power efficient hardware 

architecture of modified delayed LMS Adaptive filter has 

been designed and implemented. The design of modified 

Delayed LMS Adaptive Filter is done after implementing 

pipelined architecture of Error Computation Block and 

Weight Update Block. The two important blocks involve the 

use of partial product generator and adder-tree structure which 

together perform the high-complexity operation. Adder-tree 

structure uses Carry-look ahead adder whose internal generate 

and propagate signals contribute to high power consumption. 

Hence further modification is made in the adder-tree structure 

by utilizing ripple-carry adder instead of carry-look ahead 

adder. This modification results in approximately 24% 

reduction in power relative to existing modified DLMS. 

Further power optimization is done by replacing adders with 

4:2 compressors. The area complexity is also reduced as the 

number of required 4:2 compressors are less when compared 

to the requirement of adders. This modification results in 39% 

reduction in power relative to existing modified DLMS 

without degradation of steady-state-error performance. This 

implementation of power-optimized modified DLMS is done 

using Xilinx ISE Design Suite 14.2.   
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1. INTRODUCTION 

Least mean squares (LMS) algorithms are a class of adaptive 

filter used to mimic a desired filter by finding the filter 

coefficients that relate to producing the least mean squares of 

the error signal. Its simplicity and satisfactory convergence 

performance made it popular and hence widely used. Various 

adaptive filtering techniques that are used in signal processing 

application deals with the theory of adaptation with stationary 

Signals in addition to the various adaptive algorithms and 

structures [1] .These adaptive filtering techniques are of high 

equipment complexity and cost. Thus the LMS algorithm 

which is a stochastic gradient algorithm iterates each tap 

weight of the transversal filter in the direction of the 

instantaneous gradient of the squared error signal with respect 

to the tap weight [2]. Although the LMS filter is very simple 

in computational terms, its mathematical analysis is 

complicated because of its stochastic and nonlinear nature. 

The long critical path of the direct-form LMS which is mainly 

due to an inner-product computation must be reduced by 

pipelined implementation [3].The proposed digit-serial 

architecture is highly regular, modular, cell level systolic and 

above all it is bit-level pipelined .The digit size effect on the 

sampling rate and adaptation delay of the digit-serial adaptive 

system has been studied for various word length-size 

implementations. However the pipeline delays contribute to 

the high adaptation delay and it becomes more severe for 

large digit size implementations. This problem is eliminated 

by implementing DLMS algorithm in systolic architectures to 

increase the maximum usable frequency [4]-[6].They involve 

an adaptation delay of  N cycles for filter length N, which is 

quite high for large order filters and the convergence 

performance degrades considerably for a large adaptation 

delay. Thus a modified systolic architecture to reduce the 

adaptation delay is proposed thereby improving the 

convergence behaviour to near that of the original LMS 

algorithm [7]. With the use of carry-save arithmetic, the 

systolic folded pipelined architecture can support very high 

sampling rates, limited only by the delay of a full adder [8]. 

But the use of proper and high accurate sequence of functions 

performing transformations such as associativity, retiming, 

slowdown, and folding is required. 

A transpose-form LMS adaptive filter at any instant depends 

on the delayed versions of weights and the number of delays 

in weights varies from 1 to N [9],[10]. The processing speed 

is very low and can be improved using pipelined blocks which 

are overcome by a systolic architecture, where they have used 

relatively large processing elements (PEs) for achieving a 

lower adaptation delay with the critical path of one MAC 

operation [11]. The delay least-mean-square (DLMS) adaptive 

finite impulse response (FIR) digital filter is based on a new 

tree-systolic processing element and an optimized tree-level 

rule. Applying our tree-systolic, a higher convergence rate 

than that of the conventional DLMS structures can be 

obtained without sacrificing the properties of the systolic-

array architecture [12]. The efficient systolic adaptive FIR 

digital filter not only operates at the highest throughput in the 

word-level but also considers finite update of the feedback 

error. A fine-grained pipelined design to limit the critical path 

to the maximum of one addition time, supports high sampling 

frequency [13]. It involves a lot of area overhead for 

pipelining and higher power consumption than previous 

architectures, due to its large number of pipeline latches. This 

is resolved by presenting a modified delayed least mean 

square (DLMS) adaptive algorithm to achieve lower 

adaptation-delay [14]. Besides, proposal of an efficient 

pipelined architecture for the implementation of this adaptive 

filter is done. It is shown that the proposed DLMS adaptive 

filter can be implemented by a pipelined inner-product 

computation unit for calculation of feedback error, and a 
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pipelined weight-update unit consisting of N parallel multiply 

accumulators  to reduce the number of adaptation delays. A 2-

bit multiplication cell with an efficient adder tree for pipelined 

inner-product computation to minimize the critical path and 

silicon area without increasing the number of adaptation 

delays is presented [15]. Besides, the optimization of design is 

done to reduce the number of pipeline delays along with the 

area, sampling period, and energy consumption. The proposed 

design is found to be more efficient in terms of the power-

delay product (PDP) and energy-delay product (EDP) 

compared to the existing structures [16]. The existing work on 

the DLMS adaptive filter does not discuss the fixed-point 

implementation issues, e.g., location of radix point, choice of 

word length, and quantization at various stages of 

computation, although they directly affect the convergence 

performance, particularly due to the recursive behavior of the 

LMS algorithm. 

2. EXISTING MODIFIED DLMS 
The weights of LMS adaptive filter during the nth iteration are 

updated according to the following equations: 

                 wn+1 = wn + μ · en · xn                                                           (1) 

Where 

              en = dn − yn and   yn = wT
n xn                                                   (2) 

Where the input vector xn, and the weight vector wn at the nth 

iteration are, respectively, given by 

              xn = [xn, xn−1, . . . , xn−N+1]
T                                    (3) 

              wn = [wn(0),wn(1), . . . ,wn(N − 1)]T                      (4) 

dn is the desired response, yn is the filter output, and en 

denotes the error computed during the nth iteration. μ is the 

step-size, and N is the number of weights used in the LMS 

adaptive filter. In the case of pipelined designs with m 

pipeline stages, the error en becomes available after m cycles, 

where m is called the “adaptation delay.” The DLMS 

algorithm therefore uses the delayed error en−m, i.e., the error 

corresponding to (n − m)th iteration for updating the current 

weight instead of the recent-most error. The weight-update 

equation of DLMS adaptive filter is given by 

                  wn+1 = wn + μ · en−m · xn−m                             (5) 

The block diagram of the DLMS adaptive filter is shown in 

Figure 3.1, where the adaptation delay of m cycles amounts to 

the delay introduced by the whole of adaptive filter structure 

consisting of finite impulse response (FIR) filtering and the 

weight-update process. 

    The adaptation delay of conventional LMS can be 

decomposed into two parts: one part is the delay introduced 

by the pipeline stages in FIR filtering, and the other part is 

due to the delay involved in pipelining the weight update 

process. Based on such a decomposition of delay, the DLMS 

adaptive filter can be implemented by a structure shown in 

Fig.1.Assuming that the latency of computation of error is n1 

cycles, the error computed by the structure at the nth cycle is 

en−n1, which is used with the input samples delayed by n1 

cycles to generate the weight-increment term. The weight 

update equation of the modified DLMS algorithm is given by 

                  wn+1 = wn + μ · en−n1 · xn−n1       (6) 

Where 

                  en-n1 = dn-n1 − yn-n1                        (7) 

                   yn = wT
n-n2 xn                                            (8) 

 

Fig. 1.Modified Delayed LMS Adaptive Filter 

There are two main computing blocks in the adaptive filter 

architecture: 1) the error-computation block, and 2) weight-

update block. 

2.1 Error Computation Block 
The structure for error-computation unit of an N-tap DLMS 

adaptive filter is shown in Fig. 2. It consists of N number of 2-

b partial product generators (PPG) corresponding to N 

multipliers and a cluster of L/2 binary adder trees, followed 

by a single shift–add tree. Each sub block is described as 

follows. PPG consists of L/2 number of 2-to-3 decoders and 

the same number of AND/OR cells (AOC). Each of the 2-to-3 

decoders takes a 2-b digit (u1u0) as input and produces three 

outputs b0 = u0 · u1, b1 = u0 · u1, and b2 = u0 · u1, such that 

b0 = 1 for (u1u0) = 1, b1 = 1 for (u1u0) = 2, and b2 = 1 for 

(u1u0) = 3. The decoder output b0, b1 and b2 along with w, 

2w, and 3w are fed to an AOC, where w, 2w, and 3w are in 

2‟s complement representation and sign-extended to have (W 

+ 2) bits each. To take care of the sign of the input samples 

while computing the partial product corresponding to the most 

significant digit (MSD), i.e., (uL−1uL−2) of the input sample, 

the AOC (L/2 − 1) is fed with w, −2w, and −w as input since 

(uL−1uL−2) can have four possible values 0, 1, −2, and −1. 

 

Fig. 2. Error Computation Block 

Each AOC consists of three AND cells and two OR cells. 

Each AND cell takes an n-bit input D and a single bit input b, 

and consists of n AND gates. It distributes all the n bits of 

input D to its n AND gates as one of the inputs. The other 

inputs of all the n AND gates are fed with the single-bit input 

b. Each OR cell similarly takes a pair of n-bit input words and 

has n OR gates. A pair of bits in the same bit position in B and 

D is fed to the same OR gate. The output of an AOC is w, 2w, 

and 3w corresponding to the decimal values 1, 2, and 3 of the 

2-b input (u1u0), respectively. The decoder along with the 

AOC performs a multiplication of input operand w with a 2-b 

digit (u1u0), such that the PPG performs L/2 parallel 
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multiplications of input word w with a 2-b digit to produce 

L/2 partial products of the product word wu.. 

2.2 Adder-Tree Structure 
The shift-add operation is performed on the partial products of 

each PPG separately to obtain the product value and then 

added all the N product values to compute the desired inner 

product. However, the shift-add operation to obtain the 

product value increases the word length, and consequently 

increases the adder size of N − 1 additions of the product 

values. To avoid such increase in word size of the adders, 

addition of all the N partial products of the same place value 

is performed from all the N PPGs by one adder tree. All the 

L/2 partial products generated by each of the N PPGs are thus 

added by (L/2) binary adder trees. The outputs of the L/2 

adder trees are then added by a shift-add tree according to 

their place values. Each of the binary adder trees require log2 

N stages of adders to add N partial product, and the shift–add 

tree requires log2 L − 1 stages of adders to add L/2 output of 

L/2 binary adder trees. The addition scheme for the error-

computation block for a four-tap filter and input word size L = 

8 is shown in Figure 3.6. For N = 4 and L = 8, the adder 

network requires four binary adder trees of two stages each 

and a two-stage shift–add tree. On introducing pipeline 

latches after every addition, it would require L(N − 1)/2 + L/2 

− 1 latches in log2 N + log2 L − 1 stages, which would lead to 

a high adaptation delay and introduce a large overhead of area 

and power consumption for large values of N and L. The final 

adder in the shift–add tree contributes to the maximum delay 

to the critical path. Based on that observation, the pipeline 

latches that do not contribute significantly to the critical path 

are identified and could exclude those without any noticeable 

increase of the critical path. 

 

Fig. 3.Adder-Tree Structure 

2.3 Weight Update Block 
The proposed structure for the weight-update block is shown 

in Figure 3.7. It performs N multiply-accumulate operations 

of the form (μ × e) × xi + wi to update N filter weights. The 

step size μ is taken as a negative power of 2 to realize the 

multiplication with recently available error only by a shift 

operation. Each of the MAC units therefore performs the 

multiplication of the shifted value of error with the delayed 

input samples xi followed by the additions with the 

corresponding old weight values wi . All the N multiplications 

for the MAC operations are performed by N PPGs, followed 

by N shift– add trees. Each of the PPGs generates L/2 partial 

products corresponding to the product of the recently shifted 

error value μ × e with L/2, the number of 2-b digits of the 

input word xi , where the sub expression 3 μ×e is shared 

within the multiplier. Since the scaled error (μ×e) is 

multiplied with all the N delayed input values in the weight-

update block, this sub expression can be shared across all the 

multipliers as well. This leads to substantial reduction of the 

adder complexity.  

 

Fig. 4. Weight Update Block 

The adaptation delay is decomposed into n1 and n2. The 

error-computation block generates the delayed error by n1 −1 

cycles  which is fed to the weight-update block after scaling 

by μ; then the input is delayed by 1 cycle before the PPG to 

make the total delay introduced by FIR filtering be n1.The 

weight-update block generates wn−1−n2, and the weights are 

delayed by n2+1 cycles. However, it should be noted that the 

delay by 1 cycle is due to the latch before the PPG, which is 

included in the delay of the error-computation block, i.e., n1. 

Therefore, the delay generated in the weight-update block 

becomes n2. 

3. POWER OPTIMIZATION 
The adder tree and shift–add tree for the computation of yn 

can be pruned for further optimization of power complexity. 

To illustrate the  pruning optimization of adder tree and shift–

add tree for the computation of filter output, we take a simple 

example of filter length N = 4, considering the word lengths L 

and W to be 8. The dot diagram of the adder tree is shown in 

Fig. 5.  Each row of the dot diagram contains 10 dots, which 

represent the partial products generated by the PPG unit, for 

W = 8. The four sets of partial products are present 

corresponding to four partial products of each multiplier, 

since L = 8.  Each set of partial products of the same weight 

values contains four terms, since N = 4. The final sum without 

truncation should be 18 b. However, we use only 8 b in the 

final sum, and the rest 10 b are finally discarded. To reduce 

the computational complexity, some of the LSBs of inputs of 

the adder tree can be truncated, while some guard bits can be 

used to minimize the impact of truncation on the error 

performance of the adaptive filter. In Fig. 5, four bits are 

taken as the guard bits and the rest six LSBs are truncated. To 

have more hardware saving, the bits to be truncated are not 

generated by the PPGs, so the complexity of PPGs also gets 

reduced. There might be one bit difference in the output of 

adder tree due to pruning. However, it is unlikely that outputs 

from the same PPG are uncorrelated since it is generated from 

the same input sample. It would not be straightforward to 

estimate the distribution of error from the pruning. However, 

as the value of guard bits is closer to or larger than the LSB 

weight of the output after final truncation, the pruning will 

affect the overall error more. Power Optimization is 

effectively done by using ripple carry adder. This minimizes 

the gate count and hence reduces the area complexity as well. 
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4. SIMULATION AND ANALYSIS 

 

Fig. 5.Simulated Output 

 

Fig. 6.Proposed Area 

 

Fig. 7.Proposed Power 

 

Fig. 8.Modified Area 

 

Fig. 9.Modified Power 

5. INFERENCE 
Power Optimization is effectively done by using ripple carry 

adder. This minimizes the gate count and hence reduces the 

power complexity by eliminating propagate and generate 

operations of carry-look ahead adder. Required number of 

internal signals is less when compared to the requirement in 

CLA. This in turn reduces the area complexity as well. 

Further reduction in power is obtained by replacing adders 

with 4:2 compressors. Area is also reduced as the number of 

required 4:2 compressors are less when compared to the 

requirement of full adders as far as implementation is 

concerned. The power and area analysis of various 

architectures of DLMS Adaptive Filter are tabulated as in 

table 1. 

Table 1. Power and Area analysis of various architectures 

Architecture Power (W) Area(slice 

registers) 

CLA 0.954 823 

Dot diagram 0.776 544 

RCA 0.738 293 

6. CONCLUSION 
LMS Adaptive filter is preferred for satisfactory convergence 

performance. In this project, the power efficient hardware 

architecture of modified Delayed LMS Adaptive Filter has 

been implemented. The Partial product generator is used for 

efficient implementation of general multiplications and inner-

product computation by common sub expression sharing. 

Besides, an efficient addition scheme for inner-product 

computation has been used to reduce the adaptation delay 

significantly in order to achieve faster convergence 

performance and to reduce the critical path to support high 

input-sampling rates. Also, a replacement strategy of ripple 

carry addition with 4:2 compressors is done for optimized 

balanced pipelining across the time-consuming blocks of the 

structure to reduce the power consumption drastically. The 

implemented modified DLMS structure involved significantly 

less power. The implementation of the power optimized 

modified DLMS architecture is done and the power, area and 

delay parameters for the same is measured and analyzed using 

Xilinx ISE Design Suite 14.2. Power is reduced drastically 

when the full adders are replaced by 4:2 compressors. 
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