
International Journal of Computer Applications (0975 – 8887)

National Conference on Information Processing and Remote Computing, NCIPRC 2015

12

A Ripple Carry Adder based Low Power Architecture of

LMS Adaptive Filter

A.S. Sneka Priyaa
PG Scholar

Government College of Technology
Coimbatore

 C. Santhi, Ph.D.
Associate Professor

Government College of Technology
Coimbatore

ABSTRACT

The Least Mean Square Adaptive Filter is frequently

encountered in wide variety of applications like signal

processing, measurement and analysis of continuously

changing parameters and signal analysis. The direct form of

LMS Adaptive Filter does not support pipelining due to its

recursive behavior. Thus modified Delayed LMS Adaptive

Filter is preferred in which delays are decomposed so that

pipelining is applied to power consuming blocks. Literature

survey on the architectures of LMS Adaptive filter reveals

that earlier works focused on the implementation using

systolic architectures that gave rise to large adaptation delay.

This arise a need for designing the LMS Adaptive filter with

low adaptation delay. In this project, power efficient hardware

architecture of modified delayed LMS Adaptive filter has

been designed and implemented. The design of modified

Delayed LMS Adaptive Filter is done after implementing

pipelined architecture of Error Computation Block and

Weight Update Block. The two important blocks involve the

use of partial product generator and adder-tree structure which

together perform the high-complexity operation. Adder-tree

structure uses Carry-look ahead adder whose internal generate

and propagate signals contribute to high power consumption.

Hence further modification is made in the adder-tree structure

by utilizing ripple-carry adder instead of carry-look ahead

adder. This modification results in approximately 24%

reduction in power relative to existing modified DLMS.

Further power optimization is done by replacing adders with

4:2 compressors. The area complexity is also reduced as the

number of required 4:2 compressors are less when compared

to the requirement of adders. This modification results in 39%

reduction in power relative to existing modified DLMS

without degradation of steady-state-error performance. This

implementation of power-optimized modified DLMS is done

using Xilinx ISE Design Suite 14.2.

Keywords

Delayed Least Mean Square (DLMS), Adaptation Delay,

Power Optimization, Pipelining.

1. INTRODUCTION

Least mean squares (LMS) algorithms are a class of adaptive

filter used to mimic a desired filter by finding the filter

coefficients that relate to producing the least mean squares of

the error signal. Its simplicity and satisfactory convergence

performance made it popular and hence widely used. Various

adaptive filtering techniques that are used in signal processing

application deals with the theory of adaptation with stationary

Signals in addition to the various adaptive algorithms and

structures [1] .These adaptive filtering techniques are of high

equipment complexity and cost. Thus the LMS algorithm

which is a stochastic gradient algorithm iterates each tap

weight of the transversal filter in the direction of the

instantaneous gradient of the squared error signal with respect

to the tap weight [2]. Although the LMS filter is very simple

in computational terms, its mathematical analysis is

complicated because of its stochastic and nonlinear nature.

The long critical path of the direct-form LMS which is mainly

due to an inner-product computation must be reduced by

pipelined implementation [3].The proposed digit-serial

architecture is highly regular, modular, cell level systolic and

above all it is bit-level pipelined .The digit size effect on the

sampling rate and adaptation delay of the digit-serial adaptive

system has been studied for various word length-size

implementations. However the pipeline delays contribute to

the high adaptation delay and it becomes more severe for

large digit size implementations. This problem is eliminated

by implementing DLMS algorithm in systolic architectures to

increase the maximum usable frequency [4]-[6].They involve

an adaptation delay of N cycles for filter length N, which is

quite high for large order filters and the convergence

performance degrades considerably for a large adaptation

delay. Thus a modified systolic architecture to reduce the

adaptation delay is proposed thereby improving the

convergence behaviour to near that of the original LMS

algorithm [7]. With the use of carry-save arithmetic, the

systolic folded pipelined architecture can support very high

sampling rates, limited only by the delay of a full adder [8].

But the use of proper and high accurate sequence of functions

performing transformations such as associativity, retiming,

slowdown, and folding is required.

A transpose-form LMS adaptive filter at any instant depends

on the delayed versions of weights and the number of delays

in weights varies from 1 to N [9],[10]. The processing speed

is very low and can be improved using pipelined blocks which

are overcome by a systolic architecture, where they have used

relatively large processing elements (PEs) for achieving a

lower adaptation delay with the critical path of one MAC

operation [11]. The delay least-mean-square (DLMS) adaptive

finite impulse response (FIR) digital filter is based on a new

tree-systolic processing element and an optimized tree-level

rule. Applying our tree-systolic, a higher convergence rate

than that of the conventional DLMS structures can be

obtained without sacrificing the properties of the systolic-

array architecture [12]. The efficient systolic adaptive FIR

digital filter not only operates at the highest throughput in the

word-level but also considers finite update of the feedback

error. A fine-grained pipelined design to limit the critical path

to the maximum of one addition time, supports high sampling

frequency [13]. It involves a lot of area overhead for

pipelining and higher power consumption than previous

architectures, due to its large number of pipeline latches. This

is resolved by presenting a modified delayed least mean

square (DLMS) adaptive algorithm to achieve lower

adaptation-delay [14]. Besides, proposal of an efficient

pipelined architecture for the implementation of this adaptive

filter is done. It is shown that the proposed DLMS adaptive

filter can be implemented by a pipelined inner-product

computation unit for calculation of feedback error, and a

http://en.wikipedia.org/wiki/Adaptive_filter
http://en.wikipedia.org/wiki/Adaptive_filter
http://en.wikipedia.org/wiki/Adaptive_filter

International Journal of Computer Applications (0975 – 8887)

National Conference on Information Processing and Remote Computing, NCIPRC 2015

13

pipelined weight-update unit consisting of N parallel multiply

accumulators to reduce the number of adaptation delays. A 2-

bit multiplication cell with an efficient adder tree for pipelined

inner-product computation to minimize the critical path and

silicon area without increasing the number of adaptation

delays is presented [15]. Besides, the optimization of design is

done to reduce the number of pipeline delays along with the

area, sampling period, and energy consumption. The proposed

design is found to be more efficient in terms of the power-

delay product (PDP) and energy-delay product (EDP)

compared to the existing structures [16]. The existing work on

the DLMS adaptive filter does not discuss the fixed-point

implementation issues, e.g., location of radix point, choice of

word length, and quantization at various stages of

computation, although they directly affect the convergence

performance, particularly due to the recursive behavior of the

LMS algorithm.

2. EXISTING MODIFIED DLMS
The weights of LMS adaptive filter during the nth iteration are

updated according to the following equations:

 wn+1 = wn + μ · en · xn (1)

Where

 en = dn − yn and yn = wT
n xn (2)

Where the input vector xn, and the weight vector wn at the nth

iteration are, respectively, given by

 xn = [xn, xn−1, . . . , xn−N+1]
T (3)

 wn = [wn(0),wn(1), . . . ,wn(N − 1)]T (4)

dn is the desired response, yn is the filter output, and en

denotes the error computed during the nth iteration. μ is the

step-size, and N is the number of weights used in the LMS

adaptive filter. In the case of pipelined designs with m

pipeline stages, the error en becomes available after m cycles,

where m is called the “adaptation delay.” The DLMS

algorithm therefore uses the delayed error en−m, i.e., the error

corresponding to (n − m)th iteration for updating the current

weight instead of the recent-most error. The weight-update

equation of DLMS adaptive filter is given by

 wn+1 = wn + μ · en−m · xn−m (5)

The block diagram of the DLMS adaptive filter is shown in

Figure 3.1, where the adaptation delay of m cycles amounts to

the delay introduced by the whole of adaptive filter structure

consisting of finite impulse response (FIR) filtering and the

weight-update process.

 The adaptation delay of conventional LMS can be

decomposed into two parts: one part is the delay introduced

by the pipeline stages in FIR filtering, and the other part is

due to the delay involved in pipelining the weight update

process. Based on such a decomposition of delay, the DLMS

adaptive filter can be implemented by a structure shown in

Fig.1.Assuming that the latency of computation of error is n1

cycles, the error computed by the structure at the nth cycle is

en−n1, which is used with the input samples delayed by n1

cycles to generate the weight-increment term. The weight

update equation of the modified DLMS algorithm is given by

 wn+1 = wn + μ · en−n1 · xn−n1 (6)

Where

 en-n1 = dn-n1 − yn-n1 (7)

 yn = wT
n-n2 xn (8)

Fig. 1.Modified Delayed LMS Adaptive Filter

There are two main computing blocks in the adaptive filter

architecture: 1) the error-computation block, and 2) weight-

update block.

2.1 Error Computation Block
The structure for error-computation unit of an N-tap DLMS

adaptive filter is shown in Fig. 2. It consists of N number of 2-

b partial product generators (PPG) corresponding to N

multipliers and a cluster of L/2 binary adder trees, followed

by a single shift–add tree. Each sub block is described as

follows. PPG consists of L/2 number of 2-to-3 decoders and

the same number of AND/OR cells (AOC). Each of the 2-to-3

decoders takes a 2-b digit (u1u0) as input and produces three

outputs b0 = u0 · u1, b1 = u0 · u1, and b2 = u0 · u1, such that

b0 = 1 for (u1u0) = 1, b1 = 1 for (u1u0) = 2, and b2 = 1 for

(u1u0) = 3. The decoder output b0, b1 and b2 along with w,

2w, and 3w are fed to an AOC, where w, 2w, and 3w are in

2‟s complement representation and sign-extended to have (W

+ 2) bits each. To take care of the sign of the input samples

while computing the partial product corresponding to the most

significant digit (MSD), i.e., (uL−1uL−2) of the input sample,

the AOC (L/2 − 1) is fed with w, −2w, and −w as input since

(uL−1uL−2) can have four possible values 0, 1, −2, and −1.

Fig. 2. Error Computation Block

Each AOC consists of three AND cells and two OR cells.

Each AND cell takes an n-bit input D and a single bit input b,

and consists of n AND gates. It distributes all the n bits of

input D to its n AND gates as one of the inputs. The other

inputs of all the n AND gates are fed with the single-bit input

b. Each OR cell similarly takes a pair of n-bit input words and

has n OR gates. A pair of bits in the same bit position in B and

D is fed to the same OR gate. The output of an AOC is w, 2w,

and 3w corresponding to the decimal values 1, 2, and 3 of the

2-b input (u1u0), respectively. The decoder along with the

AOC performs a multiplication of input operand w with a 2-b

digit (u1u0), such that the PPG performs L/2 parallel

International Journal of Computer Applications (0975 – 8887)

National Conference on Information Processing and Remote Computing, NCIPRC 2015

14

multiplications of input word w with a 2-b digit to produce

L/2 partial products of the product word wu..

2.2 Adder-Tree Structure
The shift-add operation is performed on the partial products of

each PPG separately to obtain the product value and then

added all the N product values to compute the desired inner

product. However, the shift-add operation to obtain the

product value increases the word length, and consequently

increases the adder size of N − 1 additions of the product

values. To avoid such increase in word size of the adders,

addition of all the N partial products of the same place value

is performed from all the N PPGs by one adder tree. All the

L/2 partial products generated by each of the N PPGs are thus

added by (L/2) binary adder trees. The outputs of the L/2

adder trees are then added by a shift-add tree according to

their place values. Each of the binary adder trees require log2

N stages of adders to add N partial product, and the shift–add

tree requires log2 L − 1 stages of adders to add L/2 output of

L/2 binary adder trees. The addition scheme for the error-

computation block for a four-tap filter and input word size L =

8 is shown in Figure 3.6. For N = 4 and L = 8, the adder

network requires four binary adder trees of two stages each

and a two-stage shift–add tree. On introducing pipeline

latches after every addition, it would require L(N − 1)/2 + L/2

− 1 latches in log2 N + log2 L − 1 stages, which would lead to

a high adaptation delay and introduce a large overhead of area

and power consumption for large values of N and L. The final

adder in the shift–add tree contributes to the maximum delay

to the critical path. Based on that observation, the pipeline

latches that do not contribute significantly to the critical path

are identified and could exclude those without any noticeable

increase of the critical path.

Fig. 3.Adder-Tree Structure

2.3 Weight Update Block
The proposed structure for the weight-update block is shown

in Figure 3.7. It performs N multiply-accumulate operations

of the form (μ × e) × xi + wi to update N filter weights. The

step size μ is taken as a negative power of 2 to realize the

multiplication with recently available error only by a shift

operation. Each of the MAC units therefore performs the

multiplication of the shifted value of error with the delayed

input samples xi followed by the additions with the

corresponding old weight values wi . All the N multiplications

for the MAC operations are performed by N PPGs, followed

by N shift– add trees. Each of the PPGs generates L/2 partial

products corresponding to the product of the recently shifted

error value μ × e with L/2, the number of 2-b digits of the

input word xi , where the sub expression 3 μ×e is shared

within the multiplier. Since the scaled error (μ×e) is

multiplied with all the N delayed input values in the weight-

update block, this sub expression can be shared across all the

multipliers as well. This leads to substantial reduction of the

adder complexity.

Fig. 4. Weight Update Block

The adaptation delay is decomposed into n1 and n2. The

error-computation block generates the delayed error by n1 −1

cycles which is fed to the weight-update block after scaling

by μ; then the input is delayed by 1 cycle before the PPG to

make the total delay introduced by FIR filtering be n1.The

weight-update block generates wn−1−n2, and the weights are

delayed by n2+1 cycles. However, it should be noted that the

delay by 1 cycle is due to the latch before the PPG, which is

included in the delay of the error-computation block, i.e., n1.

Therefore, the delay generated in the weight-update block

becomes n2.

3. POWER OPTIMIZATION
The adder tree and shift–add tree for the computation of yn

can be pruned for further optimization of power complexity.

To illustrate the pruning optimization of adder tree and shift–

add tree for the computation of filter output, we take a simple

example of filter length N = 4, considering the word lengths L

and W to be 8. The dot diagram of the adder tree is shown in

Fig. 5. Each row of the dot diagram contains 10 dots, which

represent the partial products generated by the PPG unit, for

W = 8. The four sets of partial products are present

corresponding to four partial products of each multiplier,

since L = 8. Each set of partial products of the same weight

values contains four terms, since N = 4. The final sum without

truncation should be 18 b. However, we use only 8 b in the

final sum, and the rest 10 b are finally discarded. To reduce

the computational complexity, some of the LSBs of inputs of

the adder tree can be truncated, while some guard bits can be

used to minimize the impact of truncation on the error

performance of the adaptive filter. In Fig. 5, four bits are

taken as the guard bits and the rest six LSBs are truncated. To

have more hardware saving, the bits to be truncated are not

generated by the PPGs, so the complexity of PPGs also gets

reduced. There might be one bit difference in the output of

adder tree due to pruning. However, it is unlikely that outputs

from the same PPG are uncorrelated since it is generated from

the same input sample. It would not be straightforward to

estimate the distribution of error from the pruning. However,

as the value of guard bits is closer to or larger than the LSB

weight of the output after final truncation, the pruning will

affect the overall error more. Power Optimization is

effectively done by using ripple carry adder. This minimizes

the gate count and hence reduces the area complexity as well.

International Journal of Computer Applications (0975 – 8887)

National Conference on Information Processing and Remote Computing, NCIPRC 2015

15

4. SIMULATION AND ANALYSIS

Fig. 5.Simulated Output

Fig. 6.Proposed Area

Fig. 7.Proposed Power

Fig. 8.Modified Area

Fig. 9.Modified Power

5. INFERENCE
Power Optimization is effectively done by using ripple carry

adder. This minimizes the gate count and hence reduces the

power complexity by eliminating propagate and generate

operations of carry-look ahead adder. Required number of

internal signals is less when compared to the requirement in

CLA. This in turn reduces the area complexity as well.

Further reduction in power is obtained by replacing adders

with 4:2 compressors. Area is also reduced as the number of

required 4:2 compressors are less when compared to the

requirement of full adders as far as implementation is

concerned. The power and area analysis of various

architectures of DLMS Adaptive Filter are tabulated as in

table 1.

Table 1. Power and Area analysis of various architectures

Architecture Power (W) Area(slice

registers)

CLA 0.954 823

Dot diagram 0.776 544

RCA 0.738 293

6. CONCLUSION
LMS Adaptive filter is preferred for satisfactory convergence

performance. In this project, the power efficient hardware

architecture of modified Delayed LMS Adaptive Filter has

been implemented. The Partial product generator is used for

efficient implementation of general multiplications and inner-

product computation by common sub expression sharing.

Besides, an efficient addition scheme for inner-product

computation has been used to reduce the adaptation delay

significantly in order to achieve faster convergence

performance and to reduce the critical path to support high

input-sampling rates. Also, a replacement strategy of ripple

carry addition with 4:2 compressors is done for optimized

balanced pipelining across the time-consuming blocks of the

structure to reduce the power consumption drastically. The

implemented modified DLMS structure involved significantly

less power. The implementation of the power optimized

modified DLMS architecture is done and the power, area and

delay parameters for the same is measured and analyzed using

Xilinx ISE Design Suite 14.2. Power is reduced drastically

when the full adders are replaced by 4:2 compressors.

7. REFERENCES
[1] B. Widrow and S. D. Stearns, Adaptive Signal

Processing, Englewood Cliffs, NJ, USA: Prentice-Hall,

1985.

[2] S. Haykin and B. Widrow, Least-Mean-Square Adaptive

Filters.Hobo ken NJ, USA: Wiley, 2003.

[3] M. D. Meyer and D. P. Agrawal, “A modular pipelined

implementation of a delayed LMS transversal adaptive

filter,” in Proc. IEEE Int. Symp,Circuits Syst., May 1990,

pp. 1943–1946.

[4] G. Long, F. Ling, and J. G. Proakis, “The LMS algorithm

with delayed coefficient adaptation,” IEEE Trans.

Acoust., Speech, Signal Process.,vol. 37, no. 9, pp.

1397–1405, Sep. 1989.

[5] G. Long, F. Ling, and J. G. Proakis, “Corrections to „The

LMS algorithm with delayed coefficient adaptation‟,”

IEEE Trans. Signal Process.,vol. 40, no. 1, pp. 230–232,

Jan. 1992.

International Journal of Computer Applications (0975 – 8887)

National Conference on Information Processing and Remote Computing, NCIPRC 2015

16

[6] H. Herzberg and R. Haimi-Cohen, “A systolic array

realization of an LMS adaptive filter and the effects of

delayed adaptation,” IEEE Trans.Signal Process., vol. 40,

no. 11, pp. 2799–2803, Nov. 1992.

[7] M. D. Meyer and D. P. Agrawal, “A high sampling rate

delayed LMS filter architecture,” IEEE Trans. Circuits

Syst. II, Analog Digital Signal Process., vol. 40, no. 11,

pp. 727–729, Nov. 1993.

[8] S.Ramanathan and V.Visvanathan, “A systolic

architecture for LMS adaptive filtering with minimal

adaptation delay,” in Proc.Int Conf. Very Large Scale

Integr. (VLSI) Design, Jan. 1996,pp. 286–289.

[9] Y.Yi, R. Woods, L.-K. Ting, and C. F. N. Cowan, “High

speed FPGA-based implementations of delayed-LMS

filters,” J. Very Large Scale Integr. (VLSI) Signal

Process., vol. 39, nos. 1–2, pp. 113–131, Jan. 2005.

[10] L. D. Van and W. S. Feng, “An efficient systolic

architecture for the DLMS adaptive filter and its

applications,” IEEE Trans. Circuits Syst. II, Analog

Digital Signal Process., vol. 48, no. 4, pp. 359–366,

Apr.2001.

[11] L.-K. Ting, R. Woods, and C. F. N. Cowan, “Virtex

FPGA implementation of a pipelined adaptive LMS

predictor for electronic support measures receivers,”

IEEE Trans. Very Large Scale Integr.(VLSI) Syst., vol.

13, no. 1, pp. 86–99, Jan. 2005.

[12] P. K. Meher and M. Maheshwari, “A high-speed FIR

adaptive filter architecture using a modified delayed

LMS algorithm,” in Proc. IEEE Int. Symp. Circuits Syst.,

May 2011, pp. 121–124.

[13] P. K. Meher and S. Y. Park, “Low adaptation-delay LMS

adaptive filter part-I: Introducing a novel multiplication

cell,” in Proc. IEEE Int.Midwest Symp. Circuits Syst.,

Aug. 2011, pp. 1–4.

[14] K. K. Parhi, VLSI Digital Signal Procesing Systems:

Design and Implementation. New York, USA: Wiley,

1999.

[15] C. Caraiscos and B. Liu, “A roundoff error analysis of

the LMS adaptive algorithm,” IEEE Trans. Acoust.,

Speech, Signal Process., vol. 32, no. 1, pp. 34–41, Feb.

1984.

