
National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)   

Proceedings published by International Journal of Computer Applications® (IJCA) 

17 

A Modified GOLUMB Encoder and Decoder for Test 
Vector Compression 

Nicky H. Bellani 
Research Scholar: Dept. of Electronics Engineering 
G. H. Raisoni College of Engineering, Digdoh Hills, 

Nagpur, India 440016. 

Payal Ghutke 

Professor: Dept. of Electronics Engineering 
G. H. Raisoni College of Engineering, Digdoh Hills, 

Nagpur, India 440016. 

 
 

ABSTRACT 

This paper describes the detailed study and analysis of 

Golumb codes used for the test vector compression in VLSI 

testing. The Golumb Codes are widely used for lossless Data 

compression due to its lower complexity in  encoding & 

Decoding methods. Furthermore, a comparative study of 

various compression techniques is also presented in this 

paper. This paper also gives out an idea about the design of 

Golumb Encoder & Decoder using VHDL for the test vectors 

thus achieving a good height of compression ratio.  In order to 

prove its validity, the developed algorithm is simulated using 

the Xilinx 9.2i and MATLAB software. 

KEYWORDS 

Golumb, Encoder, Decoder and Compression 

 

1. INTRODUCTION 
The rapid widespread growth of digital technologies such as 

digital television, internet access, huge amount of data storage 

and video calls have increased the demand for high storage 

data and transmission capacity in order to fit the growing 

needs[1]. Data compression involves encoding information 

using fewer bits than the original representation. Compression 

of data in large-sized files reduces storage space and 

transmission time in a network and hence reduces the cost of 

storage and transmission. Most of the files has lot of 

redundancy which can be removed using Compression.   

Compression can be achieved through a lossy or lossless 

mechanism. The selection of compression method depends on 

the application. Lossy compression of a tolerable limit can be 

used for video transmission, where the loss of data in the 

reconstruction cannot be easily noticed by human visual 

system. However, compression of data of crucial information 

such as the database of a bank needs to be lossless. There 

have been extensive research efforts in this field since the last 

50 years. 

Golomb coding is a lossless data compression method using a 

family of data compression codes invented by Solomon W. 

Golomb in the 1960s. Alphabets following a geometric 

distribution will have a Golomb code as an optimal prefix 

code, making Golomb coding highly suitable for situations in 

which the occurrence of small values in the input stream is 
significantly more likely than large values. 

 It is competent of compressing larger sized data into a 

smaller sized data while still allowing the original data to be 

reconstructed back after decompression[1]. Due to its lower 

design complexity and computational load, Golumb codes are 

more preferred over other lossless data compression codes. 

Exp-Golomb VLC for entropy coding in H.264, which is 

mostly used for video coding standard is the most efficient 

application of golumb code. Golumb codes are also used for 

colour image [4], [6] and audio compression. Other  

application of golumb codes is for embedded cores in a 

system-on-a-chip (SOC) [7].  The key features of Golomb 

coding for test data include very elevated compression, 

analytically predictable compression results, and a stumpy 

cost and scalable on-chip decoder.  

In this paper, a detail study of Golomb coding algorithms for 

test vector compression and decompression is presented. In 

order to have simplicity in development and testing, the 

Golomb coding parameter m is set to 4 [2].The goal of this 

work was to increase the compression ratio as high as possible 

without any loss in the original data. 

The remainder of the paper is organised as follows. Section 1 

presents the details of Golomb Coding and the basic 

compression and decompression method. Section 2 presents 

the review of past work carried out on golumb codes. Section 

3 presents the future scope in the field of Golumb Codes. 

Lastly, Section 4 concludes the paper. 

2. BACKGROUND OF GOLUMB 

CODES 

2.1 Golumb Encoder and Decoder 

Algorithms 
 

The details regarding Golomb Coding basic background 

information is described. Golomb coding uses a tunable 

parameter m to divide an input value into two parts: q, the 

result of a division by m, and r, the remainder. The 

quotientsent in unary coding, followed by the remainder in 

truncated binary encoding. When m=1, Golomb coding is 

equivalent to unary coding.  In Golomb Coding, the group 

size, m, defines the code structure. Thus, choosing the m 

parameter decides variable length code structure which will 

have direct impact on the compression efficiency [2]. 

  After finalization of parameter m, a table which 

maps the runs of zeros or ones  is created. A Run length of 

multiples of m are grouped into Ak and given the same prefix, 

which is (k – 1) number of one’s followed by a zero, which 

can also termed as quotient and can be represented in the form 

of unary codes. A tail is given for each member of the group, 

which is the binary representation of log2m bits. The other 

term for tail is Remainder of the division of run length by m. 

The codeword is then produced by combining the prefix and 

the tail. An example of the analytically encoding the data 

stream using previous Golumb Encoder is given in table 2. 

http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Solomon_W._Golomb
http://en.wikipedia.org/wiki/Solomon_W._Golomb
http://en.wikipedia.org/wiki/Geometric_distribution
http://en.wikipedia.org/wiki/Geometric_distribution
http://en.wikipedia.org/wiki/Prefix_code
http://en.wikipedia.org/wiki/Prefix_code
http://en.wikipedia.org/wiki/Unary_coding
http://en.wikipedia.org/wiki/Truncated_binary_encoding


National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)   

Proceedings published by International Journal of Computer Applications® (IJCA) 

18 

The simple golomb Encoder and Decoder models 

can be well explained with the help of flowcharts given in 

figure 1 and figure 2 [2]. The design of the algorithm is made 

with the assumption that the input data string will be 

terminated with a “1”. This will not always be the case 

because the input data string may also be terminated with a 

“0”.To overcome this problem, a modified version of Golumb 

Compression and decompression methods are used.   

 In order to avoid this problem, the algorithm must 

be capable of detecting the end of data and if the last bit is a 

‘0’ then additional ‘1’ must be added during the encoding 

process and at the time of decompressing the encoded data, 

this extra appended 1 should be removed by the decoder. 

2.2 ALGORITHM 

1. Fix the parameter M to an integer value. 

2. For N, the number to be encoded, find  

i. quotient = q = int[N/m] 

ii. remainder = r = N modulo m 

 

3. Generate Codeword  

 

    The Code format : <Quotient Code><Remainder Code>,      

    Where 

 

a. Quotient Code (in unary coding)  

 

1. Write a q-length string of 1 bits 

              2.Write a 0 bit. 

 

b.  Remainder Code (in truncated binary encoding)  

I. If M is power of 2, code remainder as binary format. 

So log2(m) bits are needed.  

         II.   If M is not a power of 2, set b= log2(m). 

        i.  If  r < 2b - m  code r as plain binary using b-1 bits. 

               ii. If r>= 2b - m  code the number  r + 2b–m in plain   

                 binary  representation using b bits. 

Table 1. Golomb Encoding example with parameter 

m 

 

Table 2. Golomb Encoding example with parameter 

m = 4 

Data Set 001000010000010000001000001000101 

Subset 001 000

010 

000

001 

0000

001 

0000

01 

00

01 

01 

Encoded 

Output 

010 100

0 

100

1 

1010 1001 01

1 

00

1 

 

3. Modified Golumb Encoder 
 

In Simple Golumb codes, the data is divided into 

subsets which maps the runs of zeros until the code is ended 

with a one[2]. In future work of Golumb coding, a modified 

Golumb Coder is designed to serve as a good application for 

the test vector Compression. In that case, the input bit stream 

is  divided into two subsets in which first subset will contain 

the test vectors which maps the runs of zeros and the second 

subset will contain the vectors which maps the runs of one’s. 

The drawback of basic Golumb Encoder can be easily 

removed with the help of Modified Golumb Encoder. As there 

is no need of terminating a stream of zero’s by one or stream 

of one’s by zero or appending a zero or one  in modified 

Golumb Coder. For first subset, the data is divided by the 

divisor m and in the second subset, the data is divided by the 

divisor n. For lower error probability, the group size m and n 

for both the subsets is kept equal. The optimum value of m 

and n is set to 4. The first bit of Input is copied as it is in the 

encoded output for better decoding purpose. An example of 

the analytically encoding the data stream using previous 

Golumb Encoder is given in table 3 and table 4. 

http://en.wikipedia.org/wiki/Unary_coding
http://en.wikipedia.org/wiki/Truncated_binary_encoding


National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)   

Proceedings published by International Journal of Computer Applications® (IJCA) 

19 

 

Figure 1. Golomb Encoder Flowchart with 

parameter m =4 

Table 3. Modified Golomb Encoding example with 

parameter m = 4 & n=4 

Data Set 11110000 

Subset 1111 0000 

Encoded Output 1 0100 0100 

 

Figure 3 gives the MATLAB simulation results for 

the data stream of 11110000. The Golumb Coded Ouput 

stream gives the same result as obtained by manual encoding 

of data stream. 

The given data stream is 111100011111111. Initially the data 

is divided into subsets of zero’s & one’s. Thus by applying the 

Golumb Algorithm, the encoded output is obtained as shown 

in table 4. First subset contains 1111 which gives the 

runlength of 4. As m parameter is already set to 4,so when we 

divide the runlength of 4 by m. the quotient which we get is 1 

and remainder is 0. The quotient can be written in unary code 

of “10” i.e 1 followed by number of zeros and the remainder 

in log2m bits i.e “00”. The same algorithm can be applied to 

remaining subsets to get the encoded output. 

The first bit in red is used for decoding purpose. The first bit 

of dataset should be same as the first bit of encoded output. 

Figure 5 gives the simulation results of table 4 data stream 

using Xilinx. The 15 bit input stream takes the input of 

111100011111111. The output stream gives the 13 bit 

compressed output of 15 bit Input. The upper two bits of 

output are undefined. The Done signal will give the output 1 

as soon as the encoding process is completed. 

 

Figure 2. Golomb Decoder Flowchart with 

parameter m = 4 

 

Figure 3. Simulation Waveform of Golumb Encoder 

using MATLAB 

 



National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)   

Proceedings published by International Journal of Computer Applications® (IJCA) 

20 

 

Figure4. FPGA Implementation of Golumb Encoder using Quartus

 
 

Figure 5. Simulation Result of Golumb Encoder 

using Xilinx 

Table 4. Modified Golomb Encoding example with 

parameter m = 4 & n=4 

Data Set 111100011111111 

Subset 1111 000 11111111 

Encoded 

Output 

1 0010 111 00100 

Figure 4 gives the FPGA Implementation of Golumb Encoder 

The simulation part is carried on Quartus Software. The input 

stream of 1111000000 is given on the switches and the 

compressed output can be shown on the LED’s. The 

compressed output is 000101010. 

4. CONCLUSION 
In this paper, algorithms of Golumb encoder and decoder for 

test vector compression has been studied. The successful 

working of these algorithms can be proved by comparing the 

results generated using simulation of the Golomb Encoder 

with the expected analytical results which should be identical. 

The use of encoded data as the input data for Golomb 

Decoder managed to generate back the original data can prove 

the success of Golomb Decoder System.  

REFERENCES 

[1] S. W. Golomb, “Run Length Encodings,” IEEE 

Transactions on Information Theory,vol. 12, pp. 399-

401, 1966. 

 

[2] G. H. H’ng, M. F. M. Salleh and Z. A. Halim,” Golomb 

Coding Implementation  in  FPGA”, School of Electrical 

and Electronics Engineering, Universiti Sains 

Malaysia,Seri  Ampangan,14300 Nibon Tebal, Pulau 

Pinag, Malaysia. VOL. 10, NO. 2, 2008, 36-40. 

 

[3] Walter D. Leon-Salas, Sina Balkir, Khalid Sayood, and 

Michael W. Hoffman, “An Analog-to-Digital Converter 

with Golomb–Rice Output Codes” IEEE transactions on  

circuits and systems—ii: express briefs, vol. 53, no. 4. 

APRIL 2006. 

 

[4] Hong-Sik Kim, Joohong  Lee, Hyunjin Kim, Sungh  

Kang, and Woo Chan Park, A Lossless Color Image 

Compression Architecture using  a Parallel Golomb- 

Rice Hardware CODEC, IEEE transactions on circuits 

and systems for video Technology, vol. 21, no. 11, 

November 2011. 

 

[5] K. Somasundaram and S. Domnic, ”Extended Golomb 

Code for Integer Representation”, IEEE transactions on 

multimedia, VOL. 9,  NO. 2, FEBRUARY 2007. 

 

[6] Chin-Chen Chang, “An Enhancement of JPEG Still 

Image Compression with Adaptive Linear Regression 

and Golomb-Rice coding, 2009 Ninth International  

Conference on Hybrid Intelligent Systems. 

 

[7] Anshuman Chandra, Student Member, IEEE, and 

Krishnendu Chakrabarty, Senior Member, IEE  “ 

System-on-a-Chip Test-Data Compression and 

Decompression Architectures Based on Golomb 

Codes”,IEEE transactions on computer  aided design of 

integrated circuits and systems, VOL. 20, NO. 3, 

MARCH 2001. 

 

[8] Henrique S. Malvar, “Lossless and Near-Lossless Audio 

Compression Using Integer- Reversible Modulated 



National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)   

Proceedings published by International Journal of Computer Applications® (IJCA) 

21 

Lapped Transforms, 2007 Data Compression 

Conference. 

 

[9] X. Chen, N. Canagarajah, J. L. Nunez-Yanez, and 

R.Vitulli, “Hardware architecture for lossless image  

compression based on context-based modeling and 

arithmetic coding,” in Proc. IEEE Int. SoC Conf., Sep. 

2007, pp. 251–254. 

 

[10] T.-H. Tsai, Y.-H. Lee, and Y.-Y. Lee, “Design and  

analysis of high throughput lossless image compression 

engine using VLSI-oriented FELICS algorithm,” IEEE 

Trans. Very Large Scale Integr. Syst., vol.18, no. 1, pp. 

39–52, Jan. 2010. 

 

[11] L. Xiaowen, X. Chen, X. Xie, G. Li, L. Zhang, C. Zhang,  

and Z. Wang,“A low power, fully pipelined JPEG-LS 

encoder for lossless image compression,” in Proc. IEEE 

Int. Conf. Multimedia EXPO, Jul. 2007,pp. 1906–1909. 
 

 

 

 

 

 

 


