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ABSTRACT 

 Field-programmable gate array (FPGA) optimized random 

number generators (RNGs) can take advantage of bitwise 

operations and FPGA-specific features, hence they are more 

resource-efficient than software-optimized RNGs. This paper  

describes a  type  of RNG  called  a  LUT-SR  RNG,  which  

takes advantage  of  bitwise  XO R   operations  and  the  

ability  to  configure lookup tables (LUTs) into decoders & 

shift registers of varying lengths. This provides go o d  

quality compared to others. The LUT-SR generators is 

implemented by using  VHDL (very high speed integrated 

circuit hardware description language). 
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1. INTRODUCTION 
MONTE CARLO applications are ideally suited to field- 

programmable gate arrays (FPGAs) because of the highly 

parallel nature of the applications, and because it is 

possible to take advantage of hardware features to create very 

efficient random number generators (RNGs).  In particular, 

uniform random bits are extremely cheap to generate in an 

FPGA, as large numbers of bits can be generated per 

cycle at high clock rates using lookup tables [1], or first-

in-first- out (FIFO) queues [2]. In addition, these generators 

can be customized to meet the exact requirements of the 

application, both in terms of the number of bits required 

per cycle, and for the FPGA architecture of the target 

platform. 

Despite these advantages, FPGA-optimized generators are 

not widely used in practice, as the process of 

constructing a generator for a given parameterization is 

time consuming, in terms of both developer man hours and 

CPU time. While it is possible to construct all possible 

generators ahead of time, the resulting set of cores would 

require many megabytes, and  be  difficult to  integrate  into  

existing  tools  and  design flows. Faced with these 

unpalatable choices, engineers under time constraints 

understandably choose less efficient methods, such as 

combined Tausworthe generators [3] or parallel linear 

feedback shift registers (LFSRs). 

This paper describes a family of generators which makes it 

easier to use FPGA-optimized generators by providing a 

simple method for engineers to instantiate an RNG that meets 

the specific needs of their application. Specifically, it shows 

how to create a family of generators called LUT-SR RNGs, 

which use LUTs as shift registers to achieve high quality and 

long periods, while requiring very few resources. The main 

contributions of this paper are as follows: 

1)  A type of FPGA-optimized uniform RNG called  a 

LUT-SR generator is presented which uses LUT-based shift 

registers to implement generators with periods of 2
1024 − 1 

or more, using two LUTs and two flip flops (FFs) per 

generated random bit. 

2)  An algorithm for describing LUT-SR RNGs using five 

integers is given, along with a set of open-source test benchs 

and tools. 

3)  Tables of 60 LUT-SR RNGs are presented, covering 

output widths from 32 up to 624, with periods from 

21024 − 1 up to 219937 – 1. 
4)  A theoretical quality analysis of the given RNGs in 

terms of equidistribution and a comparison with other 

software and hardware RNGs are carried out. 

2. BINARY LINEAR RNGS 

Binary linear recurrences operate on bits (binary digits), 

where addition and multiplication of bits is implemented 

using exclusive-or (⊕) and bitwise-and (⊗). The recurrence 

of an RNG with n-bit state and r -bit outputs is defined as: 

xi +1  = Axi                                                                           (1) 

yi +1  = Bxi +1                                                                      (2) 

where  xi     = (xi,1 , xi,2 , . . . , xi,n )
T    is  the  n-bit  state  

of  the generator, yi  = (yi,1 , yi,2 , . . . , yi,r )
T  is the r -bit 

output of the generator, A is an n × n binary transition 

matrix,  and  B is an r × n binary output matrix. Because the 

state is finite, and the recurrence is deterministic, eventually 
the state sequence x0 , x1, x2 , . . . must start to repeat. The 

minimum value p such that xi + p =  xi   is called the period 

of the generator, and one goal in designing RNGs is to 

achieve the maximum period of p = 2n − 1. A period of 2n 

cannot be achieved because it is impossible to choose A such 
that x0 = 0 maps to anything other than x1 = 0. This leads to 

two sequences in a maximum period generator: a 

degenerate sequence of length 1 which contains only zero, 

and the main sequence which iterates through every possible 

nonzero n-bit pattern before repeating. A necessary and 

sufficient condition for a generator is to have maximum 

period.  

 

3. LUT-OPTIMIZED (LUT-OPT) RNGS 
 

LUT-OPT generators [1] are a family of generators 

with a matrix A where each row and column contains t − 

1 or t 1s. In hardware terms, this means that each row 

maps to a t − 1 or t input XOR gate, and so can be 

implemented in a single t input LUT. Thus if the current 

vector state is held in a register, each bit of the new vector 

state can be calculated in a single LUT, and an r -bit 

generator can be implemented in r fully utilized LUT-FFs. 

The basic structure of a LUT-OPT generator is shown in Fig. 

1. 
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Fig. 1. LUT-Optimized (LUT-OPT) RNG. 
 

A simple example of a maximum period LUT-OPT generator 

with r = 6 and t = 3 is given by 

 

 

LUT-OPT generators have two key advantages. 

1) Resource efficiency: Each additional bit requires one 

additional LUT and FF, so resource usage scales linearly, 

and generating r bits per cycle requires r LUT-FFs. 

2)  Performance: The critical path in terms of logic is a single 

LUT delay, so the generators are extremely fast, so 

usually the clock net is the limiting factor, with routing 

delay and congestion only becoming a factor for large n. 

Some disadvantages of LUT-OPT generators are following: 

 

1)  Complexity: Each (r, t ) combination requires a unique 

matrix of connections, which must be found using 

specialized software. If these matrices are randomly 

constructed (as in previous work), then it is difficult to 

compactly encode these matrices, so it is difficult for 

FPGA engineers to make use of the RNGs. 

2)  Quality: The random bits are formed as a linear 

combination of random bits produced in the previous 

cycle— when t = 3, some of the new bits will be a simple 

two-input XOR of bits from the previous cycle. The 

input of this lag-1 linear dependence is minimal in 

modern FPGAs where t ≥ 5, and also diminishes quickly 

as r is increased, but remains a source of concern. 

3)  Period: In order to achieve a period of 2n −  1, it is 

necessary to choose r = n, even if far fewer than n bits 

are needed per cycle. An absolute minimum safe period 

for a hardware generator is 264 − 1, but it is preferable to 

have much larger periods of 21000 − 1 or more. 

4)  Seeding: It is necessary to initialize RNGs with a 

chosen state at run time, so that different hardware 

instances of the same RNG algorithm will generate 

different random streams. In a LUT-optimized generator, it 

is possible to implement serial loading of state using one 

LUT input per RNG bit to select between RNG and 

load mode, but in practice, for a randomly chosen matrix 

A, only parallel loading is possible. 

3. LUT-FIFO RNGS 

One way of removing the quality and period problems is 

provided by LUT-FIFO generators [2]. These augment the r 

bits of state held in FFs with an additional depth-k width-w 

first-in-first-out (FIFO), for a total period of 2n −  1, 

where 

n = r + wk, shown in Fig. 1(b). LUT-FIFO generators can 

provide long periods such as 211213 − 1 and 219937
. 

Some disadvantages are following: 

 

1)  For reasonable efficiency, the FIFO needs to be 

implemented using a block RAM, a relatively expensive 

resource which one would usually prefer to use else- 

where in a design. 

2)  The wordwise granularity of block-RAM-based FIFOs 

reduces the flexibility in the choice of r , as it can only 

be varied in multiples of k. 

These are mild disadvantages when compared to the quality 

and period problems of LUT-optimized generators that have 

been eliminated, but LUT-FIFO generators also make the 

problems of complexity and efficient initialization slightly 

worse. If extremely high quality and period are needed, then 

LUT-FIFO generators present the fastest and most efficient 

solution, but few applications actually require such high 

levels of quality, particularly given the need for expensive 

block- RAM resources. 

4. SOFTWARE RNGS 

In addition to the hardware-optimized LUT-OPT and LUT- 

FIFO generators, a number of generators designed for 

software architectures have been ported to FPGA 

architectures. 

Combined Tausworthe [3]—Software generators which use 

word-level shift, XOR, and AND operations to construct 

simple recurrences with distinct periods, which are then 

combined using XOR to produce a much longer period 

generator. 

Mersenne Twister [5]—This uses the same word-level 

oper- ators as the  Combined Tausworthe, combined with 

a large RAM-based  queue,  to  create  a  software  generator  

with  a fairly good equidistribution and the extremely long 

period of 

219937 − 1. 
WELL [10]—This generator uses techniques similar to the 

Mersenne Twister, but uses a more complex recurrence step 

involving multiple memory accesses per sample, to 

achieve the maximum possible equidistribution at the same 

period as the Mersenne Twister. 

All the software generators are designed with word-level 

instructions in mind, and so tend to be inefficient in terms 

of resources consumed per bit generated. 

5. LUT-SR RNG 

This RNG will have the time period very longer than the 

available RNG’s. This RNG will be faster than other RNG’s. 

This RNG will be will have very less complexity than LUT-

FIFO RNG. It does not require block of RAM. But it is the 

improved form of LUT –SR RNG. 

LUT-SR generator It fixes all problems related to complexity 

and serial seeding found with both generators, and provides 

much higher periods than LUT-OPT generators for a cost of 
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one extra LUT-FF per bit, while eliminating the block- RAM 

resource needed for an LUT-FIFO RNG. LUTs can be 

configured in a number of different ways, such as basic 

ROMs, RAMs, and shift registers. Configuring LUTs as shift 

registers provides an attractive means of adding more storage 

bits to a binary linear generator.  

The improved LUT- SR RNG is shown in figure. 2. 

 
Fig. 2. Improved LUT-LUT SR RNG. 

 

 It has the time period N2r  times than LUT- SR RNG. The 

block diagram shown above is described below: 

1. There are “n” inputs initially “0000” (4 bits 

considered). 

2. These n bits input are fed to the scrambler. 

3. This scrambler block scrambles or randomizes the 

input at its output. 

4. Hence we get the different output w.r.t input. 

5. Then this output is fed to the EX –OR gates. 

6. The “r” bit output of this block is very random w.r.t 

input data. 

7. Then this “r” bit output is fed to the N bit shift 

register. 

8. This N bit shift register shifts the output at every 

clock pulse. 

9. This shifted data is then fed back to the input again. 

10. But in this way the input will not have any 

correlation with output & with the feedback data. 

11. Hence output pattern will be unpredictable as 

compared to the binary RNG. 

12. Because the time period of the pattern repetition 

will be N2r  times more compared to the binary 

RNG.  

13. The simulation results are shown in figure below. 

This RNG will increase the reliability of system as the time 

period of pattern repetition will be huge as compared to other 

RNG’s. It will be used to implement in spread spectrum 

technique as PN sequence generator to increase the security. 

CONCLUSION 

 

This paper presents improved LUT-SR RNGs with 

implication on FPGA. These RNGs take advantage of LUTs 

to configure as independent shift registers, for realizing 

high-quality long-period generators.  

The advantage of this LUT-SR generator over previous 

FPGA-optimized uniform RNGs will be less complexity than 

LUT-FIFO RNG, faster speed, huge time period of pattern 

repetition & no requirement of RAM block. In concert with 

the tables of maximum period generators, this allows FPGA 

engineers to use the new RNGs without needing to find 

generator instances themselves. This improved LUT-SR 

RNG has been realized by in VHDL using Modelsim. 

SIMULATION 

RESULTS
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