
National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

19

FPGA Implication of the LUT-SR Family for Uniform

Random Number Generation

M.V.Vyawahare, Rita Rawate
Department of Electronics Engineering,

Priyadarshini College of Engineering, Nagpur

ABSTRACT

 Field-programmable gate array (FPGA) optimized random

number generators (RNGs) can take advantage of bitwise

operations and FPGA-specific features, hence they are more

resource-efficient than software-optimized RNGs. This paper

describes a type of RNG called a LUT-SR RNG, which

takes advantage of bitwise XO R operations and the

ability to configure lookup tables (LUTs) into decoders &

shift registers of varying lengths. This provides go o d

quality compared to others. The LUT-SR generators is

implemented by using VHDL (very high speed integrated

circuit hardware description language).

KEYWORDS

Equidistribution, field-programmable gate array (FPGA),

uniform random number generator (RNG).

1. INTRODUCTION
MONTE CARLO applications are ideally suited to field-

programmable gate arrays (FPGAs) because of the highly

parallel nature of the applications, and because it is

possible to take advantage of hardware features to create very

efficient random number generators (RNGs). In particular,

uniform random bits are extremely cheap to generate in an

FPGA, as large numbers of bits can be generated per

cycle at high clock rates using lookup tables [1], or first-

in-first- out (FIFO) queues [2]. In addition, these generators

can be customized to meet the exact requirements of the

application, both in terms of the number of bits required

per cycle, and for the FPGA architecture of the target

platform.

Despite these advantages, FPGA-optimized generators are

not widely used in practice, as the process of

constructing a generator for a given parameterization is

time consuming, in terms of both developer man hours and

CPU time. While it is possible to construct all possible

generators ahead of time, the resulting set of cores would

require many megabytes, and be difficult to integrate into

existing tools and design flows. Faced with these

unpalatable choices, engineers under time constraints

understandably choose less efficient methods, such as

combined Tausworthe generators [3] or parallel linear

feedback shift registers (LFSRs).

This paper describes a family of generators which makes it

easier to use FPGA-optimized generators by providing a

simple method for engineers to instantiate an RNG that meets

the specific needs of their application. Specifically, it shows

how to create a family of generators called LUT-SR RNGs,

which use LUTs as shift registers to achieve high quality and

long periods, while requiring very few resources. The main

contributions of this paper are as follows:

1) A type of FPGA-optimized uniform RNG called a

LUT-SR generator is presented which uses LUT-based shift

registers to implement generators with periods of 2
1024 − 1

or more, using two LUTs and two flip flops (FFs) per

generated random bit.

2) An algorithm for describing LUT-SR RNGs using five

integers is given, along with a set of open-source test benchs

and tools.

3) Tables of 60 LUT-SR RNGs are presented, covering

output widths from 32 up to 624, with periods from

21024 − 1 up to 219937 – 1.
4) A theoretical quality analysis of the given RNGs in

terms of equidistribution and a comparison with other

software and hardware RNGs are carried out.

2. BINARY LINEAR RNGS

Binary linear recurrences operate on bits (binary digits),

where addition and multiplication of bits is implemented

using exclusive-or (⊕) and bitwise-and (⊗). The recurrence

of an RNG with n-bit state and r -bit outputs is defined as:

xi +1 = Axi (1)

yi +1 = Bxi +1 (2)

where xi = (xi,1 , xi,2 , . . . , xi,n)
T is the n-bit state

of the generator, yi = (yi,1 , yi,2 , . . . , yi,r)
T is the r -bit

output of the generator, A is an n × n binary transition

matrix, and B is an r × n binary output matrix. Because the

state is finite, and the recurrence is deterministic, eventually
the state sequence x0 , x1, x2 , . . . must start to repeat. The

minimum value p such that xi + p = xi is called the period

of the generator, and one goal in designing RNGs is to

achieve the maximum period of p = 2n − 1. A period of 2n

cannot be achieved because it is impossible to choose A such
that x0 = 0 maps to anything other than x1 = 0. This leads to

two sequences in a maximum period generator: a

degenerate sequence of length 1 which contains only zero,

and the main sequence which iterates through every possible

nonzero n-bit pattern before repeating. A necessary and

sufficient condition for a generator is to have maximum

period.

3. LUT-OPTIMIZED (LUT-OPT) RNGS

LUT-OPT generators [1] are a family of generators

with a matrix A where each row and column contains t −

1 or t 1s. In hardware terms, this means that each row

maps to a t − 1 or t input XOR gate, and so can be

implemented in a single t input LUT. Thus if the current

vector state is held in a register, each bit of the new vector

state can be calculated in a single LUT, and an r -bit

generator can be implemented in r fully utilized LUT-FFs.

The basic structure of a LUT-OPT generator is shown in Fig.

1.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

20

Fig. 1. LUT-Optimized (LUT-OPT) RNG.

A simple example of a maximum period LUT-OPT generator

with r = 6 and t = 3 is given by

LUT-OPT generators have two key advantages.

1) Resource efficiency: Each additional bit requires one

additional LUT and FF, so resource usage scales linearly,

and generating r bits per cycle requires r LUT-FFs.

2) Performance: The critical path in terms of logic is a single

LUT delay, so the generators are extremely fast, so

usually the clock net is the limiting factor, with routing

delay and congestion only becoming a factor for large n.

Some disadvantages of LUT-OPT generators are following:

1) Complexity: Each (r, t) combination requires a unique

matrix of connections, which must be found using

specialized software. If these matrices are randomly

constructed (as in previous work), then it is difficult to

compactly encode these matrices, so it is difficult for

FPGA engineers to make use of the RNGs.

2) Quality: The random bits are formed as a linear

combination of random bits produced in the previous

cycle— when t = 3, some of the new bits will be a simple

two-input XOR of bits from the previous cycle. The

input of this lag-1 linear dependence is minimal in

modern FPGAs where t ≥ 5, and also diminishes quickly

as r is increased, but remains a source of concern.

3) Period: In order to achieve a period of 2n − 1, it is

necessary to choose r = n, even if far fewer than n bits

are needed per cycle. An absolute minimum safe period

for a hardware generator is 264 − 1, but it is preferable to

have much larger periods of 21000 − 1 or more.

4) Seeding: It is necessary to initialize RNGs with a

chosen state at run time, so that different hardware

instances of the same RNG algorithm will generate

different random streams. In a LUT-optimized generator, it

is possible to implement serial loading of state using one

LUT input per RNG bit to select between RNG and

load mode, but in practice, for a randomly chosen matrix

A, only parallel loading is possible.

3. LUT-FIFO RNGS

One way of removing the quality and period problems is

provided by LUT-FIFO generators [2]. These augment the r

bits of state held in FFs with an additional depth-k width-w

first-in-first-out (FIFO), for a total period of 2n − 1,

where

n = r + wk, shown in Fig. 1(b). LUT-FIFO generators can

provide long periods such as 211213 − 1 and 219937
.

Some disadvantages are following:

1) For reasonable efficiency, the FIFO needs to be

implemented using a block RAM, a relatively expensive

resource which one would usually prefer to use else-

where in a design.

2) The wordwise granularity of block-RAM-based FIFOs

reduces the flexibility in the choice of r , as it can only

be varied in multiples of k.

These are mild disadvantages when compared to the quality

and period problems of LUT-optimized generators that have

been eliminated, but LUT-FIFO generators also make the

problems of complexity and efficient initialization slightly

worse. If extremely high quality and period are needed, then

LUT-FIFO generators present the fastest and most efficient

solution, but few applications actually require such high

levels of quality, particularly given the need for expensive

block- RAM resources.

4. SOFTWARE RNGS

In addition to the hardware-optimized LUT-OPT and LUT-

FIFO generators, a number of generators designed for

software architectures have been ported to FPGA

architectures.

Combined Tausworthe [3]—Software generators which use

word-level shift, XOR, and AND operations to construct

simple recurrences with distinct periods, which are then

combined using XOR to produce a much longer period

generator.

Mersenne Twister [5]—This uses the same word-level

oper- ators as the Combined Tausworthe, combined with

a large RAM-based queue, to create a software generator

with a fairly good equidistribution and the extremely long

period of

219937 − 1.
WELL [10]—This generator uses techniques similar to the

Mersenne Twister, but uses a more complex recurrence step

involving multiple memory accesses per sample, to

achieve the maximum possible equidistribution at the same

period as the Mersenne Twister.

All the software generators are designed with word-level

instructions in mind, and so tend to be inefficient in terms

of resources consumed per bit generated.

5. LUT-SR RNG

This RNG will have the time period very longer than the

available RNG’s. This RNG will be faster than other RNG’s.

This RNG will be will have very less complexity than LUT-

FIFO RNG. It does not require block of RAM. But it is the

improved form of LUT –SR RNG.

LUT-SR generator It fixes all problems related to complexity

and serial seeding found with both generators, and provides

much higher periods than LUT-OPT generators for a cost of

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

21

one extra LUT-FF per bit, while eliminating the block- RAM

resource needed for an LUT-FIFO RNG. LUTs can be

configured in a number of different ways, such as basic

ROMs, RAMs, and shift registers. Configuring LUTs as shift

registers provides an attractive means of adding more storage

bits to a binary linear generator.

The improved LUT- SR RNG is shown in figure. 2.

Fig. 2. Improved LUT-LUT SR RNG.

 It has the time period N2r times than LUT- SR RNG. The

block diagram shown above is described below:

1. There are “n” inputs initially “0000” (4 bits

considered).

2. These n bits input are fed to the scrambler.

3. This scrambler block scrambles or randomizes the

input at its output.

4. Hence we get the different output w.r.t input.

5. Then this output is fed to the EX –OR gates.

6. The “r” bit output of this block is very random w.r.t

input data.

7. Then this “r” bit output is fed to the N bit shift

register.

8. This N bit shift register shifts the output at every

clock pulse.

9. This shifted data is then fed back to the input again.

10. But in this way the input will not have any

correlation with output & with the feedback data.

11. Hence output pattern will be unpredictable as

compared to the binary RNG.

12. Because the time period of the pattern repetition

will be N2r times more compared to the binary

RNG.

13. The simulation results are shown in figure below.

This RNG will increase the reliability of system as the time

period of pattern repetition will be huge as compared to other

RNG’s. It will be used to implement in spread spectrum

technique as PN sequence generator to increase the security.

CONCLUSION

This paper presents improved LUT-SR RNGs with

implication on FPGA. These RNGs take advantage of LUTs

to configure as independent shift registers, for realizing

high-quality long-period generators.

The advantage of this LUT-SR generator over previous

FPGA-optimized uniform RNGs will be less complexity than

LUT-FIFO RNG, faster speed, huge time period of pattern

repetition & no requirement of RAM block. In concert with

the tables of maximum period generators, this allows FPGA

engineers to use the new RNGs without needing to find

generator instances themselves. This improved LUT-SR

RNG has been realized by in VHDL using Modelsim.

SIMULATION

RESULTS

REFERENCES

[1] D.b. Thomas and w.luk “FPGA optimized uniform

random number generators using lut and shift registers

"in proc.conf.feild program. logic appl.2010,pp 77-82.

[2] D. B. Thomas and W. Luk, “High quality uniform

random number generation using LUT optimised state-

transition matrices,” J. VLSI Signal Process., vol. 47, no.

1, pp. 77–92, 2007.

[3] D. B. Thomas and W. Luk, “FPGA-optimised high-

quality uniform random number generators,” in Proc.

Field Program. Logic Appl. Int. Conf., 2008, pp. 235–

244.

[4] P. L’Ecuyer, “Tables of maximally equidistributed

combined LFSR generators,” Math. Comput., vol. 68, no.

225, pp. 261–269, 1999.

[5] D. B. Thomas and W. Luk, “FPGA-optimised uniform

random number generators using luts and shift registers,”

in Proc. Int. Conf. Field Program. Logic Appl., 2010, pp.

77–82.

[6] M. Matsumoto and T. Nishimura, “Mersenne twister: A

623- dimensionally equidistributed uniform pseudo-

random number generator,” ACM Trans. Modeling

Comput. Simulat., vol. 8, no. 1, pp. 3–30, Jan. 1998.

[7] M. Saito and M. Matsumoto, “SIMD-oriented fast

mersenne twister: A 128-bit pseudorandom number

generator,” in Monte-Carlo and Quasi-Monte Carlo

Methods. New York: Springer-Verlag, 2006, pp. 607–

622.

[8] F. Panneton, P. L’Ecuyer, and M. Matsumoto,

“Improved long-period generators based on linear

recurrences modulo 2,” ACM Trans. Math. Software,

vol. 32, no. 1, pp. 1–16, 2006.

[9] M. Matsumoto and Y. Kurita, “Twisted GFSR generators

II,” ACM Trans. Modeling Comput. Simulat., vol. 4, no.

3, pp. 254–266, 1994.

[10] P. L’Ecuyer and R. Simard. (2007). TestU01 Random

Number Test Suite [Online].

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

22

Available:http://www.iro.umontreal.ca/∼imardr/indexe.h

tml.

[11] F. Panneton, P. L’Ecuyer, and M. Matsumoto,

“Improved long-period generators based on linear

recurrences modulo 2,” ACM Trans. Math. Software,

vol. 32, no. 1, pp. 1–16, 2006.

[12] V. Shoup. (1997, Jan. 15). NTL: A Library for Doing

Number Theory [Online]. Available:

http://www.shoup.net/ntl/

[13] M. Albrecht and G. Bard. (2010). The M4RI Library -

Version 20100817 [Online]. Available:

http://m4ri.sagemath.org

[14] S. Duplichan. (2003). PPSearch: A Primitive Polynomial

Search Program [Online]. Available:

http://users2.ev1.net/∼sduplichan/ primitivepolynomials/

[15] V. Sriram and D. Kearney, “A high throughput area time

efficient pseudo uniform random number generator based

on the TT800 algorithm,” in Proc. Int. Conf. Field

Program. Logic Appl., 2007, pp. 529–532.

[16] S. Konuma and S. Ichikawa, “Design and evaluation of

hardware pseudorandom number generator mt19937,”

IEICE Trans. Inf. Syst., vol. 88, no. 12, pp. 2876–2879,

2005.

[17] Y. Li, P. C. J. Jiang, and M. Zhang, “Software/hardware

framework for generating parallel long-period random

numbers using the well method,” in Proc. Int. Conf. Field

Program. Logic Appl., Sep. 2011, pp. 110–115.

