
National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

14

The Survey of Metrices on Software Quality Assurance

and Reuse

 Ashwin Tomar

MCA Computer Science Dept.
Siddhant Inst of Comp Applicat
Under Pune Univ. MH, INDIA

V. M. Thakare
P.G. Computer Science Dept.

Amravati University
Amravati, MH, INDIA

ABSTRACT

In this paper, we surveyed Software Quality Assurance

metrics useful in the different phase of the Object-Oriented

Software Development Life Cycle. Recent work in the field is

summarized and an outlook for software metrics in quality

assurance and reuse is provided. Metrics are used by the

software industry for analyzing, designing & development,

implementation and maintenance of software. The practice of

applying software metrics to a software process and to a

software product brings knowledge about the status of the

process and / or product of software in regards to the goals to

achieve. In this paper, we have presented Software Quality

assurance and reuse metrics which has not been emphasized.

General Terms

Software quality assurance i.e. SQA, Software reuse, Metrics

Keywords

Characteristics, Attributes, Audit Metric (AM)

1. INTRODUCTION
 "Quality" may be defined as "conformance to requirements".

Such "conformance" means, most generally, that the product

meets the needs of the user and satisfies stated performance

criteria. Quality is “Conformance to explicitly stated

functional and performance requirements, explicitly

documented development standards, and implicit

characteristics that are expected from all professionally

developed software” [1]. Quality is multidimensional aspect.

Quality can be viewed from different view i.e. from supplier

view and customer view. From supplier view quality is doing

the right thing, in right way, on right time and from customer

view quality is delivering the right product, satisfying the

customer needs, expectation, treating customer with respect,

integrity etc. Quality comprises all characteristics and

significant features of a product or an activity which relate to

satisfying of given requirements. Software should have

quality means it should have low defect potential, high defect

removal efficiency, stable requirements, high user satisfying

ratings. Objective is to optimes quality and productivity by

controlling various factors affecting them.

There are different characteristics which software should have

like maintainability, flexibility, testability, efficiency,

correctness, reliability, integrity, usability, interoperability,

portability etc. These are suggested in McCall’s, Dromey’s,

FURPS, ISO 9126, and SQuaRE model [1]. They have used

the word i.e. Quality factor. Quality factor are factors which

influence quality. The Product if developed is below standard

level i.e. low quality, it means that it has more errors, faults

and bugs. Such software below quality standard will cause

heavy loss of revenue, life, business problems like insurance

hazards, banking hazards, taxes calculation hazards, hospital

and health hazards. Quality is competitive and challenging

issue, it is must for survival.

Quality Assurance is process of developing the product [1]. It

is the process of ensuring that a quality work product in every

phase of software development. It deals with how quality is

achieved; it is estimating required level of quality. It is the

process of verifying or confirming whether the software

product and services meet the customer expectation. It is a

process driven and preventive approach. Quality assurance

process has to control to imbibe, accumulate quality into a

product. It depends on many factors like planning, standards,

rules, legal procedures, documentation, guidelines,

technology, authority, approvals, environment, risk, size,

report, reuse, virtue and ethics [6]. Our aim is to optimize

quality and productivity. Software quality assurance defines

the standards (established by Govt. or any organization) for

the software products developed in its organizational unit.

SQA specify and implement tools and aids for assessing

software product quality [2]. The tools may be as simple as

checklists or sophisticated as ones that automatically count the

number of unique instruction types in a program, the number

of conditional jumps in it, or other such elements that may

have a bearing on software quality. In short SQA is a set of

planned and systematic set of activities that provide adequate

confidence about establishing the requirements properly and

assures that the products or services conform to specified

requirements. It is preventive approach which prevents the

faults from occurring by providing rules and methods. It is the

task conducted on process (not product). It evaluates process

to produce the products.

Software measurement is concerned with deriving a numeric

value for an attribute of a software product or process. Metric

is a quantitative measure of the degree to which a system

component or process possesses a given attribute [1]. It is

quantifiable measurement of software product, process or

project that is directly observed, calculated or predicted.

Metrics are indicator. They are computed from measures [14].

Metrics form the basis for planning, evaluation and

controlling. They are useful to monitor requirements, predict

development resources, track development progress and

understand maintenance costs. The advantages of software

metrics are to compare study of various design methodology,

to analysis, compare & study programing languages with

respect to their characteristics, in evaluating capabilities and

productivity of people, in preparation of quality specification,

in getting idea of complexity, guiding managers in SDLC.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

15

2. CLASSIFICATION & METRICS
Authors have classified metrics in different ways like Core/

non-core metric, Direct/ indirect metrics, Process/ product [4],

Primitive/computed metrics. They have classified it from

commercial perspective[13] like technical metric, defect

metric, end user satisfaction, warranty metrics, reputation

metrics etc. Direct metrics are easy to establish, actual,

tangible and quantifiable. They are used to evaluate software.

2.1 SQA Metrics
Software metrics can be classified into three categories:

Project metrics are those that describe the project

characteristics and execution. E.g. include the number of

software developers, the staffing pattern. Process metrics are

management metrics [4] which are used for improving the

software development and maintenance process. e.g. include

the effectiveness of defect removal during development, the

pattern of testing defect arrival, and the response time of the

process. Product metrics are quality metrics [13] and are

used to measure the properties of software. like mean time to

failure, defect density customer problems, customer

satisfaction.

Other way of classifying is primitive metrics or computed

metrics [14]. Primitive metrics are those that can be directly

observed. Program size (in LOC), number of defects observed

in unit testing, or total development time for the project.

Computed metrics are those that cannot be directly observed

but are computed in some manner from other metrics.

Computed metrics are combinations of other metric values

and often more valuable in understanding or evaluating the

software process than are simple metrics. Examples of

computed metrics are those commonly used for productivity,

such as LOC produced per person-month (LOC/person-

month), or for product quality, such as the number of defects

per thousand lines of code (defects/KLOC).

McConnell has classified metrics in different way [1] as:-

Size Metrics: Total LOC, Total comment lines, Total data

declarations, Total blank lines.

Productivity Metrics: Work-hours spent on the project,

Work-hours spent on each routine changed, Dollars spent on

project, Dollars spent per line of code, Dollars spent per

defect.

Defect Tracking Metrics: Severity of each defect, Location

of each defect, Way in which each defect is corrected, Person

responsible for each defect, Number of lines affected by each

defect correction, Work hours spent in correcting each defect,

Average time required to find a defect, Average time required

to fix a defect, Attempts made to correct each defect, Number

of new errors resulting from defect correction.

Overall Quality Metrics: Total number of defects, Number

of defects in each routine, Average defects per thousand lines

of code, Mean time between failures, Compiler-detected

errors.

Maintainability Metrics : Number of parameters passed to

each routine, Number of local variables used by each routine,

Number of routines called by each routine, Number of

decision points in each routine, Control-flow complexity in

each routine, Lines of code in each routine, Lines of

comments in each routine, Number of data declarations in

each routine, Number of blank lines in each routine, Number

of jumps in each routine, Number of input, output statements

in each routine. Code Coverage Metrics: Percentage of

methods under test, Percentage of classes under test.

 “952” Metrics from Software Quality Assurance (SQA)

There is list of 952 metrics for SQA downloaded from

Internet which is listed in this paper. There are fourteen

metrics associated with it shown as - (14) which are listed

1.0 Software Quality Assurance Metrics

1.1 Software Audit Metrics

1.1.1 Software Activity Audit Metrics (14)

1.1.2 Software Product Audit Metrics (14)

1.1.3 Software Walkthrough Audit Metrics ([14)

1.1.4 Software Inspection Audit Metrics (14)

1.1.5 Software CMM® Audit Metrics (14)

1.2 Documentation Audit Metrics

1.2.1 Minimum Documentation Audit Metrics

1.2.1.1 Software Requirements Document (SRD) Audit

Metrics (14)

1.2.1.2 Software Architecture Document (SAD) Audit Metrics

(14)

1.2.1.3 Software Verification and Validation Plan (SVVP)

Document Audit Metrics (14)

1.2.1.4 Software Verification and Validation Report (SVVR)

Document Audit Metrics (14)

1.2.1.5 Software User Documentation Description (UDD)

Audit Metrics (14)

1.2.1.6 Software Configuration Management Plan (SCMP)

Audit Metrics (14)

1.2.2 Other Documentation Audit Metric

1.2.2.1 Software Project Plan (SPP) Audit Metrics (14)

1.2.2.2 System Requirements Specification (SRD) Audit

Metrics (14)

1.2.2.3 System Architecture and Requirements Allocation

Description (SARAD) Audit Metrics (14)

1.2.2.4 Database Design Description (DDD) Audit Metrics

(14)

1.2.2.5 Software Interface Design Description (SIDD) Audit

Metrics (14)

1.2.2.6 Test or Validation Plan (TVPL) Audit Metrics (14)

1.2.2.7 Software Design Description (SDD) Audit Metrics

(14)

1.2.2.8 Test or Validation Procedures (TVPR) Audit Metrics

(14)

1.2.2.9 Test or Validation Results Report (TVRR) Audit

Metrics (14)

1.2.2.10 Software Integration Plan (SOIP) Audit Metrics (14)

1.2.2.11 Software Integration Audit Report (SIAR) Audit

Metrics (14)

1.2.2.12 Software Installation Plan (SIP) Audit Metrics (14)

1.3 Review and Audit Metrics

1.3.1 Minimum Review and Audit Metrics

1.3.1.1 Software Requirements Review (SRR) Metrics (14)

1.3.1.2 Software Preliminary Design Review (SPDR) Metrics

(14)

1.3.1.3 Software Critical Design Review (SCDR) Metrics (14)

1.3.1.4 Software Verification and Validation Plan Review

(SVVPR) Metrics (14)

1.3.1.5 Function Configuration Audit (FCA) Metrics (14)

1.3.1.6 Physical Configuration Audit (PCA) Metrics (14)

1.3.1.7 In-Process Audit (IPA) Metrics (14)

1.3.1.8 Managerial Review (MR) Metrics (14)

1.3.1.9 Software Configuration Management Plan Review

(SCMPR) Metrics (14)

1.3.1.10 Post Mortem Review (PMR) Metrics (14)

1.3.2 Other Review and Audit Metrics

1.3.2.1 System/Subsystem Requirements Review (SSRR)

Metrics (14)

1.3.2.2 System/Subsystem Design Review (SSDR) Metrics

(14)

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

16

1.3.2.3 Software Test Readiness Review (SOTRR)Metrics

(14)

1.3.2.4 Software Test Results Review (SOTRER) Metrics (14)

1.3.2.5 System Test Readiness Review (SYTRR) Metrics (14)

1.3.2.6 System Test Results Review (SYTRER) Metrics (14)

1.3.2.7 Software Usability Review (SUR) Metrics (14)

1.3.2.8 Software Maintenance Review (SMR) Metrics (14)

1.4 Test Audit Metrics

1.4.1 Software Unit Testing Audit Metrics (14)

1.4.2 Software Integration Audit Metrics (14)

1.4.3 Software Qualification Testing Audit Metrics (14)

1.4.4 System Integration Audit Metrics(14)

1.4.5 System Qualification Testing Audit Metrics (14)

1.5 Code Control Metrics (14)

1.6 Media Control Metrics (14)

1.7 Supplier Control Metrics (14)

1.8 Risk Management Metrics (14)

1.9 Software CMM Key Process Area (KPA) Audit

Metrics (Audit Metric = AM)

1.9.1 Software CMM Level 2 Key Process Area (KPA) AM

1.9.1.1 Requirements Management (RM) Audit Metrics (14)

1.9.1.2 Software Project Planning (SPP) Audit Metrics (14)

1.9.1.3 Software Project Tracking and Oversight (SPT&O)

Audit Metrics (14)

1.9.1.4 Software Subcontract Management (SSM) AM (14)

1.9.1.5 Software Quality Assurance (SQA) Audit Metrics (14)

1.9.1.6 Software Configuration Management (SCM) AM (14)

1.9.2 Software CMM Level 3 Key Process Area (KPA) Audit

Metrices (14)

1.9.2.1 Organization Process Focus (OPF) Audit Metrics (14)

1.9.2.2 Organization Process Definition (OPD) A M (14)

1.9.2.3 Training Program (TP) Audit Metrics (14)

1.9.2.4 Integrated Software Management (ISM) AM (14)

1.9.2.5 Software Product Engineering (SPE) AM (14)

1.9.2.6 Intergroup Coordination (IC) Audit Metrics (14)

1.9.2.7 Peer Reviews (PR) Audit Metrics (14)

1.9.3 Software CMM Level 4 Key Process Area (KPA) Audit

Metrics (14)

1.9.3.1 Quantitative Process Management (QPM) A M (14)

1.9.3.2 Software Quality Management (SQM) Audit Metrics

(14)

1.9.4 Software CMM Level 5 Key Process Area (KPA) Audit

Metrics (14)

1.9.4.1 Defect Prevention (DP) Audit Metrics (14)

1.9.4.2 Technology Change Management (TCM) Audit

Metrices (14)

1.9.4.3 Process Change Management (PCM) Audit Metrics

(14)

The above list of common (14) metrics associated with it are

1 Number of Scheduled type of Audits

2 Number of Actual type of Audits

3 Ratio of Scheduled to Actual type of Audits

4 Effort per type of Audit

5 Number of Deviations per type of Audit

6 Number of Deviations Open type of Audit

7 Number of Deviations Closed type of Audit

8 Number of Actual Corrections type of Audit

9 Number of Deferred Corrections type of Audit

10 Ratio of Actual/Deferred Corrections type Audit

11 Ratio of Actual Corrections to Effort type of Audit

12 Number of Major Corrections type of Audit

13 Number of Minor Corrections per type of Audit

14 Ratio of Major Corrections to Effort per type of Audit

Metrics are also classified under following head as [12]:

Traditional Metrics

McCabe Cyclometric Complexity (CC)

Source Lines of Code (SLOC)

Comment Percentage (CP)

C.K. Metrics [12]

Weighted Method per Class (WMC)

Depth of Inheritance Tree (DIT)

Number of children (NOC)

Coupling between objects (CBO)

Response for a Class (RFC)

Lack of Cohesion in Methods (LCOM)

MOOD Metrics [12]

Encapsulation Method Hiding Factor (MHF)

 Attribute Hiding Factor (AHF)

Inheritance Method Inheritance Factor (MIF)

 Attribute Inheritance Factor (AIF)

Polymorphism Polymorphism Factor (POF)

Coupling Coupling Factor (COF)

Quality Metrics [1]

Mean time to failure (MTTF)

Mean time to repair (MTTR)

Mean time between failures (MTBF)

 MTBF=MTTF+MTTR

Probability of failure on demand (POFOD)

Rate of failure occurrence (ROCOF)

Availability AVAIL = MTTF/ (MTTF+MTTR)*100%

Lines of Code (KLOC)

Defect Removal Efficiency (DRE = E/ (E+D)

Different Researcher have classified metrics with example

under different categories like Size metrics (LOC, Token

counts i.e. operator, operands, function counts), Control Flow

metrics (McCabe’s Cyclometric Metrices), Information Flow

metrics (FAN-IN, FAN-OUT), Testing Metrices (Test

coverage, defect acceptance, defect aging, defect density,

review efficiency, defect severity index, test effectiveness

etc.), Coupling, Inheritance (no of children, parents, ancestor,

descendants, methods overridden), Cohesion Metrices (Tight

and loose)[3], Design metrics and many other metises. These

matrices are directly and indirectly associated with software

quality assurance.

Metrices are classified under four categories on basis of

software development phase. Requirement & Analysis

(Specific, Complete, Validated requirements), Design

(Information flow, The Bang Metric, Functions Points,

Cyclometric complexity), implementation (Estimation of

number of defects, Lines of code, Product metrics of Halstead

i.e. Program vocabulary, length, volume), Testing &

Maintenance (defect metrics, Software reliability), Effort &

cost metric (Empirical metrics, Statistical model, Halstead

metric) [5].

Product Quality Metrices are Customer satisfaction index,

defect ratio, defect removal efficiency, responsiveness to

users, product volatility, test coverage, cost of defects, cost of

quality activities, reliability, re-work, complexity of delivered

product which can be listed under product quality

metrics[14].Software reuse is systematic and managerial

process. It can be used for large scale and in building single

system.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

17

2.2 Reuse Metrics
Software reuse is process of creating software system from

existing software rather than building them from scratch.

Software reuse improves quality and productivity.

Measurement is considered as one of the success factor in

favoring reuse. Metrics plays an important role in quality

assurance & reuse which decides whether a component should

be used or not.

Reuse models and metrics can be categorized into six types

[16]:

1. reuse cost-benefits models

2. maturity assessment

3. amount of reuse

4 .failure modes

5 .reusability

6 .reuse library metrics (reuse repository)

This list of classifying reuse metrics was downloaded from

internet [7]. Some metrics relate directly to a measurement,

some require calculation of formulas relying on direct

measurements.

Management Metric Samples

Number of Individual Rewards Issued

Number of Team Honors Issued

Number of reward incentives released

Number of honor incentives released

Qualifier Metric Samples

Number of RC requests not filled

Effort Statistics for evaluation of an artifact

Supplier Metric Samples

Number of artifacts submitted by this Supplier

Number of RCs generated from artifacts submitted by this

Supplier

Number of a particular Supplier’s RCs reused by others

Number of error reports filed for a particular Supplier’s RCs

Aggregate Supplier Metrics

Total number of Suppliers

Total number of submitted artifacts

Artifacts submitted / Supplier

Number of accepted RCs

Number of reused RCs

Number of Error Reports

Number of open error reports

Individual Component User Metrics - for a particular user:

Number of RC searches

Number of RCs checked-out

Number of RCs reused

Number of User’s own RCs reused by self

Number of RCs suggested

Number of RCs suggested resulting in RC being built

Number of searches not resulting in candidate RCs

Number of searches not resulting in reuse of one of the

candidate RCs

Participation as User and Supplier = Number of artifacts

submitted + Number of RCs checked-out + Number of RCs

suggested + Number of searches

Positive Participation = Number of RCs proposed by this

User (as a Supplier) accepted + Number of RCs reused by this

User + Number of RCs suggested resulting in an RC being

built + Number of own (as Supplier) RCs reused

Reusable Component (RC) Metrics for a particular RC

RC size (other quality and descriptive metrics defined

elsewhere)

Original artifact effort

Artifact extraction effort

Artifact acceptance rework effort

Artifact categorization effort

RC creation effort

RC modification effort

Number of hits

Number of check-outs

Number of open check-outs

Number of reuses

Number of indirect reuses

Estimated RC non-reuse cost = Original artifact effort *

(Number of reuses + Number of indirect reuses)

Number of error reports

Number of open error reports

Check-out to reuse ratio = Number of check-outs/Number of

reuses

Qualification Level

Aggregate RC modification effort (sum, mean, standard

deviation, average efforts)

To date Effort saved by reuse

Check-out Metrics for a particular RC

Check-out result (open, curious inquiry, reused, related

component reused, not-reused-why)

Check-out time open

Reuse History Metrics for a particular RC

Modifications required

Modification effort

Application integration effort (for reuse)

Predicted development effort (if no reuse)

Percent effort saved with reuse

Error Metrics for a particular RC

(Usual collection of error data)

Repository Content Metrics

Number of RCs in the Repository

Number of versioned components

Total number of check-outs

Total number of open check-outs

Number of RCs reused (per time period)

Total number of reuses

Total number of reuses with no modifications

Number of artifacts accepted without rework

Number of artifacts accepted with rework

Number of open error reports

Number of error reports filed

Number of RCs with reported errors

Number of RCs with open error reports

Mean error reports per <size measure> for each type of RC

Library check-out to reuse ratio (goodness of cataloging

scheme)

Effort saved by reuse for repository

Reuse effort for repository

Estimated non-reuse cost for repository

Collection creation effort

Reuse metrics are also classified as below [10]:

Economics Oriented Reuse Metrics (EORM) - are related

to return on investment (ROI) models and the economic

impacts of reuse based on a set of observable data [10].

a) Reuse Cost Avoidance (RCA)

b) Reuse Value Added (RVA)

c) Organizational or Project level ROI

Software Structure Oriented Metrics (SORM) - are

concerned on what is being reused and how it is being reused

from a strictly technical standpoint.

a) Reuse level (RP): Ratio of the number of reused lines of

code to the total number of lines of code.

b) Reuse Level (RL): Ratio of the number of reused items to

the total number of items.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2013)

Proceedings published by International Journal of Computer Applications® (IJCA)

18

c) Reuse Frequency (RF): Ratio of the references to reused

 items to the total number of references.

d)Reuse size & Frequency (RSF): Similar to Reuse

Frequency, but also considers the size of items in the number

of lines of code.

e)Reuse Ratio (RR): Similar to Reuse percent, but also

considers partially changed items as reused.

f) Reuse Density: Ratio of the number of reused parts to the

total number of lines of code.

Reuse Repository Metrics (RRM) - assess the overall

performance of the convergence point of the reuse activities in

an organization.

a) Cost to find adequate reusable parts

b) Quality of contained reusable parts

c) Number of successful reuse cases of contained parts.

d) Availability of the repository'

e) Total value of a reuse repository

Metrics for measuring the amount of generosity [8] included

in the code. These are:

Function Template Factor (FTF): It is the ratio of Number

of Functions using Function Templates to total Number of

Function.

Class Template Factor (CTF): It is defined as ratio of

Number of Classes using Class Templates and Number of

Classes.

3. CONCLUSION & FUTURE WORK
In this paper we gave emphasis on metrics which are least

used. We surveyed metrics on quality assurance and reuse and

presented a summary of it. Most of metrics are collected from

papers and internet. Quality assurance is the process of

building quality in software. It is defect preventive process.

There are many factors on quality assurance which are

optimized to build quality in software. Software reuse is the

use of existing software artifacts in the development of other

software artifacts with the goal of improving productivity and

quality among other factors.

Metrics provides basis for analyzing, measuring, comparing,

evaluating all characteristics of product, process (quality

assurance and reuse) and people. Metrics quantifies the

characteristics. It serves as indicator which gives value to

characteristics. This paper will help researcher involved in

developing components (reuse technology) by standardizing

process.

4. REFERENCES
[1] www.onestoptesting.com, www.stickyminds.com

www.softwaretestinggenius.com,

www.chetanaforum.com,

www.softwaretestinginterviewfaqs.com

[2] J. E. Gaffney, Jr, 1981,” Metrics In Software Quality

Assurance,” ACM '81, November 9-11.

[3] Amjan Shaik, C. R. K. Reddy, Bala Manda, Prakashini

C, Deepthi. K, Metrics for Object Oriented Design

Software Systems A Survey, Journal of Emerging Trends

in Engineering and Applied Sciences 2010.

[4] Gurdev Singh, Dilbag Singh, Vikram Singh, “ A study of

Software Metrics”, IJCEM, vol 11, Jan 2011

[5] Dr.B.R.Sastry, Saradhi Vijaya,“Impact of Software

Metrics on Object Oriented Software Development life

cycle”, IJOEST, Vol 2(2), 2010, 67-76.

[6] Tomar Ashwin, Thakare. V.M, “Identification and listing

of factors affecting SQA”, International Conference on

Computer Science and Information Technology, IRNET,

14 July 2012.

[7] www.Toolbox.com

[8] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika

Malhotra, “Proceedings of the 2005 Third ACIS Int'l

Conference on Software Engineering Research,

Management and Applications”, 2005 IEEE.

[9] Mrinal Singh Rawat, Arpita Mittal, Sanjay Kumar

Dubey,"Survey on Impact of Software Metrics on

Software Quality", International Journal of Advanced

Computer Science and Applications, Vol. 3, No. 1, 2012.

[10] In Distributed Systems, Jorge Cláudio Cordeiro Pires

Mascena, Eduardo Santana de Almeida, Sílvio Romero

de Lemos Meira,"A Comparative Study on Software

Reuse Metrics and Economic Models from a Traceability

Perspective", 2005 IEEE.

[12] Arora Deepak, Khanna Pooja, Tripathi A, Sharam S,

"Software Quality Estimation through Object Oriented

Design Metrics", IJCSNS, Vole 11, N0-4, April 2011.

[13] Stephen H. Kan Tavel, Book on Software quality

Engineering.

[14] Farooq Sheikh U, Quadri S M K, Ahmad, "Software

Measurement and Metrics: Role in Effective Software

Testing", IJEST, Vole 3, No 1, Jan 2011.

[15] Stephen H. Kan Tavel, Book on Software quality

engineering.

[16] Frakes, William and Carol, Terry,"Software Reuse:

Metrics and Models" ACM Computing Surveys 28 (2),

pp. 415-435, 1996.

[17] Xunmei G U, Jun SHI, Reuse Metrics for Object-

Oriented Method, 2010 IEEE.

[18] Ashwin Tomar, V. M .Thakare, ”The Study of Software

Reuse and Models”, IJCA Proceedings on National

Conference on Innovative Paradigms in Engineering and

Technology (NCIPET 2012).

