
National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

23

Design Methods for Low-Power Implementation

N. A. Mohota
Sr. Lecturer

JDCOE, Nagpur

 T. N. Mohota
Sr. Lecturer
SBJITM&R, Nagpur

ABSTRACT

Implementation of low power techniques in the design is

increasing because of the increasing clock frequency and a

continuous increase in the number of transistors on chip.

These low power techniques are being implemented across all

levels of abstraction - system level to device level. Here,

approaches related to front-end HDL based design styles,

which can reduce power consumption, have been mentioned.

As is known, power dissipation has a direct relation with the

clock frequency and dynamic power also depends upon the

rate at which the data toggles for a given circuit. The design

styles mentioned here, focus on several areas of designing

using HDL, which are at times not considered significant, as

they do not affect the functionality. The techniques mentioned

here are quite simple to implement and mostly clear of

confusion techniques that are considered quite insignificant,

yet have a significant impact on the overall power-

consumption.

Keywords
RTL, One- hot encoding, Gray encoding, Bus invert coding,

synthesis, FSM

1.INTRODUCTION
Power dissipation in a CMOS transistor depends on the

capacitance, supply voltage and the rate at which the data

toggles.

P = f * Cload * VDD
2

Where,

Cload is the load capacitance of the CMOS transistor

VDD is the supply voltage

f is the frequency at which the data transition takes place.

If Pdt describes the probability of data transition then

f = Pdt * fclk

Example: For a random data Pdt = 0.5 so for a clock

frequency of 50MHz, the value of f would be 0.5 * 50 MHz =

25 MHz. An efficient and high quality HDL code can reduce

unwanted transitions and can save substantial amount of

power in the design. Also logic optimization techniques like

removing redundant logic and properly sharing the resource in

design also helps in power reduction.

1. MINIMIZING DATA TRANSITIONS

ON BUS
In many cases the data on the bus keeps on transitioning from

one value to another because there is no default state for

assigning a constant value. This may not affect the design

functionally as there may be some handshaking signal which

indicates that the data is valid. But the transitions on data bus

consume power.

// Code that resets the Bus to default status after valid gets de-

asserted.

always@(posedge clk or negedge reset)

begin

if(!reset)

 data_bus = 16’b0;

else if(data_bus_valid)

 data_bus = data_o;

else

 data_bus = 16’b0;

end

// Code that holds the Bus to its previous value after valid gets

de-asserted.

always@(posedge clk or negedge reset)

begin

if(!reset)

 data_bus = 16’b0;

else if(data_bus_valid)

 data_bus = data_o;

end

AVOIDING UNNECESSARY

TRANSITION OF SIGNAL
 It is seen in many designs that certain signals transit when

they are not required to, but they are not detected in functional

verification, as they satisfy the logical requirements. Such

signals, if checked properly and if the logic is tweaked to

suppress those unwanted transitions, can also help avoid

utilization of power.

RESOURCE SHARING
 The RTL coding should be carried out in a manner that there

are no unwanted or redundant logic elements. Any logic

element will contribute to power consumption as it has a

capacitance attached to it and transitioning of data through

that logic will lead to power dissipation.

// Example where resource sharing is not possible

always@(in1 or in2 or sel)

 if(sel)

 out1 = in1 + in2;

 else

 out1 = 4’b0;

always@(in3 or in4 or sel)

 if(!sel)

 out2 = in3 +in4;

 else

 out = 4’b0;

// Example where resource sharing is possible

always@(in1 or in2 or in3 or in4 or sel)

 if(sel)

 begin

 out1 = in1 + in2;

 out2 = 4’b0;

 end

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

24

 else

 begin

 out1 = 4’b0;

 out2 = in3 + in4;

 end

4. CONTROL OVER COUNTERS
Counters are normally designed so that they can start and stop

as per requirement. Certain times, due to improper coding, all

the start and stop conditions are not taken care of and the

counter may unnecessarily keep on counting.

// Example of unnecessary counter transitions.

always@(posedge clk or negedge reset)

begin

 if(!reset)

 cnt = 4’b0;

 else if((cnt == 4’b0111) | cntr_reset)

 cnt = 4’b0;

 else

 cnt = cnt + 1’b1;

end

// Example that removes unnecessary counter transitions.

always@(posedge clk or negedge reset)

begin

 if(!reset)

 cnt = 4’b0;

 else if (cntr_reset)

 cnt = 4’b0;

 else if(cnt < 4’b0111)

 cnt = cnt + 1’b1;

end

For example, for a random probability data (P = 0.5) and

clock frequency of 100 MHz, the transition frequency would

be around 50 MHz. For a bus capacitance of 25 pF and supply

voltage of 1.2 V, this would result in 1.8 mW power

consumption.

5. STATE MACHINE ENCODING(FSM)
 It is a well known fact that one-hot and Gray encoding

consume lesser power as compared to binary encoding. This is

because one-hot and gray encodings have only a single bit

change while going from one state to another.

6.ALLOW SYNTHESIS OPTIMIZATION
 Certain constraints and coding styles can be followed which

reduce the area utilization or logic optimization. This is

because extra logic will add extra capacitance and in turn will

consume more power. Also, one way of checking redundant

hardware generation is by tactfully analyzing the code

coverage reports.

REGISTER RETIMING
Register timing is a concept mostly used in improving timing

by reordering the combinational and sequential logic in a

given data path. However in certain cases, there is a saving of

logic and thus can help improve upon power consumption. Of

course, this is possible only if the design can support the

additional timing overhead.

A Q1

Clk O/P

B Q2

Clk

 Sel

Fig1. Without Retiming

A MuxO

 O/P

B Clk

Sel

Fig2. With Retiming

USING GRAY CODING FOR

ADDRESSING MEMORIES
 It is seen that addressing memories via gray coding

significantly reduces the power as there are lesser number of

transitions that the address counter performs. A detailed

explanation and trade-offs of the same is mentioned [3].

USING BUS INVERT CODING FOR I/Os

OR LONG DATA PATHS
 Bus invert coding [2] is a technique in which if the hamming

distance between the current data and the next data is more

that N/2 (where N is the bus width), then one can invert the

bits and send it, so as to minimize the number of transitions

on the bus. In that case a control bit goes along with the data

to indicate the receiving end, whether the data is inverted or

not. The following are the results of a simulation carried out

to understand the reduction in the number of transitions due to

bus invert coding.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

25

USING SYSTOLIC OR PIPELINED

DESIGN FOR DSP IMPLEMENTATION
 A detailed understanding of systolic architecture and

pipelined architecture for implementing a DSP block are

mentioned in [1]. Pipelining reduces power by registering the

inputs at regular intervals and thereby reduces the overall net-

lengths and minimizes glitches. Systolic architectures have

high modularity and help reduce long interconnect path

delays. Depending on the requirements of latency and

hardware, one can choose one of these approaches

CONCLUSION
A significant reduction in the power dissipation was observed

by following the techniques described in this paper. A good

practice would be to not only verify the design for its

functional adherence, but also verify it from the low power

perspective, by employing methods and strategies that target

detection of unwanted transitions and logic redundancy.

REFRENCES
[1]Roger Woods, John McAllister, Gaye Lightbody and Ying

Yi, "FPGA implementation of signal processing

systems", Wiley, 2008.

[2] Mircea R. Stan and Wayne P. Burleson, "Bus Invert

Coding for Low-Power I/O", IEEE Transactions on VLSI

systems, Vol.3, No. 1, March 1995, pp 49 – 58.

[3] Hichem Belhadj, Vishal Aggrawal, Ajay Pradhan, Amal

Zerrouki, "Power Aware FPGA design – Part 3",

Programmable Logic Design Line, 17th February, 2009.

[4] Gary Yeap, "Practical Low power Digital VLSI design",

Kluwer Academic Publishers, 1998.

