
National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

17

Single Precision Floating Point Fft

 Ujwal S. Ghate
SRKNEC Nagpur, India

ABSTRACT

In this paper the design and implementation of 32 bit IEEE 754

single precision floating point FFT architecture is proposed.

Usually for FFT calculation the sequential circuits use for

mantissa adjustment which is somewhat tedious job So, new

approach is define for calculating FFT in pure combinational

circuits form. The simulation result are compare with the quartus

II and Active HDL software also it is cross verified with Matlab

. The algorithm is implemented on FPGA.

Keywords
IEEE Floating-point, FPGA , FFT,HDL

1. INTRODUCTION

Fast Fourier Transform (FFT) plays an important role in many

signal and image processing, data analyzing for vibration

sensors, frequency measurement of earthquakes, and

telecommunication systems such as WiMax technology which

presents both wide bandwidth and wireless solutions. In real

time applications, it is necessary to obtain and process the input

data as fast as possible to be able to reach the result almost

simultaneously. Although ASIC solutions always offer fastest

and low power solutions for real time applications, they are

unique designs for a specific application. Therefore redesign

process of an ASIC for a new application requires much more

money and time when comparing with field programmable

chips. FPGA solutions also provide flexible design, low cost,

and faster time-to-market features besides allowing parallel

process implementations.

Floating point numbers have ability to represent a good

approximation and dynamic range representations of the real

numbers, so that floating point algorithms are frequently used in

modern applications, which require millions of calculations per

second, such as image processing and speech recognition. In this

paper, firstly, the realized algorithms of the necessary arithmetic

operations used in FFT implementation are presented. Next,

these design blocks are used to realize the mathematical

expression of the FFT and compared with the similar ones in the

literature from structural and performance point of view.

2. FLOATING POINT ARITHMETIC

ALGORITHMS

The single precision numbers in the binary IEEE standard are

formed as shown in Fig.1. The most significant bit is the sign

bit, which indicates a negative number if it is set to 1. The

following field denotes the exponent with a constant bias added

to it. As shown in Fig.1, the remaining part of the number is

normalized to have one non-zero bit to the left of the floating

point

31 23 0

S e + bias f

Sign Biased exponent Significant s=1.f (the 1 is hidden)

Fig 1 Format of IEEE single floating point number

Therefore, the value given by the standard format can be

expressed using following expression.

 m = (-1) Sign x 2e x 1.f

The range of single precision floating point number varies from -

3.4028236 e+38 to -1.1754944 e-38 and from +1.1754944 e-38

to +3.4028236 e+38.

2.1 Floating point addition and subtraction
 Fig 2 shows the design flow chart of the floating point addition

and subtraction algorithm implemented. These algorithms are

similar to the ones realized in many architecture. Let A1 and A2

represent two floating point numbers; Aadd represents the

addition of both number; and Aminus =A1-A2. Aminus can be re-

written as Aminus= A1+(-A2). The subtraction process is

converted to addition form by inversing the sign bit of F2. For

this reason, only addition algorithm is elaborated here. Addition

and subtraction algorithms are realized in three steps. Ai

represents the number; Si is the sign, ei is exponent and fi is the

fraction part of any number. Lets define the inputs as A1=(s1,e1

,f1) and A2=(s2,e2,f2). The result is represented as

Fans=(sans,eans ,fans)= A1+A2 or A1 +(- A2)

The algorithm steps are as follows:

1. Step:

If absolute value of A1 is smaller than A2, A1 and A2

are interchanged. The right shift amount of f2 is calculated by

subtracting e1 from e2. (Sign)_1_ (Mantissa) is added to the bits

after the sign bit (1.f1) ve (1.f2).

2. Step:

(1.f1) is shifted to the right by the amount of (e1- e2).

If the sign bits are equal, then (1. f1) and (1. f2) are added, if not

(1.f2) is subtracted from (1.f1). The sign of the resulting number

sans is the sign of the bigger f number.

3. Step:

fans is shifted to the left until the first bit becomes

1, and amount of the shift is calculated. eans is obtained by

subtracting the amount of shift from e1.

 Fig2: Adder Substractor Unit

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

18

 Fig2: Result of Adder Substractor Unit

Table 1

 Input

Actual

Output(Before

Normalize)

Result

Dec. No. A(23) B(-52) -29 -29

Exp 4 5 5 5

Man 0B8 1D0 1E8 1E8

2.2 Floating point multiplication

Floating point multiplication shown in Fig 3 is similar

to the integer multiplication. Therefore FP multiplication is

easier than FP adding or subtracting algorithms here. It is

realized in three steps as well.To make it easy, the algorithm

never tests the illegal numbers or negative zero cases. The inputs

are same as before, A1=(s1, e1, f1) and A2=(s2, e2, f2).The

result will be Aans = (sans, eans, fans)= A1* A2. The algorithm

steps will

be as follows:

1. Step:
Exponent parts, e1 and e2 are added; the resulting

number is appointed as eans. _1_ is added to the beginnings of

f1 and f2, yielding (1.f1) and (1.f2).

 2. Step:
(1.f1) and (1.f2) are multiplied and the first 23 MSB

bits out of the resulting 45 bits is appointed as the final result,

fans . The sign bit of the final number, sans is obtained by

EXOR_ing the two numbers.

 3. Step:
fans is shifted to the left until the first bit becomes

1, and amount of the shift is calculated. eans is obtained by

adding the amount of shift from e1.

 Fig3: Multiplication unit

 Fig4: Result Multiplication unit

Table 2

 Input Actual Output Result

Dec. No. A(7) B(-3) -21 -21

Exp 2 1 4 4

Man 0E0 1C0 1A8 1A8

3. FLOATING POINT FFT DESIGN

The basic radix-2 butterfly unit is as shown in Fig 5

and corresponding floating point diagram is shown in Fig 6

 Fig 5: Radix-2 butterfly unit

 Fig6: Floating Point Butterfly Structure

 The fig 8 shows the result of radix-2 single butterfly stage

here if we use fsm for giving input then clk (clock) and rst

(reset) is used.

 Fig7: Testing fft butterfly (one real and one img.

number)

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

19

Fig8: Result of butterfly Fig 4

Table 3

 Input Result

 X1 X2

Dec.

No.
A(-4) B(-j) -4 -j -4 +j

Exp 2 0 2 0 2 0

Man 180 180 180 180 180 080

4. CONCLUSION
In this paper the design and implement a 32-bit IEEE 754 single

precision floating point FFT on FPGA. The Design is in fully

combinational so there is no operating frequency limit i.e. output

only depends on input only. For power calculation and layout we

can use synopsis or cadence tool.

for optimization pipeline and parallel processing and block

rearrangement can be used .

5. REFERENCES
[1] E. O. Brigham, The fast Fourier transform and its

applications, Prentice Hall, 1988.

[2] J. G. Pmakis, Digital signal processing: principles

algorithms, and applications., Prentice-Hall Intemational,

1996.

[3] H. Hu, T. Jin, X. Zhang, Z. Lu, Z. Qian, _ A Floating-point

 Coprocessor Configured by a FPGA in a Digital Platform

Based on

 Fixed-point DSP for Power Electronics_, IEEE

IPEMC_2006

[4]ShengmeiMou,XiaodongYang “Design of a high –speed

FPGA-based 32-bit floating point FFT Processor” 2007

IEEE.

[5] Floating –point FFT Processor (IEEE 754 single presion

Radix 2 core,White Paper from altera)

[6] Shiqun Zheng Dunshan Yu,”Design and implimention of a

parrel real-time FFT Processor”,7 th IEEE conference on

Solid –State and Integated Circuits

Technology,Vol.3,pp,1665-168,Oct2004.

[7] Bin Zhou ,David Hwang “ Implementations and

Optimizations of pipeline FFTs on Xilinx FPGAs.(2008

International Conference on Reconfigurable computing and

FPGAs)

[8] M.Hasan & T. Arslan “Coefficient Memory Addressing

scheme for VLSI Implementation of FFT Processor”[IEEE

2000 Scotland].

