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ABSTRACT 
System Identification is one of the most interesting applications for 

adaptive filters, especially for the Least Mean Square algorithm, 

due to its robustness and calculus simplicity. Based on the error 

signal, the filter’s coefficients are updated and corrected, in order 

to adapt, so the output signal has the same values as the reference 

signal. The application enables remarkable developments and 

research, creating an opportunity for automation and prediction. In 

this paper we focus on parameters of system identification by 

changing design parameters such as forgetting factor, filter length, 

initial value of filter weight and input variance of filter through 

MATLAB/SIMULINK Software. 
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1. INTRODUCTION 
Adaptive filters are used for non stationary signals and 

environments or in applications where a sample-by-sample 

adaptation of a process or a low processing delay is required. The 

characteristics of digital filters can easily be changed by 

modifying the filter coefficients. This makes digital filters 

attractive in communications applications such as adaptive 

equalization, echo cancellation, noise reduction, speech analysis, 

and speech synthesis. The basic concept of an adaptive filter is 

shown in Figure 1. 

 
                           

Figure 1: Adaptive filter 

    

The objective is to filter the input signal, x(n), with an adaptive 

filter in such a manner that it matches the desired signal, d(n). 

The desired signal, d(n), is subtracted from the filtered signal, 

y(n), to generate an error signal. The error signal drives an 

adaptive algorithm that generates the filter coefficients in a 

manner that minimizes the error signal. The least-mean-square 

(LMS) or recursive-least-squares (RLS) adaptive filter are two 

of the most popular. 

Identifying an unknown system has been a central issue in 

various application areas such as control, channel equalization, 

echo cancellation in communication networks and 

teleconferencing etc. Identification is the procedure of 

specifying the unknown model in terms of the available 

experimental evidence, that is, a set of measurements of the 

input output desired response signals and an appropriately error 

that is optimized with respect to unknown model parameters. 

Adaptive identification refers to a particular procedure where 

we learn more about the model as each new pair of 

measurements is received and we update the knowledge to 

incorporate the newly received information. 

     In the wide range of available adaptive algorithms, gradient 

descend methods, including the popular least mean squares 

(LMS) and recursive-least-squares (RLS) adaptive filter, are 

used. 

 

2. RLS ADAPTIVE FILTER 
The recursive least square error (RLS) filter is a sample-

adaptive, time-update, version of the Wiener filter. For 

stationary signals, the RLS filter converges to the same optimal 

filter coefficients as the Wiener filter. For non-stationary 

signals, the RLS filter tracks the time variations of the process. 

The RLS filter has a relatively fast rate of convergence to the 

optimal filter coefficients. Figure 2 illustrates the configuration 

of an adaptive filter where y(m), x(m), w(m) = [w0(m), w1(m), 

..., wP–1(m)] and P denote the filter input, the desired signal, the 

filter coefficient vector and the filter length  respectively. The 

filter output can be expressed as 

 

)()()(ˆ mymwmx T    (1) 

 
 

Figure 2: Configuration of an adaptive filter 

 

Where, )(ˆ mx  is an estimate of the desired signal  

x (m). The filter error signal is defined as 

)(ˆ)()( mxmxme      

)()()( mymwmx T   (2) 

The adaptation process is based on the minimization of the 

mean square error criterion defined as 
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For stationary signals, the result of this minimization is given as 

yxyy rRw 1                                                (4) 

Where, Ryy is the autocorrelation matrix of the input signal and 

ryx is the cross-correlation vector of the input and the target 

signals. For a block of N sample vectors, the correlation matrix 

can be written as 
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Where, y(m)=[y(m), ..., y(m–P)]T. Now, the sum of vector 

product in Equation 5 can be expressed in recursive fashion as 

)()()1()( mymymRmR T

yyyy   (6) 

To introduce adaptability to the time variations of the signal 

statistics, the autocorrelation estimate in Equation 6 can be 

windowed by an exponentially decaying window: 

)()()1()( mymymRmR T

yyyy   (7) 

Where, λ is the so-called adaptation, or forgetting factor, and is 

in the range 0 < λ ≤ 1. Similarly, the cross-correlation vector is 

given by 
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The sum of products in Equation 8 can be calculated in 

recursive form as 

     
)()()1()( mxmymrmr yxyx   (9) 

 

Again this equation can be made adaptive using an 

exponentially decaying forgetting factor λ: 

     
)()()1()( mxmymrmr yxyx    (10) 

 

For a recursive solution of the least square error Equation 10, 

we need to obtain a recursive time-update formula for the 

inverse matrix in the form 

    
)()1()( 11 mUpdatemRmR yyyy  

 (11) 

 

2.1 Recursive Time-update of Filter 

Coefficients 
The least square error filter coefficients are 

   
)()()( 1 mrmRmw yxyy

  

)()( mrm yxyy    (12) 

Substituting the recursive form of the correlation vector in 

Equation 12 from Equation 10 yields 
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     (13) 

Now substitution of k(m)=Φ(m)y(m) and the recursive form of 

the matrix      
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Equation 13 yields 
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Substitution of w(m–1)=Φ(m–1)ryx(m–1) in Equation 14 yields 

)]1()()()[()1()(  mwmymxmkmwmw T  

    (15) 

 

This equation can be rewritten in the following form 

)()()1()( memkmwmw    (16) 

 

Equation 16 is a recursive time-update implementation of the 

least square error Wiener filter. 

 

 

2.2 The Steepest-Descent Method 
The mean square error surface with respect to the coefficients 

of an FIR filter is a quadratic bowl-shaped curve, with a single 

global minimum that corresponds to the LSE filter coefficients. 

The steepest descent search is based on taking a number of 

successive downward steps in the direction of negative gradient 

of the error surface. The steepest-descent adaptation method 

can be expressed as 
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where, μ is the adaptation step size. The gradient of the mean 

square error function is given by 
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Substituting Equation 18 in Equation 17 yields 

 )()()1( mwRrmwmw yyyx    (19) 

 

Let wo denote the optimal LSE filter coefficient vector, we 

define a filter coefficients error vector )(~ mw  as 

owmwmw  )()(~
   (20) 

 

For a stationary process, the optimal LSE filter wo is obtained 

from Wiener filter, as 

yxyyo rRw 1     (21) 

 

From Equation 19 to 20, we get 

)(~][)1(~ mwRImw yy   (22) 

      

The parameter μ, the adaptation step size, controls the stability 

and the rate of convergence of the adaptive filter. Too large a 

value for μ causes instability; too small a value gives a low 

convergence rate. The correlation matrix can be expressed in 

terms of the matrices of eigenvectors and eigenvalues as 
T

yy QQR      (23) 

 
Figure 3: A feedback model of the variation of coefficient 

error with time 

 

where, Q is an ortho-normal matrix of the eigenvectors of Ryy, 

and Λ is a diagonal matrix with its diagonal elements 

corresponding to the eigenvalues of Ryy. Substituting Ryy from 

Equation 23 in Equation 22 yields 

 

)(~][)1(~ mwQQImw T    (24) 

 

1– μλk 

 

Z
-1 

vk(m) vk(m+1) 



National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)   

Proceedings published by International Journal of Computer Applications® (IJCA) 

3 

 

 

 

Multiplying both sides of Equation 25 by QT and using the 

relation QTQ = QQT = I yields 

 

 
)(~][)1(~ mwQImwQ TT    (25) 

 

Let,  )(~)( mwQmv T    (26) 

Then, 

 
)(][)1( mvImv     (27) 

 

As Λ and Ι are both diagonal matrices, Equation 27 can be 

expressed in terms of the equations for the individual elements 

of the error vector v(m) as 

  
)(][)1( mvImv kkk    (28) 

 

Where λk is the kth eigenvalue of the autocorrelation matrix of 

the filter input y(m). 

3. APPLICATIONS OF ADAPTIVE FILTERS 
The most important driving forces behind the developments in 

adaptive filters throughout their history have been the wide 

range of applications in which such systems can be used. The 

major applications of adaptive filters are system identification 

includes adaptive noise canceling, inverse modeling, linear 

prediction and feed-forward control. 

3.1 System Identification 
In Figure 4, shows the general problem of system identification. 

In this diagram, the system enclosed by dashed lines is a “black 

box,” meaning that the quantities inside are not observable from 

the outside. Inside this box is (1) an unknown system which 

represents a general input-output relationship and (2) the signal 

η(n), called the observation noise signal because it corrupts the 

observations of the signal at the output of the unknown system. 

 

Let d’(n) represent the output of the unknown system with x(n) 

as its input. Then, the desired response signal in this model is 

d (n) = d’(n) + η(n)   (29) 

 

The task of the adaptive filter is to accurately represent the 

signal d’(n) at its output. If y(n) = d’(n), then the adaptive filter 

has accurately modeled or identified the portion of the 

unknown system that is driven by x(n). Let the unknown 

system and the adaptive filter both be FIR filters, such that 

d(n) = WT
opt(n)X(n) + η(n)  (30) 

 

Where, Wopt(n) is an optimum set of filter coefficients for the 

unknown system at time n. In the system identification there are 

two major applications, one is channel identification and another 

is adaptive noise cancellation. 

 

 
 

Figure 4: System Identification 

 

3.2 Inverse Modelling 
The inverse modelling system is shown in Figure 5. In this 

diagram, a source signal s(n) is fed into an unknown system that 

produces the input signal x(n) for the adaptive filter.  

 

 
Figure 5: Inverse Modeling 

 

The output of the adaptive filter is subtracted from a desired 

response signal that is a delayed version of the source signal, 

such that 

 

d(n) = s(n-Δ)    (31) 

 

where, Δ is a positive integer value. The goal of the adaptive 

filter is to adjust its characteristics such that the output signal is 

an accurate representation of the delayed source signal. 

 

3.3 Feedforward Control 
Another problem area combines elements of both the inverse 

modeling and system identification tasks and typifies the types 

of problems encountered in the area of adaptive control known 

as feed forward control. Figure 6 shows the block diagram for 

this system, in which the output of the adaptive filter passes 

through a plant before it is subtracted from the desired response 

to form the error signal. The plant hampers the operation of the 

adaptive filter by changing the amplitude and phase 

characteristics of the adaptive filter’s output signal as 

represented in e(n). 

 

Thus, knowledge of the plant is generally required in order to 

adapt the parameters of the filter properly. 

 
 

Figure 6: Feed forward Control 

 

3.4 Linear Prediction 
A third type of adaptive filtering task is shown in Figure 7. In 

this system, the input signal x(n) is derived from the desired 

response signal as 

 

x(n) = d(n-Δ)    (32) 

 

Where, Δ is an integer value of delay. In effect, the input signal 

serves as the desired response signal, and for this reason it is 

always available. In such cases, the linear adaptive filter 

attempts to predict future values of the input signal using past 

samples, giving rise to the name linear prediction for this task. 
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Figure 7: Linear Prediction 

 

If an estimate of the signal x(n + Δ) at time n is desired, a copy 

of the adaptive filter whose input is the current sample x(n) can 

be employed to compute this quantity. However, linear 

prediction has a number of uses besides the obvious application 

of forecasting future events. 

 

4. ANALYSIS OF RLS SYSTEM IDENTIFIER  

THROUGH MATLAB 
The model of RLS adaptive for system identifier real time 

implementation through MATLAB is shown in Figure 8. The 

sine wave for input signal and noise as Gaussian noise are used. 

At input terminal of RLS filter put the noise signal and at 

desired signal put the summation of noise signal and input 

signal. Simulation of RLS adaptive linear predictor model gets 

the output signal i.e. converges to the input signal after the 

variation of forgetting factor, filter length, initial weight of 

filter and input variance of filter. Simulation also gives the 

prediction coefficient at the different values of the above 

parameters. Here, we present few waveforms from large 

collection. 

 

 
 

Figure 8: Model of RLS System Identifier 

 

 

 
 

Figure 9: Waveforms of RLS System Identifier at forgetting 

factor = 0.3 

 

 
 

Figure 10: Waveforms of RLS Adaptive Linear Predictor at 

forgetting factor = 1 

 

 

 
Figure 11: Waveforms of RLS System Identifier at filter 

length = 4 and initial value 0 
 

 
 

Figure 12: Waveforms of RLS System Identifier at filter 

length = 4 and initial value 1 

 

 

 
 

Figure 13: Waveforms of RLS System Identifier at filter 

length = 8 and initial value 0 
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Figure 14: Waveforms of RLS System Identifier at filter 

length = 8 and initial value 1 

 

The waveforms show the input signal, output of unknown 

system, RLS output signal and Error.  The figures 9 and 10 

show the waveforms of adaptive linear predictor at different 

forgetting factors 0.3 and 1.0 respectively. Therefore, after 

simulation and with the help of waveforms we can say if the 

forgetting factor increases then the output signal tends to the 

desired signal.  

 

Similarly, Figures 11 to 14 shows the waveforms of adaptive 

linear predictor at different filter length 4, 8 for initial values 0 

and 1 respectively. Hence we can say if the filter length 

increases then the output signal tends to the desired signal but 

the time it get to came up with desired signal increases and 

initial positive values produce more negative error. 

 

The following table gives a few of the final filter coefficients in 

each case which are considerable. 

 

 

4 coefficients 8 coefficients 16 coefficients 32 coefficients 50coefficients 60 coefficients

0.0538 -0.4252 -0.1994 -0.1686 -0.1595 -0.1268

0.5051 1.065 0.6931 0.6092 0.5874 0.5455

-0.0599 0.5869 0.4637 0.4955 0.5061 0.5096

0.9328 0.2307 0.3565 0.3956 0.4003 0.4064

0.2986 0.4337 0.3732 0.3636 0.3609

-0.0989 0.2005 0.1865 0.1913 0.2014

-0.5141 -0.2037 -0.074 -0.056 -0.0468

0.8652 -0.1938 -0.104 -0.1025 -0.1006

0.3053 0.1748 0.1474 0.1292
 

 

 

 

 

 

 

 

 

 

 

 

5. CONCLUSION 
Here, we have presented an overview of adaptive filters, 

emphasizing the applications and basic algorithms that have 

established and their real time implementation. In spite of the 

many contributions in the field, research efforts in adaptive 

filters continue at a strong pace. A model based design of system 

identification using RLS adaptive filter is implemented on 

MATLAB. The simulation model gives the variation in the 

output signal on different forgetting factors, filter lengths, initial 

value of filter weight and input variance of filter. After 

simulation, we conclude that if the filter length decreases or 

forgetting factor increases or initial value of filter weight 

decreases or input variance of filter decreases then the filter 

tends to its ideal state and get the output signal equivalent to the 

input signal; this is the phenomenon of linear prediction. 
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