
National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

11

A Statistical Approach for Load balancing on Cluster

Computing

Chandu Vaidya
M-Tech (2

nd
 Year)

RKNEC Nagpur (INDIA)
WCE Sangli (INDIA)

M.B. Chandak
HOD RKNEC

NAGPUR (INDIA)

ABSTRACT
Given paper contain proposed approached for task scheduling to

achieve load balancing which is done on a group of computers. The

processor idles due to large set of data, on the multiprocessor computer.

Consideration of process data part by dividing them into number of

fixed part & merge into single set that as good as previous original data

set. Parallelism an approach for doing jobs in amount of time i.e. very

fast. The paper contains dynamic approach for process migration using

thread level paradigm. Creating a thread of process into number of task,

that leads to reduce total execution time of process. An algorithm is

used to calculate PCB for decision purpose to achieve load balancing.

We are taking CPU and MEMORY parameter in this approach. Fair

share approach is considered to allocating task to every processor using

preemption strategy. The MPI is used for process communication. This

system has defined to reduce total execution time on onboard &

between board times. Open knoppix & MOSIX platform (Middleware)

are used to show the results. Prime number calculation code is used to

show parallel architecture like SIMD computer. Cluster computing is

way of resource managing & scheduling strategy.

General Terms

Cluster server, Middleware, Node, Resources.

Keywords
Cluster computing, MOSIX, MPI, load balancing, threads, Task load.

Onboard-time, betweenbord time.

1. INTRODUCTION
The objective is to develop an algorithm for load sharing by

inducing parallelism (granular programming) [6]mechanism on a group

of interconnected machines. This algorithm is useful only when the cost

factor can be underestimated when compared to time. The algorithm

developed should be smart enough to migrate thread to other node in the

cluster [3] only when the time requirement for completion of process

can be reduced by doing so. Traditionally, computer software has been

written for serial computation. To solve a problem, an algorithm is

constructed and implemented as a serial stream of instruction. These

instructions are executed on a CPU on one computer. Only one

instruction may execute at a time after that instruction is finished, the

next is executed. If load increase or more loads is given the time

requirement for execution will be more. For reducing the execution time

to get output concept of Parallel Computing arises. Parallel computing

uses multiple processing elements simultaneously to solve a problem.

This is accomplished by breaking the problem into independent parts so

that each processing element can execute its part of the algorithm with

the others. A computer cluster is a group of linked computers, working

together closely thus in many respects forming a single computer. The

components of a cluster are commonly, but not always, connected to

each other through fast LAN. Clusters are usually deployed to improve

performance and availability over that of a single computer, while

typically being much more cost-effective than single computers of

comparable speed or availability. Load balancing [1], [2] is when

multiple computers are linked together to share computational workload

or function as a single virtual computer. Logically, from the user side,

they are multiple machines, but function as a single virtual machine.

Requests initiated from the user are managed by, and distributed among,

all the standalone computers to form a cluster. This results in balanced

computational work among different machines, improving the

performance of the cluster systems. Scheduling refers to the way

processes are assigned to run on the available CPUs. This assignment is

carried out by software known as scheduler and dispatcher. Scheduler

and dispatcher operate with the help of software known as

middleware’s. Middleware is computer software that connects software

components or people and their applications. The software consists of a

set of services that allows multiple processes running on one or more

machines to interact. The middleware we are using is MPICH2.

MPICH2 is an high performance and widely portable implementation of

the Message Passing Interface standard. It efficiently support different

computation and communication platforms including commodity

clusters, SMPs, massively parallel systems and high-speed networks.

2. BACKGROUND
This system is refined from the concept of executing of tasks using

single processor. Uniprocessor system functioning includes preemptive

scheduling scheme. We change this by using multiple processors to

execute a particular task in proportional manner to reduce time to

execute the task in relatively short time. The processors are connected

with each other in a Cluster, such that it is viewed as a single coherent

entity .Non-preemptive scheduling scheme is used for this project. This

improves the performance of execution of tasks as compared to earlier

type. This project uses fair scheduling approach for providing fair

access to users. This system is an example of a distributed system [8].

This project is a scheduling system that provides allocation of system

resources of one or more processor sets among groups of processes.

Each of the process groups is assigned a fixed number of shares, which

is the number that is used to allocate system resources among

processes of various process groups within a given processor set. The

described fair share scheduler considers each processor set to be a

separate virtual computer.

Cluster computing[9][10] (or the use of computational

Clusters) is the application of several computers to a single problem at

the same time usually to a scientific or technical problem that requires a

great number of computer processing cycles or access to large amounts

of data. A Cluster can provide significant processing power for users

with extraordinary needs. Animation software, for instance, which is

used by students in the arts, architecture, and other departments, eats up

vast amounts of processor capacity.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

12

Description:

The main function of client/user is to submit the process in

the process pool related with a processor. The processes in the process

pool are waiting for the execution. From these processes the higher

priority process is selected by using the appropriate scheduler and is

given to the Cluster server. The process division is a function that

divides the process into the pieces or threads.

Fig- Overall model.

Thread distribution distributes these threads proportionally

among the several nodes in the Cluster network [10]. Thread execution

is a function that executes each thread independently on different nodes.

The threads are executed using Fair-Share Scheduling [20]. It allocates

equal CPU time for each node. While executing threads, the resources

required for the execution of that thread on the node, the load on the

node and the complexity of each threads are taken into account. Each

node may require same or different resources for the execution of the

thread. These resources must be provided to each node. Above simple

model (fig) show the general idea regarding project. Finally the output

from each node is combined and the final output is given to the Cluster

server.

2.1. Related Works
Migration can be achieved at various levels in a system. It can

be implemented in the operating system, as was the case with many

monolithic operating systems, such as MOS(IX) [7],[8] , Locus [12],

Sprite [11],etc. Then there are examples of migration for

microkernel’s, such as the V kernel [13] and Mach [14] There are

also examples of user level migration implementations such as in

Condor [15], and on top of UNIX [12][16]. In these systems, migration

was designed outside of the kernel, independent of applications. Setting

Checkpoints also a time consuming work on cluster because they have

to resume again on another node.

Plenty of researchers have proposed and most of the, has been

implemented scheduling algorithms [17], [18], [19] for parallel and

distributed systems, Cluster computing, as well as for Grid computing

environment. For a dynamic load-balancing algorithm, it is

unacceptable to frequently exchange state data because of the high

overheads. In order to reduce the total execution time among cluster.

Proposed a decentralized load-balancing algorithm for a cluster

environment. Although this work attempts to include the

communication time between two nodes during the scheduling process

on their model, it did not consider the actual cost for a job transfer. Our

approach takes the job migration cost into account for the load-

balancing decision. A sender processor collects status information about

neighboring processors by communicating with them at every load-

balancing instant. This can lead to frequent message transfers among

the node.

3. IMPLEMENTATION
Implementation purpose some steps are considered to achieve

this project that are as follows.

BASIC STEPS

3.1. Clustering/High performance

It’s first step in our project in which we are going to deal with

cluster computing i.e. connect more than one computer together to

perform high performance task .the main purpose of cluster computing

is resource utilization, where applications have traditionally used

parallel or distributed computing platforms. Simple LAN and Cluster

are two different things that are application specific. High performance

clusters, which are also referred to as computational cluster systems.

These systems are normally utilized to support very large data volumes

(of computational processing). In such an environment, a parallel file

system distributes the processing resources across the nodes, Load

balancing clusters distribute the workload as evenly as possible across

multiple server or small computer systems, such as web or application

servers, respectively.

OpenMOSIX [7], [8] was a free cluster management system

that provided single-system image (SSI) capabilities, e.g. automatic

work distribution among nodes. It allowed program processes (not

threads) to migrate to machines in the node's network that would be

able to run that process faster (process migration). It was particularly

useful for running parallel and intensive input/output (I/O) applications.

Diagram contains the result of cluster configuration (MOSIX) among

three nodes with their IP addresses.

Fig-MOSIX 3 Node Cluster SnapShot.

3.2. Statistical collection

This is second step of our project in which we are going to

collect some statistical information in regular interval dynamically, only

for a purpose where that collected information can used somewhere for

taking decision .Here we got successes to collect statistical information

.This information is about the processor and memory related for

decision purpose which is over loaded and which under loaded only to

load balancing. Main contain is CPU utilization and MEMORY

information. There is several way for calculating the processor

information like top and free command. The syntax for this command is

and result store in text file for further requirement.

system ("top -n 1 | grep Cpu > cpu_stats.txt")

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

13

Fig-Result of processor(Statastic)

system ("free -m > mem_statc.txt")

Fig-Result of Memory(Statastic).

3.3. Setting Threshold/Making Decision

In this step we are considering two parameter i.e. free

memory and CPU utilization .we are setting the CPU utilization up to

some percentage like 80% or more, so that we will be in the position to

take the decision for process migration that we are going to deal in next

step.

Once we get statistical information so we need to take exact

decision on that threshold. Generally load balancing purpose we need

this mechanism Collection of statistical information, Decision making,

Data migration.

Decision code

Calculation of the server CPU utilization:

if server is overloaded then

 t1=compute the time required to complete task on

server

 t2=compute the time required to complete task after

sharing threads with the nodes

/* Check t1 with t2 */

if (t1>t2) then

 Migrate threads to nodes

else

no process migration will occur.

3.4. Thread Creation
Process thread creation is a mechanism of separating data part

from process. Our idea is somewhat about to use multithreading,

hyperthreding. Pthread are used to create such process chunks like child

processes. Process distribution on multicore processor is very big deal

in today’s era. Actually the problem on physical and logical processor

threads distribution. We are using one SIMD application to demonstrate

this mechanism.

Before understanding a thread, one first needs to understand a

UNIX process. A process is created by the operating system, and

requires a fair amount of "overhead". Processes contain information

about program resources and program execution state, including

Process ID, process group ID, user ID, and group ID Environment

Working directory, Program, instructions, registers, Stack, Heap ,File

descriptors ,Signal actions ,Shared libraries ,Inter-process

communication tools (such as message queues, pipes, semaphores, or

shared memory).

routine’s.

pthread_create (thread,attr,start_routine,arg)

pthread_join ()

pthread_exit (status)

pthread_cancel (thread)

pthread_attr_init (attr)

pthread_attr_destroy (attr)

OpenMP+MPI[4][10] is an implementation of multithreading,

a method of parallelization whereby the master "thread" (a series of

instructions executed consecutively) "forks" a specified number of slave

"threads" and a task is divided among them. The threads then run

concurrently, with the runtime environment allocating threads to

different processors. Given diagram showing the main process and

different threads.

Fig-Thread Creation.

Prime No. Generation Using MPI (thread creation)

We design this algorithm for thread creation

 Algorithm

1] Start.

2] Input no. of tasks.

3] Calculate Rank of each Task.

4] i) calculate Stride distance using ,

 stride= 2 * tasks;

 ii) Fork the tasks & assign start to each Task using,

 start = rank * 2 + 1;

5] for each task,

 i] calculate largest prime no.

 ii] store it in slarge, & increment prime count;

6] synchronize outputs of all tasks & calculate largest prime no.

7] finalize output & display time as,

 i) Total time.

 ii) Communication time.

 I] On board communication time.

 II] Between board communication time.

 iii) Execution time.

8] Stop.

https://computing.llnl.gov/tutorials/pthreads/man/pthread_create.txt
https://computing.llnl.gov/tutorials/pthreads/man/pthread_exit.txt
https://computing.llnl.gov/tutorials/pthreads/man/pthread_cancel.txt
https://computing.llnl.gov/tutorials/pthreads/man/pthread_attr_init.txt
https://computing.llnl.gov/tutorials/pthreads/man/pthread_attr_destroy.txt
http://en.wikipedia.org/wiki/Thread_%28computer_science%29
http://en.wikipedia.org/wiki/Runtime_environment

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

14

3.5. Process migration

If we transfer the state of a process from one machine to

another, we have to migrated the process. Process migration is most

interesting in systems where the involved processors do not share main

memory, as otherwise the state transfer is trivial. A typical environment

where process migration is interesting is autonomous computers

connected by a network. some consideration of process migration are

Who initiates the migration, What portion of the process is migrated,

State Migration, Address Space Migration ,Considering queue length

etc.

Regarding process migration we used PID of that respective

process.

Syntax:-“migrate {pid} {hostname or IP-address or node-number}”

Syntax : migrate {{pid}|-j{jobID}} {node-number|IP-address|host}

Migration of threads to node:

 n1=node1 threshold

 n2=node2 threshold

 if (n1<n2)‏

 Migrate process to n1

 else

 Migrate process to n2

3.6. Process Execution

By default, each thread executes the parallelized section of

code independently. "Work-sharing constructs" can be used to divide a

task among the threads so that each thread executes its allocated part of

the code. Both task parallelism and data parallelism can be achieved

using OpenMP +MPI.

After process migration in other processor or buddy processor

that time we need to consider the scheduling mechanism whether that

processor are allowing are not to execute respective thread.

Algorithms used

Algorithm schedule process

Input: none

Output: none

{

while (no process picked to execute)

 {

for (every process on run queue) pick highest priority process

that is loaded in memory;

 if (no process eligible to execute)

 idle the machine;

/* interrupt takes machine out of idle state */

 }

remove chosen process from run queue;

switch context to that of chosen process, resume its execution;

}

Fig-Execution Sinario.

3.7. Collecting Back & Merge

After execution of thread on different processor we need to

merge together so data divided part will combine in one uniform set. we

can manually migrate the processes (using PID) of all users send them

Fig-Combination of Thread

on other nodes and bring them back at home. Like move them to other

nodes freeze or unfreeze (continue) them, overriding the MOSIX [7],[8]

system decisions as well as the placement preferences of users. Even

though as the Super-User you can technically do so, you should never

kill (signal) guest processes. Instead, if you find guest processes that

you don’t want running on one of your nodes, you can use ”migrate” to

send them away (to their home-node or to any other node).

3.8. Analysis

For Demonstration purposed we select on task that is finding

largest prime no. up to 25000000 as well as total number of prime

numbers

Time taken by Standalone Computer for above problem =

750.87 sec we want to reduce this huge execution time by using our

approached

Between board communication time is nearly constant for any number

of tasks. Because system bus speed between board is nearly constant at

any time. On-board communication time varies with the no. of tasks.

consider

 obt α n

Where,

 obt = onboard communication time.

 n = number of tasks

. Total communication time (tcm) varies with no. of tasks.

tcm = obt + bbt

Total Execution time is calculated as :

http://en.wikipedia.org/wiki/Task_parallelism
http://en.wikipedia.org/wiki/Data_parallelism

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

15

Total time = communication time + Execution time

 = (Onboard time + Between Board time) + Execution time

Consider,

Tob=On Board time

N=no. of tasks

Texe= execution time

Tob α N

Texe α 1/N

Our simple model contains the basic architecture of the project that

indicate how the flow of project goes. We conclude that implementation

of task scheduling which lead to fair share process allocation and load

balancing as well as the total execution time. We have been able to

collect the information of all nodes in Cluster environment. We have

been able to perform load balancing by considering available resources

such as free memory and CPU utilization for migratable processes.

This increases the performance of the Cluster by decreasing the

execution time for the processes. For testing purpose we have select

Prime number generation program using MPI programming its. good

enough to success this approached. Deployment of our approached on

kernel code so that we will in the position to developed one component

module that will beneficial to someone.

3.9. Deployment on Kernel code

In this step we decided two possible method Daemon tool

which is a system that load at start time of system and another one is

direct deployment of code on kernel. Deployment purposes their so

many methods are available. Regarding compilation of kernel code

cross tools are available in market. We need not to compile entire kernel

code, only the component that we want to merge that need to compile or

rebuilt. Advance Packet Tool (APT) is also available to code

deployment.

1. Daemon tool

2. Kernel Module

The kernel modules can use two different methods of automatic

loading. The first method (modules.conf) is our preferred method.

 modules.conf - This method load the modules before the rest

of the services.

 rc.local - Using this method loads the modules after all other

services are started

Cofiguration steps
modules.conf - configuration file for loading kernel modules

Create a module alias parport_lowlevel to parport_pc

alias parport_lowlevel parport_pc

Alias eth0 to my eepro100 (Intel Pro 100)

alias eth0 eepro100

Execute /sbin/modprobe ip_conntrack_ftp after loading ip_tables

post-install ip_tables /sbin/modprobe ip_conntrack_ftp

Execute /sbin/modprobe ip_nat_ftp after loading ip_tables

post-install ip_tables /sbin/modprobe ip_nat_ftp

There are a few commands that allow you to manipulate the kernel.

Each is quickly described below.

depmod - handle dependency descriptions for loadable kernel modules.

insmod - install loadable kernel module.

lsmod - list loaded modules.

modinfo - display information about a kernel module.

modprobe - high level handling of loadable modules.

rmmod - unload loadable modules.

4. ACKNOWLEDGMENTS
Success is the manifestation of diligence, inspiration,

motivation and innovation. I attribute my success in this venture to my

seminar guide Prof. M. B. Chandak, (HOD) who showed the guiding

light at every stage of my seminar preparation.

I indebted to Dr .N. V Thakur, M-Tech Coordinate of the

Department Computer Science & Engineering, who has provided

facilities and the infrastructure to work at an extended ends.

Last but not the least I am also thankful to all the faculty

members for helping directly or indirectly to accomplish the seminar

work. I would like to thank My Mind for not letting me down at the

time of crisis and showing me the silver lining in the dark clouds.

5. REFERNCES

[1] Willekk-Lemair and A.P. Reeves, Strategies for dynamic load-

balancing on highly parallel computers, IEEE Transaction on

Parallel and Distributed Systems, (4)9, September 1993, Pages

979-993.

[2] M. Wu and W. Sbu, A load balancing algorithm for n-cube,

Proceedings of rhe 1996 Inremarwnal Conference on Parallel

Processing, IEEE Computer Society, 1996, Pages 148-155.

[3] H. Shan, J.P. Singh, L. Oliker and R. Biswas, “Messge passing and

shared address space parallelism on an SMP cluster,” Parallel

Computing, vol 29, 2003, pp. 167-186.

[4] W. Pan, L. Chan, J. Zhang, Y. Li, L. Wan and F. Xia, “Research on

MPI+OpenMP hybrid programming paradigm based on SMP

cluster,” Application Research of Computers, vol. 26, 2009, pp.

4492–4594.

[6] Calvin Lin, “Priciples of parallel programming,” China machine

press, Bejing, 2008.

[7]Oren LA’ADAN Amnon BARAK and Amnon SHILOH.Scalable

cluster computing with MOSIX for LINUX .InProc.LinuxExpo’99,

pages95–100,May1999.

[8] Barak, A., Shiloh, A., “ A Distributed Load-Balancing Policy

for a Multiwmputer” , Software-Practice and Eqerience, vol. 5, no

9, September 1985, pp 901-913.

10]Amith R. Mamidala Rahul Kumar Debraj De D. K. Panda

Department of Computer Science and Engineering” MPI

Collectives on Modern Multicore Clusters: Performance

Optimizationsand Communication Characteristics”, Eighth IEEE

International Symposium on Cluster Computing and the Grid.

[11] Douglis, F., Ousterhout, J, “ Transparent Process Migration:

Design Alternatives and the Sprite Implementation” , Soj ware-

Practice and Experience, vol. 2, no 8, August 1991, pp 757-

785.

[12] Walker, B. J., Mathew, R. M., “ Process Migration in AIX’ s

Transparent Computing Facility” , IEEE TCOS Newsletter, Winter

1989, vol. 3(l), pp 5-7.

[13] Theimer, M., Lantz, K., Cheriton, I)., “ Preemptable Remote

Execution Facilities for the V System” , Proc. of the 10th ACM

Symposium on OS Principles, December 1985, pp 2- 12.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

16

[14] Milojicic, D., Zint, W., Dangel, A., Giese, P., “ Task

Migration on the top of the Mach Microkernel” , Proceedings

of the third USENIX Mach Symposium, Santa Fe, New

Mexico, April 1993, pp 273-290.

[15] Litzkow, M., Solomon, M., “ Supporting Checkpointing and

Process Migration outside the UNIX Kernel” , Proceedings of the

USENIX Winter Conference, San Francisco, January 1992, pp

283-290.

[16] Alonso, R., Kyrimis, K., “ A Process Migration

Implementation for a Unix System” , Proceedings of the

USENIX Winter Conference, February 1988, pp 365-372.

[17] L. Anand, D. Ghose, and V. Mani, “ELISA: An Estimated Load

Information Scheduling Algorithm for Distributed Computing

Systems,” Int’l J. Computers and Math. with Applications, vol. 37,

no. 8, pp. 57-85, Apr. 1999.

[18] J. Krallmann, U. Schwiegelshohn, and R. Yahyapour, “On the

Design and Evaluation of Job Scheduling Algorithms,” Proc. Fifth

Workshop Job Scheduling Strategies for Parallel Processing, pp.

17-42,

1999.

[19] D.G. Feitelson, L. Rudolph, U. Schwiegelshohn, K.C. Sevcik, and

P. Wong, “Theory and Practice in Parallel Job Scheduling,” Proc.

ThirdWorkshop Job Scheduling Strategies for Parallel Processing,

pp. 1- 34, 1997.

[20] Nikolaos D. Doulamis, Member, IEEE, Anastasios D. Doulamis,

Member, IEEE, Emmanouel A. Varvarigos, and Theodora A.

Varvarigou, Member, IEEE ” Fair Scheduling Algorithms in

Grids”. IEEE transactions on parallel and distributed systems, vol.

18, no. 11, november 2007

