
National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

12

Parallel Discrete Event Simulation Based on Multi-Core
Platform-A New Approach

Manzoor G.Ahmed
EXTC Department

Dr.NPH Polytechnic,
Pusad

Shirish V.Pattalwar
EXTC Department

PRMIT &R, Badnera,
Amravati

Vilas M. Thakare
Deptt. Of Computer Science

SGB Amravati University
Amravati

ABSTRACT

 Multi-core designs have become commonplace in the processor

market, and are hence a major focus in modern computer

architecture research. Thus, for both product development and

research, multiple core processor simulation environments are

necessary. Multi-core computer offer a new parallel computing

platform with high performance-price ratio and small volume to

parallel simulation. Existing parallel simulator especially PDES

simulators commonly run on parallel computers or clusters with

Linux or Unix OS. The prices of super computer and large scale

cluster are too high to be afforded, which limits the extensive

popularization of PDES. This paper discusses a brief overview

of multi-core processors and existing approaches to Parallel

Discrete Event Simulation based on multi-core computer

platform. A novel approach to proposed to explore the Parallel

Discrete Event Simulation based on multi-core computer

platform that can run on desktop with windows OS directly.

1. INTRODUCTION
The motivation for this paper is the proliferation of multi-core,

many-core and multi-core cluster architectures, which have

inspired us to through lights on existing simulation

methodology and simulator for parallel simulation based on

these platform and proposed different approach for PDES based

on multi-core platform that can run on desktop with windows

OS directly.

Parallel hardware has been used in server environments for a

long time but recent client platforms (i.e., desktop and laptop

computers) have also been adopting multi-core processors. In

the field of modeling and simulation, simulation applications put

forward higher and higher requirement on the executing speed

as the modeled physical systems are becoming more and more

complicated. Parallel simulation is an effective way to speed up

the simulation.

In most of the work carried out on parallel simulation, the target

machine and host machine used were cluster or SMP platform

with Linux or Unix OS. Writing parallel simulators can be

extremely difficult since traditional serial and parallel software

cannot fully exploit multi-core's capability and computing power

without parallelizing restructure [1]. Also maintaining causality

during parallel execution is the central challenge both for the

correctness of the simulation and for achieving good simulation

performance The Multi-core processor has come into the market

for just about five years, and according to so-called new

Moore’s Law, the number of cores per chip wills double every 2

years [2,3]. If this holds true, multi-core machines will soon

evolve to many-cores, with 10s if not 100s of cores per chip.

The terms

many-core and massively multi-core are sometimes used to

describe multi-core architectures with an especially high number

of cores (tens or hundreds). Already, there are some special-

purpose(research)multi-core processors that are available from a

number of vendors and some are under development with 64

cores (Tilera [4]), Intel’s 80-core (Polaris prototype [5]), IBM’s

80 core (Cyclops-64[6], Ambric's 336 core (Am2045[7]), and

even graphics engines with 960 cores (NVIDIA Tesla S1070

[8]). As a result, we have entered the era of Multi-core clusters

(MCCs). Currently research on parallel simulation based on

multi-core, many-cores and Multi-core clusters platform is in

early phase. Specifically research that will shift the platform of

PDES from traditional supercomputer to multi-core computer

has bright prospect .So there exist great demand & challenge to

write the future desktop simulation software that will be the

parallel simulation based on multi-core or many-core platform

that could run on Windows OS directly. A brief overview of

multi-core processors is discussed in section-2:, section-3

discusses PDES and its challenges, section-4 previous work i.e.

the Existing methodology for PDES based on multi-core

platform and section-5 the proposed methodology for PDES

based on multi-core platform that can run on Windows OS

directly. Finally conclusion drawn on basis of use and

complexity.

2. MULTI-CORE PROCESSOR
A multi-core processor is a single computing component with

two or more independent actual processors (called "Execution

cores"). And each core has its own set of execution and

architectural resources required to run without blocking

resources needed by the other software threads. Depending on

design, these processors may or may not share a large on-chip

cache. As with any technology, multi-core architectures from

different manufacturers vary greatly. Along with differences in

communication and memory configuration another variance

comes in the form of how many cores the processor has. Figure1

shows a comparison of typical single core & multi-core

processor architecture. Typically cores are integrated onto a

single die (known as a chip multiprocessor or CMP), or onto

multiple dies in a single chip package. Multi-core processors are

MIMD: Different cores execute different threads (Multiple

Instructions), operating on different parts of memory (Multiple

Data) in parallel. To exploit parallelism OS perceives each core

as separate processor and maps the threads/processes to different

cores on time-sliced basis as depicted in figure2.

Since past few years multi-core trend has increased dramatically

among manufacturers and computing world, especially Intel and

AMD moving along nicely. Current commercial multi-core line

ups of Intel includes the latest Intel Core i7, Intel Core i5 and

Intel Core i3, and the older Intel Core 2 Solo, Intel Core 2 Duo,

Intel Core 2 Quad and Intel Core 2 Extreme lines, and not to

forget its under development 80-core research processor(Polaris

prototype [5]).Similarly AMD has the Althon lineup for

desktops, Turion for laptops, and Opteron for

servers/workstations and recently 8-core AMD FX CPU, for

which AMD has been awarded by Guinness in septmember2011

for achieving the world's fastest desktop CPU with 8.429 GHz.

Much of the motivation and increasing trend for multi-core

processors among manufacturers and computing world come

from greatly diminished gains in processor performance from

increasing the operating frequency. This is due to three primary

factors:

mailto:%20labeeb007@rediffmail.com
http://en.wikipedia.org/wiki/Computing
http://en.wikipedia.org/wiki/Die_(integrated_circuit)
http://en.wikipedia.org/wiki/Chip_carrier
http://en.wikipedia.org/wiki/Intel_Core_i7
http://en.wikipedia.org/wiki/Intel_Core_i5
http://en.wikipedia.org/wiki/Intel_Core_i3
http://en.wikipedia.org/wiki/Intel_Core#Core_2_Solo
http://en.wikipedia.org/wiki/Intel_Core#Core_2_Duo
http://en.wikipedia.org/wiki/Intel_Core#Core_2_Quad
http://en.wikipedia.org/wiki/Intel_Core#Core_2_Extreme
http://en.wikipedia.org/wiki/Frequency_scaling

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

13

1. The memory wall; the increasing gap between processor and

memory speeds. This effect pushes cache sizes larger in

order to mask the latency of memory. This helps only to the

extent that memory bandwidth is not the bottleneck in

performance.

2. The ILP wall; the increasing difficulty of finding enough

parallelism in a single instructions stream to keep a high-

performance single-core processor busy.

3. The power wall; the trend of consuming exponentially

increasing power with each factorial increase of operating

frequency. This increase can be mitigated by "shrinking" the

processor by using smaller traces for the same logic. The

power wall poses manufacturing, system design and

deployment problems that have not been justified in the face

of the diminished gains in performance due to the memory

wall and ILP wall.

Furthermore due to incapability of single core processor to

improve operating systems’ ability to perform multitasking

applications simultaneously, the computing world has started to

embrace multi-cores for increased performance, power

efficiency and compute capacity. This is because multi-cores

effectively consume less power by running at lower clock rates

but still increasing the throughput because of parallel

processing. From a white paper released by Intel Corporation

[9], based on the experiments conducted in their lab, we see that

addition of a second core to an existing single core system,

allows the clock speed to be lowered by 20%, at the same time

delivering a 73% increase in performance. The largest boost in

performance will likely be noticed in improved response-time

while running CPU-intensive processes, like antivirus scans,

ripping/burning media (requiring file conversion), or file

searching. For example, if the automatic virus-scan runs while a

movie are being watched, the application running the movie is

far less likely to be starved of processor power, as the antivirus

program will be assigned to a different processor core than the

one running the movie playback.

3. PDES BASED ON MULTI-CORE
As the same with other software, simulation software has to be

parallelized so as to make full use of multi-core platform’s

computing power. Discrete event simulation executes simulation

events according to their time-stamp order. Parallel discrete

event simulation distributes simulation entities and events to

multiple processors (or executing cores) so as to speed up the

execution of simulation. PDES can be deemed as multiple serial

simulations and each serial simulation is called a Logical

Process (LP). Multiple serial simulations run at the same time

and communicate with each other by exchanging time-stamped

messages [10]-[11],[21]-[22]. In order to parallelize discrete

event simulation on multi-core platform, parallel programming

model and synchronization algorithm are two of the most

important problems or challenges to be solved are programming

model and synchronization algorithm.

3.1 Parallel Programming Model
In order to partition simulation into multiple LPs and distribute

these LPs among executing cores on multi-core platforms for

running, a parallel programming model should be needed.

Shared memory model and message passing model are two

popular parallel programming models. If shared memory model

is used, a software thread will be created for each LP and

threads communicate with each other by accessing shared

variables and using thread synchronization primitives. The

features of this model are single address space, easy to program,

bad portability, etc. Shared memory model could be

implemented through system calls (Windows and Unix system

functions), thread libraries (such as Win32 threads, POSIX

threads, OpenMP, Threading Building Blocks [12] or

programming language support (such as JAVA and C#). If

message passing model is used, a software process will be

created for each LP and processes communicate with each other

by sending and receiving explicit messages. The features of this

model are multiple address spaces, difficult to program, good

portability, etc. Message Passing Interface (MPI) [13] and

Parallel Virtual Machine (PVM) are two of the most popular

message passing libraries. Whether shared memory model or

message passing model is adopted, the multiple

processes/threads created are all scheduled by operating

systems. Generally they will be assigned the same priority.

Programmers need not to distribute them to executing cores

manually.

3.2 Synchronization Algorithm
By parallel programming model, we distribute multiple LPs to

multiple cores on multi-core platform and execute LPs

simultaneously. Unfortunately, events can’t be ensured to access

LPs in time-stamp order i.e. an event with a smaller timestamp

has the potential to modify the state of the system and thereby

affect events that happen later. This is what we call the causality

constraint [14]. For example, after LP2 executes an event Ea

(with time-stamp 36), LP1 may execute an event Eb (with time-

stamp 15) and generates an event Ec (with time-stamp 21) that

LP2 must execute. Then Ec accesses LP2 after Ea even though

the time-stamp of Ec is smaller than Ea.This problem is called

synchronization of PDES and it’s the central problem of PDES.

A synchronization algorithm is needed to ensure that events are

processed in a correct order and the parallel execution of the

simulator yields the same results as a sequential execution

http://en.wikipedia.org/wiki/Die_shrink

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

14

Synchronization algorithms can be broadly classified as either

optimistic or conservative.

Optimistic algorithms use a detection and recovery approach. If

events are processed out of timestamp order, a mechanism is

provided to detect and recover from such errors. The following

are some concepts related to optimistic algorithms:

1) State Saving. In order to recover from errors, the states before

LP processes events should be saved. There are some commonly

used methods for state saving, such as whole state saving,

periodic state saving, incremental state saving and reverse

computation.

2) Roll Back. When LP receives an event with time-stamp

smaller than its local simulation clock (this event is called a

straggler event), it should restore its state and send anti-message

to cancel the event sent earlier. This process is called roll back.

3) Global Virtual Time (GVT). GVT at wallclock time T

(GVTT) during the simulation execution is defined as the

minimum time-stamp among all unprocessed and partially

processed messages and anti-messages in the system at

wallclock timeT. Samadi’s GVT algorithm and Mattern’s GVT

algorithm are two of the most commonly used algorithms.

4) Fossil Collection. Optimistic synchronization algorithm

should consume much memory to save states and events. After

GVT is calculated, memory used by states and events that are

older than GVT can be reclaimed and reused. This process is

called fossil collection.

Conservative algorithm eliminates the possibility of any

causality errors; that is, an LP is blocked from processing the

next event in its event-list until it is sure that it will not cause

out-of-order event execution due to future events from other

LPs.

4. PREVIOUS WORK
Using Message passing model, optimistic synchronization

algorithm and referring to open-source PDES simulators such

as WARPED 2 [15], Nianle Su, Hongtao Hou, Feng Yang, Qun

Li, and Weiping Wang at all [19] choose the C++ language and

MPICH message passing library to develop an optimistic PDES

simulator which can run effectively on multi-core computer with

Windows OS. They have adopted MPI as message passing

library, where in interaction among LPs in PDES is completed

entirely through explicit messages. Several kinds of messages

need to be transferred, such as initialization message, start

message, event message, negative event message, GVT

message, GVT update message, terminate token. Before these

messages are sent, they have to be transformed into byte stream

through serialization. After received, byte stream has to be

transformed back into different kinds of messages through

deserialization. The optimistic simulation algorithm

implemented using Time Warp protocol [16].The effects of

event granularity, process number, lookahead on the simulation

performance are analyzed on Phold model [17] with HP

ProLiant ML150 server with two-way Intel Xeon Quad-core

processors and 4GB memory. The optimistic PDES based on

multi-core platform could achieve good speedup for applications

with coarse-grained events.

5. PROPOSED METHODOLOGY
PDES simulator mentioned above is developed using

Optimistic synchronization protocol which introduces a roll-

back mechanism providing proper synchronization across event

cores, by reverting to a previous state if a causality error occurs.

Here we have proposed a method which uses conservative

synchronization protocol often referred to as the Chandy-Misra-

Bryant (CMB) protocol by Chandy and Misra [20], which

avoids the possibility of any type of causality error ever

occurring by determining when it is safe to process an event. For

example if a process P contains an unprocessed event E1 with

time stamp T1 such that T1 is the smallest timestamp it has, then

it must ensure that it is impossible for it to receive another event

with a lower time stamp before executing E1 . In CMB, LPs are

connected via directional links, through which events are

transferred from one LP to another in chronological order. This

protocol introduces the concept of a lower bound time stamp

(LBTS) as the minimum timestamp an individual event core can

safely advance to. Additionally, null-messages are broadcast by

an event core to inform the other cores of its current local virtual

time (LVT), in order to ensure correct LBTS calculation and to

avoid deadlock [18].

5.1 Implementation
In the proposed approach, an LP will be implemented by an

EventCore, containing a priority queue as an EVL. A standard

priority queue from the Java collections framework is to be used

for the EVL implementation. This implementation is based on a

priority heap and provides a time complexity of O(log(n)) for

insertion, 0(n) for removal and O(1) for retrieval operations. The

time management service is needed to be provided by the

PDESTimeManager present in each EventCore. The time

manager will control the time advances of the EventCore by

keeping track of the LVT of the other event cores. An event core

broadcasts nullmessages to each other core when it advances the

LVT to avoid deadlock. All EventCore’s have incoming and

outgoing channel endpoints to each other event core. The set-up

and operation of these channels is managed by the

CoreCommunicationManager. Each input queue Qi has a

timestamp field T(Qi) in each channel ,based on which the

PDESTimeManager performs an LBTS calculation. Graphical

representation of this system is shown in figure 3.

The PDESTimeManager on the right shows its input queues,

containing events and possibly null-messages with their

firetimes ti, and the T(Qi) field, linked to the input queue

endpoints Qi. The T(Qi) field contains the firetime value of the

last received event, used by the PDESTimeManager to calculate

the LBTS value. The EventCore depicted on the left, contains

the LVT clock and the event queue. Event processing may

spawn new internal or outgoing events that are rescheduled

locally or sent to other cores respectively. The solid lines

represent the flow of events, while the dashed lines represent the

interactions relevant to the time synchronization mechanism.

5.2 Performance Analysis
To analyze both the overheads of the parallel simulator and the

effects of event granularity, process number, lookahead on the

simulation performance PHOLD model is underway, in which

the event core requests the time manager to advance its LVT.

The request is granted if the requested time is smaller than or

equal to LBTS+l, with look-ahead l. When the event core is not

allowed to advance the LVT and if there are no more events to

process in the EVL, new events are pulled from all the input

queues and inserted into the EVL. This process changes the

LBTS, allowing the event core to advance further and execute

the pending events in the EVL. If an event core is not allowed to

advance and there are no more pending incoming events, the

event core enters a wait state until new events arrive at the input

channel endpoints.

The hardware platform of this test is HP Inte(R) Core (TM) 2

Duo CPU processors and 3GB memory.

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

15

6. CONCLUSION
Parallel discrete event simulation based on multi-core

platform using optimistic methods such as Time Warp are the

best way to simulate large simulation problems, while

conservative methods offer good potential for certain class of

problems. But Optimistic approach takes a large amount of

memory, must be able to recover from arbitrary errors ,

infinite loops, much more complex, keeping in mind we have

proposed a new approach adopting conservative

synchronization protocol to develop PDES based on multi-

core platform , which is relatively less complex and that can

run on window OS directly.

7. REFERENCES
[1] Jia-an, W. Cheng-shan, Wu Ai-guo,” A study of power

system parallel simulation methods based on multi-core

multithreaded processor platforms” International

Conference on 15-17 April 2011.

[2] Wikipedia,“Moore'sLaw”,

http://upload.wikimedia.org/wikipedia/commons/0/06/M

oore_Law_diagram_(2004).png.

[3] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis,P.

Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker,J.

Shalf, S. W. Williams, and K. A. Yelick, “The landscape

of parallel computing research: A view from berkeley,”

electrical Engineering and Computer Sciences,

University of California at Berkeley, Tech. Rep.

UCB/EECS-2006-183, December 2006.

[4] Sannella, M. J. 1994 Constraint Satisfaction and S.

Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,J.

Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain, S.

Venkataraman, Y. Hoskote, and N. Borkar. An 80-Tile

1.28TFLOPS Network-on-Chip in 65nm CMOS. In

Proceedingsof ISSCC, 2007.

[5] Juan del Cuvillo, Weirong Zhu, Ziang Hu, and Guang R.

Gao. “Toward a software infrastructure for the cyclops-

64 cellular architecture”. In Proceedings of the 20th In-

ternational Symposium on High-Performance Computing

in an Advanced Collaborative.

[6] K. Pedretti, S. Kelly, and M. Levenhagen, "Summary of

Multi-Core Hardware and Programming Model

Investigations,"Sandia National Laboratories,

Albuquerque, New Mexico, USA, Technical Report

SAND2008-3205, 2008.

[7] R M. Fujimoto. Parallel discrete event simulation.

Commun. ACM, 33(10):30–53, 1990.

[8] D. Jefferson, “Virtual time,” ACM Transactions on

Programming Languages and Systems, vol. 7, no. 3,

pp.405–425, Jul. 1985

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5766331
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5766331
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5766331
http://upload.wikimedia.org/wikipedia/commons/0/06/Moore_Law_diagram_(2004).png
http://upload.wikimedia.org/wikipedia/commons/0/06/Moore_Law_diagram_(2004).png

National Conference on Innovative Paradigms in Engineering & Technology (NCIPET-2012)

Proceedings published by International Journal of Computer Applications® (IJCA)

16

[9] J. Reinders, Intel Threading Building Blocks.

US:O'Reilly, 2007.

[10] Jason Liu Parallel discrete event simulation,” School of

Computing and Information Sciences Florida

International University February 9, 2009

[11] D. E. Martin, P. A. Wilsey, R. J. Hoekstra, R. J.

Hoekstra, et al., "Redesigning the WARPED Simulation

Kernel for Analysis and Application Development," in

[12] Jefferson DR. Virtual time. ACM Trans. Program. Lang.

Syst. 1985; 7(3):404–425, doi:10.1145/3916.3988.

[13] Fujimoto, "Performance of Time Warp under Synthetic

Workloads," Proceedings of the SCS Multiconference on

Distributed Simulation, vol. 22, pp. 23-28, Jan. 1990

[14] handy KM, Misra J. Asynchronous distributed simulation

via a sequence of parallel computations. Commun. ACM

1981; 24(4):198–206, doi:10.1145/358598.358613

[15] Nianle Su, Hongtao Hou, Feng Yang, Qun Li, and

Weiping Wang, “Optimistic Parallel Discrete Event

Simulation Based on Multi-core Platform and its

Performance Analysis” 2009 IEEE.

[16] K. M. Chandy and J. Misra. Distributed simulation: A

case study in design and verification of distributed

programs. IEEE Transactions on Software Engineering,

SE-5(5):440–452, May 197.

[17] M. Chidester and A. George, “Parallel Simulation of

Chip Multiprocessor Architectures,” ACM Transactions

on Modeling andComputer Simulation, vol. 12, no. 3,

pp. 176–200, July 2002.

[18] K. Barr et al., “Simulating a Chip Multiprocessor with a

Symmetric Multiprocessor,” in Proc. of the Boston Area

Architecture Workshop, Jan. 2005.

