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ABSTRACT 

 Multi-core designs have become commonplace in the processor 

market, and are hence a major focus in modern computer 

architecture research. Thus, for both product development and 

research, multiple core processor simulation environments are 

necessary. Multi-core computer offer a new parallel computing 

platform with high performance-price ratio and small volume to 

parallel simulation. Existing parallel simulator especially PDES 

simulators commonly run on parallel computers or clusters with 

Linux or Unix OS. The prices of super computer and large scale 

cluster are too high to be afforded, which limits the extensive 

popularization of PDES. This paper discusses a brief overview 

of multi-core processors and existing approaches to Parallel 

Discrete Event Simulation based on multi-core computer 

platform. A novel approach to proposed to explore the Parallel 

Discrete Event Simulation based on multi-core computer 

platform that can run on desktop with windows OS directly. 

1. INTRODUCTION 
The motivation for this paper is the proliferation of multi-core, 

many-core and multi-core cluster architectures, which have 

inspired us to through  lights on existing simulation 

methodology and simulator for parallel simulation based on 

these platform and proposed different approach for PDES based 

on multi-core platform that can run on desktop with windows 

OS directly. 

Parallel hardware has been used in server environments for a 

long time but recent client platforms (i.e., desktop and laptop 

computers) have also been adopting multi-core processors. In 

the field of modeling and simulation, simulation applications put 

forward higher and higher requirement on the executing speed 

as the modeled physical systems are becoming more and more 

complicated. Parallel simulation is an effective way to speed up 

the simulation.  

In most of the work carried out on parallel simulation, the target 

machine and host machine used were cluster or SMP platform 

with Linux or Unix OS. Writing parallel simulators can be 

extremely difficult since traditional serial and parallel software 

cannot fully exploit multi-core's capability and computing power 

without parallelizing restructure [1]. Also maintaining causality 

during parallel execution is the central challenge both for the 

correctness of the simulation and for achieving good simulation 

performance The Multi-core processor has come into the market 

for just about five years, and according to so-called new 

Moore’s Law, the number of cores per chip wills double every 2 

years [2,3]. If this holds true, multi-core machines will soon 

evolve to many-cores, with 10s if not 100s of cores per chip. 

The terms  

many-core and massively multi-core are sometimes used to 

describe multi-core architectures with an especially high number 

of cores (tens or hundreds). Already, there are some special-

purpose(research)multi-core processors that are available from a 

number of vendors and some are under development with 64 

cores (Tilera [4]), Intel’s 80-core (Polaris prototype [5]), IBM’s 

80 core (Cyclops-64[6], Ambric's 336 core (Am2045[7]),  and 

even graphics engines with 960 cores (NVIDIA Tesla S1070 

[8]). As a result, we have entered the era of Multi-core clusters 

(MCCs). Currently research on parallel simulation based on 

multi-core, many-cores and Multi-core clusters platform is in 

early phase. Specifically research that will shift the platform of 

PDES from traditional supercomputer to multi-core computer 

has bright prospect .So there exist great demand & challenge to 

write the future desktop simulation software that will be the 

parallel simulation based on multi-core or many-core platform 

that could run on Windows OS directly. A brief overview of   

multi-core processors is discussed in section-2:, section-3 

discusses PDES and its challenges, section-4 previous work i.e. 

the Existing methodology for PDES based on multi-core 

platform and section-5 the proposed methodology for PDES 

based on multi-core platform that can run on Windows OS 

directly. Finally conclusion drawn on basis of use and 

complexity. 

2. MULTI-CORE PROCESSOR 
A multi-core processor is a single computing component with 

two or more independent actual processors (called "Execution 

cores"). And each core has its own set of execution and 

architectural resources required to run without blocking 

resources needed by the other software threads. Depending on 

design, these processors may or may not share a large on-chip 

cache. As with any technology, multi-core architectures from 

different manufacturers vary greatly. Along with differences in 

communication and memory configuration another variance 

comes in the form of how many cores the processor has. Figure1 

shows a comparison of typical single core & multi-core 

processor architecture.  Typically cores are integrated onto a 

single die (known as a chip multiprocessor or CMP), or onto 

multiple dies in a single chip package. Multi-core processors are 

MIMD: Different cores execute different threads (Multiple 

Instructions), operating on different parts of memory (Multiple 

Data) in parallel. To exploit parallelism OS perceives each core 

as separate processor and maps the threads/processes to different 

cores on time-sliced basis as depicted in figure2. 

Since past few years multi-core trend has increased dramatically 

among manufacturers and computing world, especially Intel and 

AMD moving along nicely. Current commercial multi-core line 

ups of Intel  includes the latest Intel Core i7, Intel Core i5 and 

Intel Core i3, and the older Intel Core 2 Solo, Intel Core 2 Duo, 

Intel Core 2 Quad and Intel Core 2 Extreme lines, and not to 

forget its under development 80-core research processor(Polaris 

prototype [5]).Similarly AMD has the Althon lineup for 

desktops, Turion for laptops, and Opteron for 

servers/workstations and recently 8-core AMD FX CPU, for 

which AMD has been awarded by Guinness in septmember2011 

for achieving the world's fastest desktop CPU with 8.429 GHz. 

Much of the motivation and increasing trend for multi-core 

processors among manufacturers and computing world come 

from greatly diminished gains in processor performance from 

increasing the operating frequency. This is due to three primary 

factors: 
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1. The memory wall; the increasing gap between processor and 

memory speeds. This effect pushes cache sizes larger in 

order to mask the latency of memory. This helps only to the 

extent that memory bandwidth is not the bottleneck in 

performance. 

2. The ILP wall; the increasing difficulty of finding enough 

parallelism in a single instructions stream to keep a high-

performance single-core processor busy. 

3. The power wall; the trend of consuming exponentially 

increasing power with each factorial increase of operating 

frequency. This increase can be mitigated by "shrinking" the 

processor by using smaller traces for the same logic. The 

power wall poses manufacturing, system design and 

deployment problems that have not been justified in the face 

of the diminished gains in performance due to the memory 

wall and ILP wall. 

 

Furthermore due to incapability of single core processor to 

improve operating systems’ ability to perform multitasking 

applications simultaneously, the computing world has started to 

embrace multi-cores for increased performance, power 

efficiency and compute capacity. This is because multi-cores 

effectively consume less power by running at lower clock rates 

but still increasing the throughput because of parallel 

processing. From a white paper released by Intel Corporation 

[9], based on the experiments conducted in their lab, we see that 

addition of a second core to an existing single core system, 

allows the clock speed to be lowered by 20%, at the same time 

delivering a 73% increase in performance. The largest boost in 

performance will likely be noticed in improved response-time 

while running CPU-intensive processes, like antivirus scans, 

ripping/burning media (requiring file conversion), or file 

searching. For example, if the automatic virus-scan runs while a 

movie are being watched, the application running the movie is 

far less likely to be starved of processor power, as the antivirus 

program will be assigned to a different processor core than the 

one running the movie playback. 

 

3. PDES BASED ON MULTI-CORE  
As the same with other software, simulation software has to be 

parallelized so as to make full use of multi-core platform’s 

computing power. Discrete event simulation executes simulation 

events according to their time-stamp order. Parallel discrete 

event simulation distributes simulation entities and events to 

multiple processors (or executing cores) so as to speed up the 

execution of simulation. PDES can be deemed as multiple serial 

simulations and each serial simulation is called a Logical 

Process (LP). Multiple serial simulations run at the same time 

and communicate with each other by exchanging time-stamped 

messages [10]-[11],[21]-[22]. In order to parallelize discrete 

event simulation on multi-core platform, parallel programming 

model and synchronization algorithm are two of the most 

important problems or challenges to be solved are programming 

model and synchronization algorithm. 

 

3.1 Parallel Programming Model 
In order to partition simulation into multiple LPs and distribute 

these LPs among executing cores on multi-core platforms for 

running, a parallel programming model should be needed. 

Shared memory model and message passing model are two 

popular parallel programming models. If shared memory model 

is used, a software thread will be created for each LP and 

threads communicate with each other by accessing shared 

variables and using thread synchronization primitives. The 

features of this model are single address space, easy to program, 

bad portability, etc. Shared memory model could be 

implemented through system calls (Windows and Unix system 

functions), thread libraries (such as Win32 threads, POSIX 

threads, OpenMP, Threading Building Blocks [12]  or 

programming language support (such as JAVA and C#). If 

message passing model is used, a software process will be 

created for each LP and processes communicate with each other 

by sending and receiving explicit messages. The features of this 

model are multiple address spaces, difficult to program, good 

portability, etc. Message Passing Interface (MPI) [13] and 

Parallel Virtual Machine (PVM) are two of the most popular 

message passing libraries. Whether shared memory model or 

message passing model is adopted, the multiple 

processes/threads created are all scheduled by operating 

systems. Generally they will be assigned the same priority. 

Programmers need not to distribute them to executing cores 

manually.  

 

3.2 Synchronization Algorithm 
By parallel programming model, we distribute multiple LPs to 

multiple cores on multi-core platform and execute LPs 

simultaneously. Unfortunately, events can’t be ensured to access 

LPs in time-stamp order i.e. an event with a smaller timestamp 

has the potential to modify the state of the system and thereby 

affect events that happen later. This is what we call the causality 

constraint [14]. For example, after LP2 executes an event Ea 

(with time-stamp 36), LP1 may execute an event Eb (with time-

stamp 15) and generates an event Ec (with time-stamp 21) that 

LP2 must execute. Then Ec accesses LP2 after Ea even though 

the time-stamp of Ec is smaller than Ea.This problem is called 

synchronization of PDES and it’s the central problem of PDES. 

A synchronization algorithm is needed to ensure that events are 

processed in a correct order and the parallel execution of the 

simulator yields the same results as a sequential execution 
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Synchronization algorithms can be broadly classified as either 

optimistic or conservative.  

Optimistic algorithms use a detection and recovery approach. If 

events are processed out of timestamp order, a mechanism is 

provided to detect and recover from such errors. The following 

are some concepts related to optimistic algorithms: 

1) State Saving. In order to recover from errors, the states before 

LP processes events should be saved. There are some commonly 

used methods for state saving, such as whole state saving, 

periodic state saving, incremental state saving and reverse 

computation. 

2) Roll Back. When LP receives an event with time-stamp 

smaller than its local simulation clock (this event is called a 

straggler event), it should restore its state and send anti-message 

to cancel the event sent earlier. This process is called roll back. 

3) Global Virtual Time (GVT). GVT at wallclock time T 

(GVTT) during the simulation execution is defined as the 

minimum time-stamp among all unprocessed and partially 

processed messages and anti-messages in the system at 

wallclock timeT. Samadi’s GVT algorithm and Mattern’s GVT 

algorithm are two of the most commonly used algorithms. 

4) Fossil Collection. Optimistic synchronization algorithm 

should consume much memory to save states and events. After 

GVT is calculated, memory used by states and events that are 

older than GVT can be reclaimed and reused. This process is 

called fossil collection.  

Conservative algorithm eliminates the possibility of any 

causality errors; that is, an LP is blocked from processing the 

next event in its event-list until it is sure that it will not cause 

out-of-order event execution due to future events from other 

LPs. 

4. PREVIOUS WORK 
Using Message passing model,  optimistic synchronization 

algorithm  and referring to open-source PDES simulators such 

as WARPED 2 [15], Nianle Su, Hongtao Hou, Feng Yang, Qun 

Li, and Weiping Wang at all [19] choose the C++ language and 

MPICH  message passing library to develop an optimistic PDES 

simulator which can run effectively on multi-core computer with 

Windows OS. They have adopted MPI as message passing 

library, where in interaction among LPs in PDES is completed 

entirely through explicit messages. Several kinds of messages 

need to be transferred, such as initialization message, start 

message, event message, negative event message, GVT 

message, GVT update message, terminate token. Before these 

messages are sent, they have to be transformed into byte stream 

through serialization. After received, byte stream has to be 

transformed back into different kinds of messages through 

deserialization. The optimistic simulation algorithm 

implemented using Time Warp protocol [16].The effects of 

event granularity, process number, lookahead on the simulation 

performance are analyzed on Phold model [17] with HP 

ProLiant ML150 server with two-way Intel Xeon Quad-core 

processors and 4GB memory.  The optimistic PDES based on 

multi-core platform could achieve good speedup for applications 

with coarse-grained events. 

5. PROPOSED METHODOLOGY 
PDES simulator mentioned above is developed using   

Optimistic synchronization protocol which introduces a roll-

back mechanism providing proper synchronization across event 

cores, by reverting to a previous state if a causality error occurs. 

Here we have proposed a method which uses conservative 

synchronization protocol often referred to as the Chandy-Misra-

Bryant (CMB) protocol by Chandy and Misra [20], which 

avoids the possibility of any type of causality error ever 

occurring by determining when it is safe to process an event. For 

example if a process P contains an unprocessed event E1 with 

time stamp T1 such that T1 is the smallest timestamp it has, then 

it must ensure that it is impossible for it to receive another event 

with a lower time stamp before executing E1 . In CMB, LPs are 

connected via directional links, through which events are 

transferred from one LP to another in chronological order. This 

protocol introduces the concept of a lower bound time stamp 

(LBTS) as the minimum timestamp an individual event core can 

safely advance to. Additionally, null-messages are broadcast by 

an event core to inform the other cores of its current local virtual 

time (LVT), in order to ensure correct LBTS calculation and to 

avoid deadlock [18]. 

 

5.1 Implementation 
In the proposed approach, an LP will be implemented by an 

EventCore, containing a priority queue as an EVL. A standard 

priority queue from the Java collections framework is to be used 

for the EVL implementation. This implementation is based on a 

priority heap and provides a time complexity of O(log(n)) for 

insertion, 0(n) for removal and O(1) for retrieval operations. The 

time management service is needed to be provided by the 

PDESTimeManager present in each EventCore. The time 

manager will control the time advances of the EventCore by 

keeping track of the LVT of the other event cores. An event core 

broadcasts nullmessages to each other core when it advances the 

LVT to avoid deadlock. All EventCore’s have incoming and 

outgoing channel endpoints to each other event core. The set-up 

and operation of these channels is managed by the 

CoreCommunicationManager. Each input queue Qi has a 

timestamp field T(Qi)  in each channel ,based on which the 

PDESTimeManager performs an LBTS calculation. Graphical 

representation of this system is shown in figure 3.  

The PDESTimeManager on the right shows its input queues, 

containing events and possibly null-messages with their 

firetimes ti, and the T(Qi) field, linked to the input queue 

endpoints Qi. The T(Qi) field contains the firetime value of the 

last received event, used by the PDESTimeManager to calculate 

the LBTS value. The EventCore depicted on the left, contains 

the LVT clock and the event queue. Event processing may 

spawn new internal or outgoing events that are rescheduled 

locally or sent to other cores respectively. The solid lines 

represent the flow of events, while the dashed lines represent the 

interactions relevant to the time synchronization mechanism. 
 

5.2 Performance Analysis 
To analyze both the overheads of the parallel simulator and the 

effects of event granularity, process number, lookahead on the 

simulation performance PHOLD model is underway, in which 

the event core requests the time manager to advance its LVT. 

The request is granted if the requested time is smaller than or 

equal to LBTS+l, with look-ahead l. When the event core is not 

allowed to advance the LVT and if there are no more events to 

process in the EVL, new events are pulled from all the input 

queues and inserted into the EVL. This process changes the 

LBTS, allowing the event core to advance further and execute 

the pending events in the EVL. If an event core is not allowed to 

advance and there are no more pending incoming events, the 

event core enters a wait state until new events arrive at the input 

channel endpoints. 

The hardware platform of this test is HP Inte(R) Core (TM) 2 

Duo CPU processors and 3GB memory. 
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6. CONCLUSION 
Parallel discrete event simulation based on multi-core 

platform using optimistic methods such as Time Warp are the 

best way to simulate large simulation problems, while 

conservative methods offer good potential for certain class of 

problems. But Optimistic approach takes a large amount of 

memory, must be able to recover from arbitrary errors , 

infinite loops, much more complex, keeping in mind we have 

proposed a new approach adopting conservative 

synchronization protocol   to develop PDES based on multi-

core platform , which is relatively less complex and that can 

run on window OS directly.   
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