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ABSTRACT 
Connectionism is a movement in cognitive science which 

hopes to explain human intellectual abilities using neural 

networks (also known as „neural nets‟) [1].  Evolutionary 

Connectionist System is an adaptive, incremental learning and 

knowledge representation system that evolves its structure and 

functionality, where in the core of the system is a 

connectionist architecture that consists of neurons 

(information processing units) and connections between them. 

Neural networks are simplified models of the brain composed 

of large numbers of units (the analogs of neurons) together 

with weights that measure the strength of connections 

between the units. These weights model the effects of the 

synapses that link one neuron to another. Experiments on 

models of this kind have demonstrated an ability to 

understand information, adapt knowledge and evolve 

intelligence [2]. 

 

Fuzzy neural networks are connectionist architectures that are 

trained as neural networks, but their structure can be 

interpreted as a et of fuzzy rules. In contrast to them, neuro-

fuzzy inference systems consist of a set of rules and an 

inference method that are embodied or combined with a 

connectionist structure for a better adaption[4].  

 

This paper aims to explore the fuzzy neural approach and 

neuro-fuzzy inference system to amalgamate evolutionary 

connectionism and constitutes a challenge to classicism which 

has been a matter of hot debate in recent years.  
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1. INTRODUCTION 

1.1 Connectionist Method for Supervised 

learning 
Connectionist systems for supervised learning learn from 

pairs of data(x, y), where the desired output vector y is known 

for an input vector x. If the model is incrementally adaptive, 

new data will be used to adapt the system‟s structure and 

function incrementally 

If a system is trained incrementally, the generalization error of 

the system on the next new input vector from the input stream 

is called here local incrementally adaptive generation error. 

The local incrementally adaptive generalization error at the 

moment t, for example, when the input vector is x(t), and the 

output vector calculated by the system is y(t)‟, is expressed as 

Err(t) = ||y(t)-y(t)‟||. 

The local incrementally adaptive root mean square error 

(LRMSE), and the local incrementally adaptive non  

 

 

 

 

 

 

 

 

 

 

 

 

 

dimensional error index (LNDEI) can be calculated at each 

time moment t as: 

LRMSE(t) = √(∑i =1,2,…,t(Err(i)2/t))           (i) 

LNDEI(t) = LRMSE(t)/std(y(1):y(t))           (ii) 

 

where std(y(1):y(t)) is the standard deviation of the output 

data points from time unit 1 to time unit t. 

 

In a general case, the global generalization root mean square 

error (RMSE) and the non dimensional error index (NDEI) 

are evaluated on a set of p new (future) test examples from the 

problem space as follows: 

 

RMSE = √(∑i =1,2,…,p[(yi -yi')
2] / p)         (iii) 

NDEI(t) = RMSE / std(y1:yp)                   (iv) 

 

where std(y1:yp), is the standard deviation of the data from 1 

to p in the test set.  

 

After a system is evolved on a sufficiently large and 

representative part of the whole problem space Z, its global 

generalization error is expected to become satisfactorily small.  

 

Multilayer perceptrons (MLP) trained with a backpropogation 

algorithm use a global optimization function in incrementally 

adaptive pattern. In this method, pattern learning mode of the 

backpropogation algorithm, after each training example is 

presented to the system and propogated through it, an error is 

calculated and then all connections are modified in a 

backward manner. MLP can be trained in an incrementally 

adaptive mode, but they have limitations in this respect as 

they have fixed structure and the weight optimization is a 

global one if a gradient descent algorithm is used for this 

purpose.  

 

Some connectionist systems that include MLP use a local 

objective (goal) function to optimize the structure during the 

learning process. In this case when a data pair (x, y) is 

presented, the system optimizes its functioning always in a 

local vicinity of x from the input space X, and in the local 

vicinity of y from the output space Y. 

 

1.2 Simple Evolving MLP 
A simple evolving MLP (called as eMLP), is presented in 

figure 1as a simplified graphical representation. An eMLP 

consists of three layers of neurons, the input layer, with linear 

or other transfer functions, an evolving layer, and an output 

layer with a simple saturated linear activation function. It is a 

simplified version of the evolving fuzzy neural network 

(described in later section of the paper). 
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The evolving layer is the layer that will grow and adapt itself 

to the incoming data, and is the layer with which the learning 

algorithm is most concerned. 

                                                     

 
Figure 1. A simple evolving eMLP 

If a linear activation function is used, the activation A of an 

evolving layer node n is determined by equation (v), 

 

An = 1 - Dn                   (v) 

 

Where An is the activation of the node n and Dn is the 

normalized distance between the input vector and the 

incoming weight vector for that node. Thus, examples which 

exactly match the exemplar stored within the neuron‟s 

incoming weights will result in an activation of 1 whereas 

examples that are entirely outside the exemplars region of 

input space will result in an activation of near 0. 

 

The preferred form of learning algorithm is based on 

accommodating, within the evolving layer, new training 

examples by either modifying the connection weights of the 

evolving layer nodes, or by adding a new node.When a new 

node is added, its incoming connection weight vector is set to 

the input vector  I, and its outgoing weight vector is set to the 

desired output vector Od.The incoming weights to the winning 

node j are modified according to equation (vi), whereas the 

outgoing weights from node j are modified according to 

equation (vii). 

 

Wi,j(t+1)=Wi,j(t)+η1(Ii-Wi,j(t))          (vi) 

 

Where : 

Wi,j(t) is the connection weight from input I to j at time t; 

Wi,j(t+1) is the connection weight from input I to j at time t+1; 

 η1 is the learning rate one parameter; 

Ii is the ith component of the input vector I. 

 

Wj,p(t+1)=Wj,p(t)+η2(Aj X Ep)         (vii) 

 

Where : 

Wj,p(t) is the connection weight from j to output p at time t; 

Wj,p(t+1) is the connection weight from j to p at time t+1; 

 η2 is the learning rate two parameter; 

Aj is the activation of a node j, and 

Ep = Od(p) – Oc(p)                                   (viii) 

 

 where Ep is the error at p; Od(p) is the desired output at p; and 

Oc(p) is the calculated output at p.  

 

The distance measure Dn in equation (v) above is preferably 

calculated as the normalized Hamming distance as shown in 

equation (ix): 

 

Dn = (∑|Ii - Wi|) / (∑|Ii + Wi|), for  i = I to K         (ix) 

 

Where, 

K is the number of input nodes in the eMLP,  

I is the input vector, and W is the input to the evolving layer 

weight matrix. 

 

Aggregation of nodes in the evolving layer can be employed 

to control the size of the evolving layer during the learning 

process. The principle of aggregation is to merge those nodes 

which are especially close to each other. Aggregation can be 

applied for every (or after every n) training example. 

 

2. CONNECTIONIST ARCHITECTURES 

2.1 Evolving Fuzzy Neural Networks 

(EFuNN) 
 

2.1.1 Architecture of EFuNN 
EFuNN have a five layer structure, as shown in figure 2. Here 

nodes and connections are created / connected as data 

examples are presented. An optional short term memory layer 

can be used through a feedback connection from the rule (also 

called case) node layer. The layer of feedback connections 

could be used if temporal relationships of input data are to be 

memorized structurally. 

        

        

             

output 

  

Figure 2. Evolving Fuzzy Neural Network 

The input layer represents input variables. The second layer of 

nodes (fuzzy input neurons or fuzzy inputs) represents fuzzy 

quantization of each input variable space. For example, two 

fuzzy input neurons can be used to represent „small‟ and 

„large‟ fuzzy values. Different membership functions can be 

attached to these neurons (triangular, Gaussian etc.). 

 

The third layer contains rule (case) nodes that evolve through 

supervised and / or unsupervised learning. The rule nodes 

represent prototypes (clusters, exemplars) of input-output data 

associations that can be graphically represented as 

associations of hyperspheres from the fuzzy input and the 

fuzzy output space. Each rule node r is defined by two vectors 

of connection weights, W1(r) and W2(r), the latter being 

adjusted through supervised learning based on the output 

error, and the former being adjusted through unsupervised 

learning based on similarity measure within a local area of the 

problem space.  

 

The forth layer of neurons represents fuzzy quantization of the 

output variables, similar to the input fuzzy neuron 

representation. Here, a weighted sum input function and a 

saturated linear activation function is used for the neurons to 

calculate the membership degrees to which the output vector 
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associated with the presented input vector belongs to each of 

the output membership functions. 

The fifth layer represents the values of the output variables. 

Here a linear activation function is used to calculate the 

defuzzified values for the output variables. 

 

2.1.2 Adaptive learning in EFuNN  
The learning in EFuNN is based on either of the following 

assumptions: 

1.  No rule nodes exist prior to learning and all of them are 

created (generated) during the evolving process; or 

2. There is an initial set of rule nodes that are not connected to 

the input and output nodes and become connected through the 

learning (evolving) process. 

 

2.1.3 Learning (evolving) algorithm for EFuNN 
Each rule node, for example, rj, represents an association 

between a hypersphere from the fuzzy input space and a 

hypersphere from the fuzzy output space, the W1(rj) 

connection weights representing the co-ordinates of the center 

of the sphere in the fuzzy input space, and the W2(rj) the co-

ordinates in the fuzzy output space. The radius of the input 

hypersphere of a rule node rj is defined as Rj = 1- Sj, where Sj 

is the sensitivity threshold parameter defining the minimum 

activation of the rule node rj to a new input vector x from a 

new example (x, y) in order for the example to be considered 

for association with this rule node. 

 

The pair of fuzzy input-output data vectors (xf, yf) will be 

allocated to the rule node rj  if xf falls into the rj input 

receptive field (hypersphere), and yf falls in the rj output 

reactive field hypersphere. This is ensured through two 

conditions: that a local normalized fuzzy difference between 

xf and W1(rj) is smaller than the radius Rj , and the normalized 

output error (Err  =  ||y – y‟|| / Nout ) is smaller than an error 

threshold E. Nout is the number of the out puts and y‟ is the 

output produced by EFuNN. The error parameter E sets the 

error tolerance of the system. 

 

2.2 Evolving Neuro-Fuzzy Inference Models 
2.2.1 Knowledge-Based Neural Networks (KBNN) 
Knowledge is the essence of what a KBNN has accumulated 

during its operation. Manipulating rules in a KBNN can 

pursue the following objectives: 

1. Knowledge Discovery 

2. Improvement of the KBNN system 

 

Different KBNNs are designed to represent different types of 

rules, some of them are listed below: 

1. Simple propositional rules(e.g. IF x1 is A AND/OR   

     x2 is B THEN y is C, where A, B, and C are   

     constants, variables  symbols of true/false type). 

2. Propositional rules with certainty factors (e.g. IF x1 is  

    A(CF1) AND x2 is B (CF2) THEN y is  C (CFc)). 

 

There are several methods for rule extraction from a KBNN. 

Three of them are explained below: 

1. Rule extraction through activating a trained KBNN   

    on input data and observing the patterns of       

    activation (“the short term memory”). 

2. Rule extraction through analysis of the connections in  

    trained KBNN (“the long term Memory”). 

3. Combined methods of (1) and (2). 

 

In terms of applying the extracted from a KBNN rules to infer 

new information, there are three types of methods used in the 

KBNN: 

 

1. The rule learning and rule inference modules     constitute 

an integral structure where reasoning is part of the rule 

learning and vice-versa. This is the case in all fuzzy-neural 

networks and most of the neuro- fuzzy inference system. 

2. The rules extracted from a KBNN are interpreted in another 

inference machine. The learning module is  

separated from the reasoning module. This is a main principle 

used in many AI and expert systems,     where the rule base 

acquisition is separated from the inference machine. 

3. The two options from above are possible within one 

intelligent system. 

 

2.2.2 General Evolving Neuro –Fuzzy inference 

system 
Evolving neuro-fuzzy inference systems are such systems, 

where both knowledge and the inference mechanism evolve 

and change in time, with more examples presented to the 

system. In the models here knowledge is represented as both 

fuzzy rules and statistical features that are learned in an 

offline or online, possibly, in a lifelong learning mode. 

 

Figure 3 shows a general scheme of a fuzzy inference system. 

The decision making block is the fuzzy inference engine that 

performs inference over fuzzy rules and data from the 

database. The inference can be realized in a connectionist 

structure, thus making the system a neuro-fuzzy inference 

system. 

 
 

Figure 3. Fuzzy Inference System 

 

2.2.3 Adaptive Neuro-Fuzzy Inference System 

(ANFIS) 
ANFIS consists of five layers of MLP. The first layer 

represents fuzzy membership functions. The second layer and 

the third layers contains nodes that form the antecedent parts 

in each rule. The forth layer calculates the first order Takagi-

Sugeno rules [5] for each fuzzy rule. The fifth layer, is the 

output layer, calculates the weighted global output of the 

system. 
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The backpropogtion algorithm I used to modify the initially 

chosen membership functions and the least mean square 

algorithm is used to determine the coefficients of linear output 

functions. 

 

As many rules can be extracted from a trained ANFIS as there 

are a predefined number of rule nodes. By employing a hybrid 

learning procedure, the proposed architecture can refine fuzzy 

if-then rules obtained from human experts to describe the 

input-output behavior of a complex system. If human experts 

is not available, reasonable initial membership functions can 

still be set up intuitively and the learning process can begin to 

generate a set of fuzzy if-then rules to approximate a desired 

dataset. 

 

2.2.4 Hybrid Neuro-Fuzzy Inference 

System(HyFIS) 
HyFIS consists of two main parts, as shown in figure 4. 

1. A fuzzy analysis module for fuzzy rule extraction from 

incoming data. 

2. A connectionist module that implements and tunes the 

fuzzy rules through applying the backpropogation algorithm.

   

 
 

 

Figure 4. HyFIS 

 

The system operates in the following mode: 

1. Data examples (x, y) are assumed to arrive in chunks of m 

(as a partial case, let m =1 ). 

2. For the current chunk Ki, consisting of mi examples, ni 

fuzzy rules are extracted as described below. They have a 

form illustrated with the following examples. IF x1 is Small 

AND x2 is Large THEN y is Medium. 

3. The ni fuzzy rules are inserted in the neuro-fuzzy module, 

thus updating the current structure of this module. 

4. The updated neuro-fuzzy structure is trained with the     

backpropogation algorithm on the chunk of data Ki, or on a 

larger dataset  if such is available. 

5. New data x‟ that do no have known output vector, are      

propogated through the neuro-fuzzy module for recall. 

 

2.2.5 Neuro-Fuzzy Inference Module 
A block diagram of a hypothetical neuro-fuzzy module is 

given in figure 5. It consists of five layers: layer  

one is the input layer, layer two is the input membership 

function layer, layer three is the rule layer, layer four is the 

output membership function layer, and layer five is the output 

layer. 

 
              

           Figure 5. Hypothetical neuro-fuzzy module 

 

Layer three performs the AND operation calculated as the min 

function on the incoming activation values of the membership 

function nodes. The membership functions are of a Gaussian 

type. Layer four performs the OR operation, calculated as the 

max function on the weighted activation values of the rule 

nodes connected to node in layer four: 

Oj(4)  =  max {Oi(3)wi,j}   (x) 

 

Layer five performs a centre of area defuzzification: 

Ol(5) = ∑ Oj(4)Cj(4)σj(4) /  ∑ Oj(4) σj(4) (xi) 

 

where,  

Ol(5) is the activation of the lth output node; 

Oj(4) is the activation of the jth node from layer 4 that 

represents a Gaussian output membership function with a 

center Cj(4) and a width of σj(4) . 

 

Through the backpropogation learning algorithm the 

connection weights wi,j as well as the centers and the width of 

the of the membership functions are adjusted to minimize the 

mean square error over the training dataset (or the current 

chunk of data). 

 

 3. CONCLUSION 
Fuzzy neural networks are neural networks, with all neural 

network characteristics of training, recall, and adaption and so 

on, whereas Neuro-fuzzy inference systems are fuzzy rule-

based systems and their associated fuzzy inference 

mechanisms that are implemented as neural networks for the 

purpose of learning and rule optimization [6]. 

 

EFuNN have features of knowledge based systems, logic 

systems, case-based reasoning system and adaptive 

connectionist-based systems all together. Through self-

organization and self-adaption during the learning process, 

they allow for solving difficult engineering tasks as well as for 

simulation of emerging, evolving biological and cognitive 

processes to be attempted [3]. 

 

The EFuNN applications span across several application areas 

of information science, life sciences, and engineering, where 

systems learn from data and improve continuously. 

ANFIS is not flexible in terms of changing the number of 

membership functions and rules over time, according to the 

incoming data. HyFIS can be used as both offline and online 

knowledge based learning system [5]. 
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