
2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

19

ABSTRACT
Connectionism is a movement in cognitive science which

hopes to explain human intellectual abilities using neural

networks (also known as „neural nets‟) [1]. Evolutionary

Connectionist System is an adaptive, incremental learning and

knowledge representation system that evolves its structure and

functionality, where in the core of the system is a

connectionist architecture that consists of neurons

(information processing units) and connections between them.

Neural networks are simplified models of the brain composed

of large numbers of units (the analogs of neurons) together

with weights that measure the strength of connections

between the units. These weights model the effects of the

synapses that link one neuron to another. Experiments on

models of this kind have demonstrated an ability to

understand information, adapt knowledge and evolve

intelligence [2].

Fuzzy neural networks are connectionist architectures that are

trained as neural networks, but their structure can be

interpreted as a et of fuzzy rules. In contrast to them, neuro-

fuzzy inference systems consist of a set of rules and an

inference method that are embodied or combined with a

connectionist structure for a better adaption[4].

This paper aims to explore the fuzzy neural approach and

neuro-fuzzy inference system to amalgamate evolutionary

connectionism and constitutes a challenge to classicism which

has been a matter of hot debate in recent years.

Keywords

Evolving Connectionism; Connectionist systems; Evolving

systems; Fuzzy Neural Networks (FNN); Neuro-Fuzzy

system.

1. INTRODUCTION

1.1 Connectionist Method for Supervised

learning
Connectionist systems for supervised learning learn from

pairs of data(x, y), where the desired output vector y is known

for an input vector x. If the model is incrementally adaptive,

new data will be used to adapt the system‟s structure and

function incrementally

If a system is trained incrementally, the generalization error of

the system on the next new input vector from the input stream

is called here local incrementally adaptive generation error.

The local incrementally adaptive generalization error at the

moment t, for example, when the input vector is x(t), and the

output vector calculated by the system is y(t)‟, is expressed as

Err(t) = ||y(t)-y(t)‟||.

The local incrementally adaptive root mean square error

(LRMSE), and the local incrementally adaptive non

dimensional error index (LNDEI) can be calculated at each

time moment t as:

LRMSE(t) = √(∑i =1,2,…,t(Err(i)2/t)) (i)

LNDEI(t) = LRMSE(t)/std(y(1):y(t)) (ii)

where std(y(1):y(t)) is the standard deviation of the output

data points from time unit 1 to time unit t.

In a general case, the global generalization root mean square

error (RMSE) and the non dimensional error index (NDEI)

are evaluated on a set of p new (future) test examples from the

problem space as follows:

RMSE = √(∑i =1,2,…,p[(yi -yi')
2] / p) (iii)

NDEI(t) = RMSE / std(y1:yp) (iv)

where std(y1:yp), is the standard deviation of the data from 1

to p in the test set.

After a system is evolved on a sufficiently large and

representative part of the whole problem space Z, its global

generalization error is expected to become satisfactorily small.

Multilayer perceptrons (MLP) trained with a backpropogation

algorithm use a global optimization function in incrementally

adaptive pattern. In this method, pattern learning mode of the

backpropogation algorithm, after each training example is

presented to the system and propogated through it, an error is

calculated and then all connections are modified in a

backward manner. MLP can be trained in an incrementally

adaptive mode, but they have limitations in this respect as

they have fixed structure and the weight optimization is a

global one if a gradient descent algorithm is used for this

purpose.

Some connectionist systems that include MLP use a local

objective (goal) function to optimize the structure during the

learning process. In this case when a data pair (x, y) is

presented, the system optimizes its functioning always in a

local vicinity of x from the input space X, and in the local

vicinity of y from the output space Y.

1.2 Simple Evolving MLP
A simple evolving MLP (called as eMLP), is presented in

figure 1as a simplified graphical representation. An eMLP

consists of three layers of neurons, the input layer, with linear

or other transfer functions, an evolving layer, and an output

layer with a simple saturated linear activation function. It is a

simplified version of the evolving fuzzy neural network

(described in later section of the paper).

Study of Evolutionary Connectionism from the

Perspective of Fuzzy Neural Network and Neuro-Fuzzy

Inference Model

Rajesh S Prasad
Associate Professor

VIIT, Pune
India

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

20

The evolving layer is the layer that will grow and adapt itself

to the incoming data, and is the layer with which the learning

algorithm is most concerned.

Figure 1. A simple evolving eMLP

If a linear activation function is used, the activation A of an

evolving layer node n is determined by equation (v),

An = 1 - Dn (v)

Where An is the activation of the node n and Dn is the

normalized distance between the input vector and the

incoming weight vector for that node. Thus, examples which

exactly match the exemplar stored within the neuron‟s

incoming weights will result in an activation of 1 whereas

examples that are entirely outside the exemplars region of

input space will result in an activation of near 0.

The preferred form of learning algorithm is based on

accommodating, within the evolving layer, new training

examples by either modifying the connection weights of the

evolving layer nodes, or by adding a new node.When a new

node is added, its incoming connection weight vector is set to

the input vector I, and its outgoing weight vector is set to the

desired output vector Od.The incoming weights to the winning

node j are modified according to equation (vi), whereas the

outgoing weights from node j are modified according to

equation (vii).

Wi,j(t+1)=Wi,j(t)+η1(Ii-Wi,j(t)) (vi)

Where :

Wi,j(t) is the connection weight from input I to j at time t;

Wi,j(t+1) is the connection weight from input I to j at time t+1;

 η1 is the learning rate one parameter;

Ii is the ith component of the input vector I.

Wj,p(t+1)=Wj,p(t)+η2(Aj X Ep) (vii)

Where :

Wj,p(t) is the connection weight from j to output p at time t;

Wj,p(t+1) is the connection weight from j to p at time t+1;

 η2 is the learning rate two parameter;

Aj is the activation of a node j, and

Ep = Od(p) – Oc(p) (viii)

 where Ep is the error at p; Od(p) is the desired output at p; and

Oc(p) is the calculated output at p.

The distance measure Dn in equation (v) above is preferably

calculated as the normalized Hamming distance as shown in

equation (ix):

Dn = (∑|Ii - Wi|) / (∑|Ii + Wi|), for i = I to K (ix)

Where,

K is the number of input nodes in the eMLP,

I is the input vector, and W is the input to the evolving layer

weight matrix.

Aggregation of nodes in the evolving layer can be employed

to control the size of the evolving layer during the learning

process. The principle of aggregation is to merge those nodes

which are especially close to each other. Aggregation can be

applied for every (or after every n) training example.

2. CONNECTIONIST ARCHITECTURES

2.1 Evolving Fuzzy Neural Networks

(EFuNN)

2.1.1 Architecture of EFuNN
EFuNN have a five layer structure, as shown in figure 2. Here

nodes and connections are created / connected as data

examples are presented. An optional short term memory layer

can be used through a feedback connection from the rule (also

called case) node layer. The layer of feedback connections

could be used if temporal relationships of input data are to be

memorized structurally.

output

Figure 2. Evolving Fuzzy Neural Network

The input layer represents input variables. The second layer of

nodes (fuzzy input neurons or fuzzy inputs) represents fuzzy

quantization of each input variable space. For example, two

fuzzy input neurons can be used to represent „small‟ and

„large‟ fuzzy values. Different membership functions can be

attached to these neurons (triangular, Gaussian etc.).

The third layer contains rule (case) nodes that evolve through

supervised and / or unsupervised learning. The rule nodes

represent prototypes (clusters, exemplars) of input-output data

associations that can be graphically represented as

associations of hyperspheres from the fuzzy input and the

fuzzy output space. Each rule node r is defined by two vectors

of connection weights, W1(r) and W2(r), the latter being

adjusted through supervised learning based on the output

error, and the former being adjusted through unsupervised

learning based on similarity measure within a local area of the

problem space.

The forth layer of neurons represents fuzzy quantization of the

output variables, similar to the input fuzzy neuron

representation. Here, a weighted sum input function and a

saturated linear activation function is used for the neurons to

calculate the membership degrees to which the output vector

Input

Layer

Evolving

Layer

Output

Layer

New

Output

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

21

associated with the presented input vector belongs to each of

the output membership functions.

The fifth layer represents the values of the output variables.

Here a linear activation function is used to calculate the

defuzzified values for the output variables.

2.1.2 Adaptive learning in EFuNN
The learning in EFuNN is based on either of the following

assumptions:

1. No rule nodes exist prior to learning and all of them are

created (generated) during the evolving process; or

2. There is an initial set of rule nodes that are not connected to

the input and output nodes and become connected through the

learning (evolving) process.

2.1.3 Learning (evolving) algorithm for EFuNN
Each rule node, for example, rj, represents an association

between a hypersphere from the fuzzy input space and a

hypersphere from the fuzzy output space, the W1(rj)

connection weights representing the co-ordinates of the center

of the sphere in the fuzzy input space, and the W2(rj) the co-

ordinates in the fuzzy output space. The radius of the input

hypersphere of a rule node rj is defined as Rj = 1- Sj, where Sj

is the sensitivity threshold parameter defining the minimum

activation of the rule node rj to a new input vector x from a

new example (x, y) in order for the example to be considered

for association with this rule node.

The pair of fuzzy input-output data vectors (xf, yf) will be

allocated to the rule node rj if xf falls into the rj input

receptive field (hypersphere), and yf falls in the rj output

reactive field hypersphere. This is ensured through two

conditions: that a local normalized fuzzy difference between

xf and W1(rj) is smaller than the radius Rj , and the normalized

output error (Err = ||y – y‟|| / Nout) is smaller than an error

threshold E. Nout is the number of the out puts and y‟ is the

output produced by EFuNN. The error parameter E sets the

error tolerance of the system.

2.2 Evolving Neuro-Fuzzy Inference Models
2.2.1 Knowledge-Based Neural Networks (KBNN)
Knowledge is the essence of what a KBNN has accumulated

during its operation. Manipulating rules in a KBNN can

pursue the following objectives:

1. Knowledge Discovery

2. Improvement of the KBNN system

Different KBNNs are designed to represent different types of

rules, some of them are listed below:

1. Simple propositional rules(e.g. IF x1 is A AND/OR

 x2 is B THEN y is C, where A, B, and C are

 constants, variables symbols of true/false type).

2. Propositional rules with certainty factors (e.g. IF x1 is

 A(CF1) AND x2 is B (CF2) THEN y is C (CFc)).

There are several methods for rule extraction from a KBNN.

Three of them are explained below:

1. Rule extraction through activating a trained KBNN

 on input data and observing the patterns of

 activation (“the short term memory”).

2. Rule extraction through analysis of the connections in

 trained KBNN (“the long term Memory”).

3. Combined methods of (1) and (2).

In terms of applying the extracted from a KBNN rules to infer

new information, there are three types of methods used in the

KBNN:

1. The rule learning and rule inference modules constitute

an integral structure where reasoning is part of the rule

learning and vice-versa. This is the case in all fuzzy-neural

networks and most of the neuro- fuzzy inference system.

2. The rules extracted from a KBNN are interpreted in another

inference machine. The learning module is

separated from the reasoning module. This is a main principle

used in many AI and expert systems, where the rule base

acquisition is separated from the inference machine.

3. The two options from above are possible within one

intelligent system.

2.2.2 General Evolving Neuro –Fuzzy inference

system
Evolving neuro-fuzzy inference systems are such systems,

where both knowledge and the inference mechanism evolve

and change in time, with more examples presented to the

system. In the models here knowledge is represented as both

fuzzy rules and statistical features that are learned in an

offline or online, possibly, in a lifelong learning mode.

Figure 3 shows a general scheme of a fuzzy inference system.

The decision making block is the fuzzy inference engine that

performs inference over fuzzy rules and data from the

database. The inference can be realized in a connectionist

structure, thus making the system a neuro-fuzzy inference

system.

Figure 3. Fuzzy Inference System

2.2.3 Adaptive Neuro-Fuzzy Inference System

(ANFIS)
ANFIS consists of five layers of MLP. The first layer

represents fuzzy membership functions. The second layer and

the third layers contains nodes that form the antecedent parts

in each rule. The forth layer calculates the first order Takagi-

Sugeno rules [5] for each fuzzy rule. The fifth layer, is the

output layer, calculates the weighted global output of the

system.

Fuzzy rule base

Fuzzy Inference Machine Fuzzy

database

Fuzzificatio

n

Defuzzif

ication

User Interface

Membership

Functions

Data & Queries

Learning

Fuzzy

rules

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

22

The backpropogtion algorithm I used to modify the initially

chosen membership functions and the least mean square

algorithm is used to determine the coefficients of linear output

functions.

As many rules can be extracted from a trained ANFIS as there

are a predefined number of rule nodes. By employing a hybrid

learning procedure, the proposed architecture can refine fuzzy

if-then rules obtained from human experts to describe the

input-output behavior of a complex system. If human experts

is not available, reasonable initial membership functions can

still be set up intuitively and the learning process can begin to

generate a set of fuzzy if-then rules to approximate a desired

dataset.

2.2.4 Hybrid Neuro-Fuzzy Inference

System(HyFIS)
HyFIS consists of two main parts, as shown in figure 4.

1. A fuzzy analysis module for fuzzy rule extraction from

incoming data.

2. A connectionist module that implements and tunes the

fuzzy rules through applying the backpropogation algorithm.

Figure 4. HyFIS

The system operates in the following mode:

1. Data examples (x, y) are assumed to arrive in chunks of m

(as a partial case, let m =1).

2. For the current chunk Ki, consisting of mi examples, ni

fuzzy rules are extracted as described below. They have a

form illustrated with the following examples. IF x1 is Small

AND x2 is Large THEN y is Medium.

3. The ni fuzzy rules are inserted in the neuro-fuzzy module,

thus updating the current structure of this module.

4. The updated neuro-fuzzy structure is trained with the

backpropogation algorithm on the chunk of data Ki, or on a

larger dataset if such is available.

5. New data x‟ that do no have known output vector, are

propogated through the neuro-fuzzy module for recall.

2.2.5 Neuro-Fuzzy Inference Module
A block diagram of a hypothetical neuro-fuzzy module is

given in figure 5. It consists of five layers: layer

one is the input layer, layer two is the input membership

function layer, layer three is the rule layer, layer four is the

output membership function layer, and layer five is the output

layer.

 Figure 5. Hypothetical neuro-fuzzy module

Layer three performs the AND operation calculated as the min

function on the incoming activation values of the membership

function nodes. The membership functions are of a Gaussian

type. Layer four performs the OR operation, calculated as the

max function on the weighted activation values of the rule

nodes connected to node in layer four:

Oj(4) = max {Oi(3)wi,j} (x)

Layer five performs a centre of area defuzzification:

Ol(5) = ∑ Oj(4)Cj(4)σj(4) / ∑ Oj(4) σj(4) (xi)

where,

Ol(5) is the activation of the lth output node;

Oj(4) is the activation of the jth node from layer 4 that

represents a Gaussian output membership function with a

center Cj(4) and a width of σj(4) .

Through the backpropogation learning algorithm the

connection weights wi,j as well as the centers and the width of

the of the membership functions are adjusted to minimize the

mean square error over the training dataset (or the current

chunk of data).

 3. CONCLUSION
Fuzzy neural networks are neural networks, with all neural

network characteristics of training, recall, and adaption and so

on, whereas Neuro-fuzzy inference systems are fuzzy rule-

based systems and their associated fuzzy inference

mechanisms that are implemented as neural networks for the

purpose of learning and rule optimization [6].

EFuNN have features of knowledge based systems, logic

systems, case-based reasoning system and adaptive

connectionist-based systems all together. Through self-

organization and self-adaption during the learning process,

they allow for solving difficult engineering tasks as well as for

simulation of emerging, evolving biological and cognitive

processes to be attempted [3].

The EFuNN applications span across several application areas

of information science, life sciences, and engineering, where

systems learn from data and improve continuously.

ANFIS is not flexible in terms of changing the number of

membership functions and rules over time, according to the

incoming data. HyFIS can be used as both offline and online

knowledge based learning system [5].

Input

Node

(Layer 1)

Term

Node

(Layer 2)

Rule

Node

(Layer 3)

Term

Node

(Layer 4)

Output

Node

(Layer 5)

 Structure Learning

Knowledge

Acquisition

Fuzzy rule

base

Preprocessing

Parameter

Learning

(Neuro

Fuzzy

Model)

Input

Output

Explanation

Extract

rules
Insert

rules

2nd National Conference on Information and Communication Technology (NCICT) 2011

Proceedings published in International Journal of Computer Applications® (IJCA)

23

4. ACKNOWLEDGMENTS
Manuscript received on May 22 2010. This work is partially

associated with a research project funded by the Board of

College and University Development (BCUD), at University

of Pune, India.

5. REFERENCES
[1] Amari, S. and Kasabov, N., “Brain-like Computing and

Intelligent Information System, Springer Verlag,

Singapore.

[2] Arbib M, “The Handbook of Brain Theory and Neural

Networks”, MIT Press, Cambridge, MA, (1995, 2002).

[3] Nikola Kasabov, “Evolving Connectionist Systems”,

Springer, Second Edition, 978-1-84628-345-1.

[4] Elman, Jeffrey L., “Distributed representations, Simple

recurrent networks, and grammatical Structure”,

Machine Learning, 7, pp. 195-225.

[5] Kasabov N. AND Kozma R., “ Neuro-Fuzzy Techniques

for Intelligent Information System”, Physical Verlag

(Springer Verlag), Heidelberg, 1999.

[6] Rajesh Prasad, U.V. Kulkarni, “A Novel Evolutionary

Connectionist Text Summarizer”, International

Conference on Anticounterfeiting, Security and

Identification, ASID 2009, HongKong, by IEEE

HongKong section.

[7] J. L. Elman, “Distributed representations, simple

recurrent networks, and grammatical structure,” Machine

Learning, vol. 7, pp. 195–225, 1991.

[8] Rajesh Prasad, U.V. Kulkarni, “Connectionist Approach

to Generic Text Summarization”, WASET, International

Conference on Neural Networks, Oslo, Norway, July

2008.

